VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/Inflate.c
diff options
context:
space:
mode:
authorMounir IDRASSI <mounir.idrassi@idrix.fr>2013-06-22 16:16:13 +0200
committerMounir IDRASSI <mounir.idrassi@idrix.fr>2014-11-08 23:18:07 +0100
commitc606f0866c3a2a5db3ef9bc41738ef33eb9612a9 (patch)
tree5847c644cdfff3c1dd55b88b565448087ae89f11 /src/Common/Inflate.c
downloadVeraCrypt-c606f0866c3a2a5db3ef9bc41738ef33eb9612a9.tar.gz
VeraCrypt-c606f0866c3a2a5db3ef9bc41738ef33eb9612a9.zip
Add original TrueCrypt 7.1a sources
Diffstat (limited to 'src/Common/Inflate.c')
-rw-r--r--src/Common/Inflate.c1308
1 files changed, 1308 insertions, 0 deletions
diff --git a/src/Common/Inflate.c b/src/Common/Inflate.c
new file mode 100644
index 00000000..d4c8908a
--- /dev/null
+++ b/src/Common/Inflate.c
@@ -0,0 +1,1308 @@
+/* inflate.c -- put in the public domain by Mark Adler */
+
+/* Decompresses raw data compressed using the DEFLATE algorithm (RFC 1951) */
+
+/* You can do whatever you like with this source file, though I would
+ prefer that if you modify it and redistribute it that you include
+ comments to that effect with your name and the date. Thank you.
+
+ History:
+ vers date who what
+ ---- --------- -------------- ------------------------------------
+ a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
+ b1 21 Mar 92 M. Adler first version with partial lookup tables
+ b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
+ b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
+ b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
+ is the responsibility of unzip.h--also
+ changed name to slide[]), so needs diffs
+ for unzip.c and unzip.h (this allows
+ compiling in the small model on MSDOS);
+ fixed cast of q in huft_build();
+ b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
+ b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
+ bug in inflate_fixed().
+ c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
+ changed BMAX to 16 for explode. Removed
+ OUTB usage, and replaced it with flush()--
+ this was a 20% speed improvement! Added
+ an explode.c (to replace unimplod.c) that
+ uses the huft routines here. Removed
+ register union.
+ c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
+ c3 10 Apr 92 M. Adler reduced memory of code tables made by
+ huft_build significantly (factor of two to
+ three).
+ c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
+ worked around a Turbo C optimization bug.
+ c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
+ the 32K window size for specialized
+ applications.
+ c6 31 May 92 M. Adler added some typecasts to eliminate warnings
+ c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
+ c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
+ c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
+ c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
+ removed old inflate, renamed inflate_entry
+ to inflate, added Mark's fix to a comment.
+ c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
+ c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
+ tables, and removed assumption that EOB is
+ the longest code (bad assumption).
+ c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
+ c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
+ outputs one zero length code for an empty
+ distance tree).
+ c14 12 Mar 93 M. Adler made inflate.c standalone with the
+ introduction of inflate.h.
+ c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
+ c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
+ to static for Amiga.
+ c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
+ c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
+ c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
+ conditional; added inflate_free().
+ c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
+ c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
+ c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
+ G. Roelofs check NEXTBYTE macro for EOF.
+ c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
+ EOF check.
+ c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
+ c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
+ to avoid bug in Encore compiler.
+ c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
+ inflate_codes() (define ASM_INFLATECODES)
+ c14n 22 Jul 94 G. Roelofs changed fprintf to macro for DLL versions
+ c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
+ G. Roelofs added another typecast to avoid MSC warning
+ c14p 4 Oct 94 G. Roelofs added (voidp *) cast to free() argument
+ c14q 30 Oct 94 G. Roelofs changed fprintf macro to MESSAGE()
+ c14r 1 Nov 94 G. Roelofs fixed possible redefinition of CHECK_EOF
+ c14s 7 May 95 S. Maxwell OS/2 DLL globals stuff incorporated;
+ P. Kienitz "fixed" ASM_INFLATECODES macro/prototype
+ c14t 18 Aug 95 G. Roelofs added inflate() to use zlib functions;
+ changed voidp to zvoid; moved huft_build()
+ and huft_free() to end of file
+ c14u 1 Oct 95 G. Roelofs moved G into definition of MESSAGE macro
+ c14v 8 Nov 95 P. Kienitz changed ASM_INFLATECODES to use a regular
+ call with __G__ instead of a macro
+ c15 3 Aug 96 M. Adler fixed bomb-bug on random input data (Adobe)
+ c15b 24 Aug 96 M. Adler more fixes for random input data
+ c15c 28 Mar 97 G. Roelofs changed USE_ZLIB fatal exit code from
+ PK_MEM2 to PK_MEM3
+ c16 20 Apr 97 J. Altman added memzero(v[]) in huft_build()
+ c16b 29 Mar 98 C. Spieler modified DLL code for slide redirection
+
+ fork 12 Dec 07 Adapted for TrueCrypt
+ */
+
+
+/*
+ Inflate deflated (PKZIP's method 8 compressed) data. The compression
+ method searches for as much of the current string of bytes (up to a
+ length of 258) in the previous 32K bytes. If it doesn't find any
+ matches (of at least length 3), it codes the next byte. Otherwise, it
+ codes the length of the matched string and its distance backwards from
+ the current position. There is a single Huffman code that codes both
+ single bytes (called "literals") and match lengths. A second Huffman
+ code codes the distance information, which follows a length code. Each
+ length or distance code actually represents a base value and a number
+ of "extra" (sometimes zero) bits to get to add to the base value. At
+ the end of each deflated block is a special end-of-block (EOB) literal/
+ length code. The decoding process is basically: get a literal/length
+ code; if EOB then done; if a literal, emit the decoded byte; if a
+ length then get the distance and emit the referred-to bytes from the
+ sliding window of previously emitted data.
+
+ There are (currently) three kinds of inflate blocks: stored, fixed, and
+ dynamic. The compressor outputs a chunk of data at a time and decides
+ which method to use on a chunk-by-chunk basis. A chunk might typically
+ be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
+ "stored" method is used. In this case, the bytes are simply stored as
+ is, eight bits per byte, with none of the above coding. The bytes are
+ preceded by a count, since there is no longer an EOB code.
+
+ If the data are compressible, then either the fixed or dynamic methods
+ are used. In the dynamic method, the compressed data are preceded by
+ an encoding of the literal/length and distance Huffman codes that are
+ to be used to decode this block. The representation is itself Huffman
+ coded, and so is preceded by a description of that code. These code
+ descriptions take up a little space, and so for small blocks, there is
+ a predefined set of codes, called the fixed codes. The fixed method is
+ used if the block ends up smaller that way (usually for quite small
+ chunks); otherwise the dynamic method is used. In the latter case, the
+ codes are customized to the probabilities in the current block and so
+ can code it much better than the pre-determined fixed codes can.
+
+ The Huffman codes themselves are decoded using a multi-level table
+ lookup, in order to maximize the speed of decoding plus the speed of
+ building the decoding tables. See the comments below that precede the
+ lbits and dbits tuning parameters.
+
+ GRR: return values(?)
+ 0 OK
+ 1 incomplete table
+ 2 bad input
+ 3 not enough memory
+ */
+
+
+/*
+ Notes beyond the 1.93a appnote.txt:
+
+ 1. Distance pointers never point before the beginning of the output
+ stream.
+ 2. Distance pointers can point back across blocks, up to 32k away.
+ 3. There is an implied maximum of 7 bits for the bit length table and
+ 15 bits for the actual data.
+ 4. If only one code exists, then it is encoded using one bit. (Zero
+ would be more efficient, but perhaps a little confusing.) If two
+ codes exist, they are coded using one bit each (0 and 1).
+ 5. There is no way of sending zero distance codes--a dummy must be
+ sent if there are none. (History: a pre 2.0 version of PKZIP would
+ store blocks with no distance codes, but this was discovered to be
+ too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
+ zero distance codes, which is sent as one code of zero bits in
+ length.
+ 6. There are up to 286 literal/length codes. Code 256 represents the
+ end-of-block. Note however that the static length tree defines
+ 288 codes just to fill out the Huffman codes. Codes 286 and 287
+ cannot be used though, since there is no length base or extra bits
+ defined for them. Similarily, there are up to 30 distance codes.
+ However, static trees define 32 codes (all 5 bits) to fill out the
+ Huffman codes, but the last two had better not show up in the data.
+ 7. Unzip can check dynamic Huffman blocks for complete code sets.
+ The exception is that a single code would not be complete (see #4).
+ 8. The five bits following the block type is really the number of
+ literal codes sent minus 257.
+ 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
+ (1+6+6). Therefore, to output three times the length, you output
+ three codes (1+1+1), whereas to output four times the same length,
+ you only need two codes (1+3). Hmm.
+ 10. In the tree reconstruction algorithm, Code = Code + Increment
+ only if BitLength(i) is not zero. (Pretty obvious.)
+ 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
+ 12. Note: length code 284 can represent 227-258, but length code 285
+ really is 258. The last length deserves its own, short code
+ since it gets used a lot in very redundant files. The length
+ 258 is special since 258 - 3 (the min match length) is 255.
+ 13. The literal/length and distance code bit lengths are read as a
+ single stream of lengths. It is possible (and advantageous) for
+ a repeat code (16, 17, or 18) to go across the boundary between
+ the two sets of lengths.
+ */
+
+
+/* #define DEBUG */
+#define INFMOD /* tell inflate.h to include code to be compiled */
+#include "inflate.h"
+
+
+#ifndef WSIZE /* default is 32K */
+# define WSIZE 0x8000 /* window size--must be a power of two, and at least */
+#endif /* 32K for zip's deflate method */
+
+#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
+# define wsize G._wsize /* wsize is a variable */
+#else
+# define wsize WSIZE /* wsize is a constant */
+#endif
+
+
+#ifndef NEXTBYTE /* default is to simply get a byte from stdin */
+# define NEXTBYTE getchar()
+#endif
+
+#ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */
+# define MESSAGE(str,len,flag) fprintf(stderr,(char *)(str))
+#endif
+
+#ifndef FLUSH /* default is to simply write the buffer to stdout */
+# define FLUSH(n) fwrite(redirSlide, 1, n, stdout) /* return value not used */
+#endif
+/* Warning: the fwrite above might not work on 16-bit compilers, since
+ 0x8000 might be interpreted as -32,768 by the library function. */
+
+#ifndef Trace
+# ifdef DEBUG
+# define Trace(x) fprintf x
+# else
+# define Trace(x)
+# endif
+#endif
+
+G_struct G;
+uch redirSlide [WSIZE];
+
+/*---------------------------------------------------------------------------*/
+#ifdef USE_ZLIB
+
+
+/*
+ GRR: return values for both original inflate() and inflate()
+ 0 OK
+ 1 incomplete table(?)
+ 2 bad input
+ 3 not enough memory
+ */
+
+/**************************/
+/* Function inflate() */
+/**************************/
+
+int inflate(__G) /* decompress an inflated entry using the zlib routines */
+ __GDEF
+{
+ int err=Z_OK;
+
+#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
+ if (G.redirect_slide)
+ wsize = G.redirect_size, redirSlide = G.redirect_buffer;
+ else
+ wsize = WSIZE, redirSlide = slide;
+#endif
+
+ G.dstrm.next_out = redirSlide;
+ G.dstrm.avail_out = wsize;
+
+ G.dstrm.next_in = G.inptr;
+ G.dstrm.avail_in = G.incnt;
+
+ if (!G.inflInit) {
+ unsigned i;
+ int windowBits;
+
+ /* only need to test this stuff once */
+ if (zlib_version[0] != ZLIB_VERSION[0]) {
+ Info(slide, 0x21, ((char *)slide,
+ "error: incompatible zlib version (expected %s, found %s)\n",
+ ZLIB_VERSION, zlib_version));
+ return 3;
+ } else if (strcmp(zlib_version, ZLIB_VERSION) != 0)
+ Info(slide, 0x21, ((char *)slide,
+ "warning: different zlib version (expected %s, using %s)\n",
+ ZLIB_VERSION, zlib_version));
+
+ /* windowBits = log2(wsize) */
+ for (i = ((unsigned)wsize * 2 - 1), windowBits = 0;
+ !(i & 1); i >>= 1, ++windowBits);
+ if ((unsigned)windowBits > (unsigned)15)
+ windowBits = 15;
+ else if (windowBits < 8)
+ windowBits = 8;
+
+ G.dstrm.zalloc = (alloc_func)Z_NULL;
+ G.dstrm.zfree = (free_func)Z_NULL;
+
+ Trace((stderr, "initializing inflate()\n"));
+ err = inflateInit2(&G.dstrm, -windowBits);
+
+ if (err == Z_MEM_ERROR)
+ return 3;
+ else if (err != Z_OK)
+ Trace((stderr, "oops! (inflateInit2() err = %d)\n", err));
+ G.inflInit = 1;
+ }
+
+#ifdef FUNZIP
+ while (err != Z_STREAM_END) {
+#else /* !FUNZIP */
+ while (G.csize > 0) {
+ Trace((stderr, "first loop: G.csize = %ld\n", G.csize));
+#endif /* ?FUNZIP */
+ while (G.dstrm.avail_out > 0) {
+ err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
+
+ if (err == Z_DATA_ERROR)
+ return 2;
+ else if (err == Z_MEM_ERROR)
+ return 3;
+ else if (err != Z_OK && err != Z_STREAM_END)
+ Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err));
+
+#ifdef FUNZIP
+ if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */
+#else /* !FUNZIP */
+ if (G.csize <= 0L) /* "END-of-entry-condition" ? */
+#endif /* ?FUNZIP */
+ break;
+
+ if (G.dstrm.avail_in <= 0) {
+ if (fillinbuf(__G) == 0)
+ return 2; /* no "END-condition" yet, but no more data */
+
+ G.dstrm.next_in = G.inptr;
+ G.dstrm.avail_in = G.incnt;
+ }
+ Trace((stderr, " avail_in = %d\n", G.dstrm.avail_in));
+ }
+ FLUSH(wsize - G.dstrm.avail_out); /* flush slide[] */
+ Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n",
+ (long)(wsize - G.dstrm.avail_out),
+ (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
+ G.dstrm.next_out = redirSlide;
+ G.dstrm.avail_out = wsize;
+ }
+
+ /* no more input, so loop until we have all output */
+ Trace((stderr, "beginning final loop: err = %d\n", err));
+ while (err != Z_STREAM_END) {
+ err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
+ if (err == Z_DATA_ERROR)
+ return 2;
+ else if (err == Z_MEM_ERROR)
+ return 3;
+ else if (err == Z_BUF_ERROR) { /* DEBUG */
+ Trace((stderr, "zlib inflate() did not detect stream end (%s, %s)\n"
+ , G.zipfn, G.filename));
+ break;
+ } else if (err != Z_OK && err != Z_STREAM_END) {
+ Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err));
+ DESTROYGLOBALS()
+ EXIT(PK_MEM3);
+ }
+ FLUSH(wsize - G.dstrm.avail_out); /* final flush of slide[] */
+ Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n",
+ (long)(wsize - G.dstrm.avail_out),
+ (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
+ G.dstrm.next_out = redirSlide;
+ G.dstrm.avail_out = wsize;
+ }
+ Trace((stderr, "total in = %ld, total out = %ld\n", G.dstrm.total_in,
+ G.dstrm.total_out));
+
+ G.inptr = (uch *)G.dstrm.next_in;
+ G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */
+
+ err = inflateReset(&G.dstrm);
+ if (err != Z_OK)
+ Trace((stderr, "oops! (inflateReset() err = %d)\n", err));
+
+ return 0;
+}
+
+
+/*---------------------------------------------------------------------------*/
+#else /* !USE_ZLIB */
+
+
+/* Function prototypes */
+#ifndef OF
+# ifdef __STDC__
+# define OF(a) a
+# else
+# define OF(a) ()
+# endif
+#endif /* !OF */
+int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td,
+ int bl, int bd));
+static int inflate_stored OF((__GPRO));
+static int inflate_fixed OF((__GPRO));
+static int inflate_dynamic OF((__GPRO));
+static int inflate_block OF((__GPRO__ int *e));
+
+
+/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
+ stream to find repeated byte strings. This is implemented here as a
+ circular buffer. The index is updated simply by incrementing and then
+ and'ing with 0x7fff (32K-1). */
+/* It is left to other modules to supply the 32K area. It is assumed
+ to be usable as if it were declared "uch slide[32768];" or as just
+ "uch *slide;" and then malloc'ed in the latter case. The definition
+ must be in unzip.h, included above. */
+
+
+/* unsigned wp; moved to globals.h */ /* current position in slide */
+
+
+/* Tables for deflate from PKZIP's appnote.txt. */
+static ZCONST unsigned border[] = { /* Order of the bit length code lengths */
+ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
+static ZCONST ush cplens[] = { /* Copy lengths for literal codes 257..285 */
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
+ 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
+ /* note: see note #13 above about the 258 in this list. */
+static ZCONST ush cplext[] = { /* Extra bits for literal codes 257..285 */
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
+ 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
+static ZCONST ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
+ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
+ 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
+ 8193, 12289, 16385, 24577};
+static ZCONST ush cpdext[] = { /* Extra bits for distance codes */
+ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
+ 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
+ 12, 12, 13, 13};
+
+
+/* moved to consts.h (included in unzip.c), resp. funzip.c */
+#if 1
+/* And'ing with mask_bits[n] masks the lower n bits */
+ZCONST ush near mask_bits[] = {
+ 0x0000,
+ 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
+ 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
+};
+#endif /* 0 */
+
+
+/* Macros for inflate() bit peeking and grabbing.
+ The usage is:
+
+ NEEDBITS(j)
+ x = b & mask_bits[j];
+ DUMPBITS(j)
+
+ where NEEDBITS makes sure that b has at least j bits in it, and
+ DUMPBITS removes the bits from b. The macros use the variable k
+ for the number of bits in b. Normally, b and k are register
+ variables for speed and are initialized at the begining of a
+ routine that uses these macros from a global bit buffer and count.
+
+ In order to not ask for more bits than there are in the compressed
+ stream, the Huffman tables are constructed to only ask for just
+ enough bits to make up the end-of-block code (value 256). Then no
+ bytes need to be "returned" to the buffer at the end of the last
+ block. See the huft_build() routine.
+ */
+
+/* These have been moved to globals.h */
+#if 0
+ulg bb; /* bit buffer */
+unsigned bk; /* bits in bit buffer */
+#endif
+
+#ifndef CHECK_EOF
+# define CHECK_EOF /* default as of 5.13/5.2 */
+#endif
+
+#ifndef CHECK_EOF
+# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
+#else
+# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\
+ b|=((ulg)c)<<k;k+=8;}}
+#endif /* Piet Plomp: change "return 1" to "break" */
+
+#define DUMPBITS(n) {b>>=(n);k-=(n);}
+
+
+/*
+ Huffman code decoding is performed using a multi-level table lookup.
+ The fastest way to decode is to simply build a lookup table whose
+ size is determined by the longest code. However, the time it takes
+ to build this table can also be a factor if the data being decoded
+ are not very long. The most common codes are necessarily the
+ shortest codes, so those codes dominate the decoding time, and hence
+ the speed. The idea is you can have a shorter table that decodes the
+ shorter, more probable codes, and then point to subsidiary tables for
+ the longer codes. The time it costs to decode the longer codes is
+ then traded against the time it takes to make longer tables.
+
+ This results of this trade are in the variables lbits and dbits
+ below. lbits is the number of bits the first level table for literal/
+ length codes can decode in one step, and dbits is the same thing for
+ the distance codes. Subsequent tables are also less than or equal to
+ those sizes. These values may be adjusted either when all of the
+ codes are shorter than that, in which case the longest code length in
+ bits is used, or when the shortest code is *longer* than the requested
+ table size, in which case the length of the shortest code in bits is
+ used.
+
+ There are two different values for the two tables, since they code a
+ different number of possibilities each. The literal/length table
+ codes 286 possible values, or in a flat code, a little over eight
+ bits. The distance table codes 30 possible values, or a little less
+ than five bits, flat. The optimum values for speed end up being
+ about one bit more than those, so lbits is 8+1 and dbits is 5+1.
+ The optimum values may differ though from machine to machine, and
+ possibly even between compilers. Your mileage may vary.
+ */
+
+static ZCONST int lbits = 9; /* bits in base literal/length lookup table */
+static ZCONST int dbits = 6; /* bits in base distance lookup table */
+
+
+#ifndef ASM_INFLATECODES
+
+#pragma warning(disable:4131)
+
+int inflate_codes(__G__ tl, td, bl, bd)
+ __GDEF
+struct huft *tl, *td; /* literal/length and distance decoder tables */
+int bl, bd; /* number of bits decoded by tl[] and td[] */
+/* inflate (decompress) the codes in a deflated (compressed) block.
+ Return an error code or zero if it all goes ok. */
+{
+ register unsigned e; /* table entry flag/number of extra bits */
+ unsigned n, d; /* length and index for copy */
+ unsigned w; /* current window position */
+ struct huft *t; /* pointer to table entry */
+ unsigned ml, md; /* masks for bl and bd bits */
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local copies of globals */
+ b = G.bb; /* initialize bit buffer */
+ k = G.bk;
+ w = G.wp; /* initialize window position */
+
+
+ /* inflate the coded data */
+ ml = mask_bits[bl]; /* precompute masks for speed */
+ md = mask_bits[bd];
+ while (1) /* do until end of block */
+ {
+ NEEDBITS((unsigned)bl)
+ if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
+ do {
+ if (e == 99)
+ return 1;
+ DUMPBITS(t->b)
+ e -= 16;
+ NEEDBITS(e)
+ } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
+ DUMPBITS(t->b)
+ if (e == 16) /* then it's a literal */
+ {
+ redirSlide[w++] = (uch)t->v.n;
+ if (w == wsize)
+ {
+ FLUSH(w);
+ w = 0;
+ }
+ }
+ else /* it's an EOB or a length */
+ {
+ /* exit if end of block */
+ if (e == 15)
+ break;
+
+ /* get length of block to copy */
+ NEEDBITS(e)
+ n = t->v.n + ((unsigned)b & mask_bits[e]);
+ DUMPBITS(e);
+
+ /* decode distance of block to copy */
+ NEEDBITS((unsigned)bd)
+ if ((e = (t = td + ((unsigned)b & md))->e) > 16)
+ do {
+ if (e == 99)
+ return 1;
+ DUMPBITS(t->b)
+ e -= 16;
+ NEEDBITS(e)
+ } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
+ DUMPBITS(t->b)
+ NEEDBITS(e)
+ d = w - t->v.n - ((unsigned)b & mask_bits[e]);
+ DUMPBITS(e)
+
+ /* do the copy */
+ do {
+#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
+ if (G.redirect_slide) {/* &= w/ wsize unnecessary & wrong if redirect */
+ if (d >= wsize)
+ return 1; /* invalid compressed data */
+ n -= (e = (e = wsize - (d > w ? d : w)) > n ? n : e);
+ }
+ else
+#endif
+ n -= (e = (e = wsize - ((d &= wsize-1) > w ? d : w)) > n ? n : e);
+#ifndef NOMEMCPY
+ if (w - d >= e) /* (this test assumes unsigned comparison) */
+ {
+ memcpy(redirSlide + w, redirSlide + d, e);
+ w += e;
+ d += e;
+ }
+ else /* do it slowly to avoid memcpy() overlap */
+#endif /* !NOMEMCPY */
+ do {
+ redirSlide[w++] = redirSlide[d++];
+ } while (--e);
+ if (w == wsize)
+ {
+ FLUSH(w);
+ w = 0;
+ }
+ } while (n);
+ }
+ }
+
+
+ /* restore the globals from the locals */
+ G.wp = w; /* restore global window pointer */
+ G.bb = b; /* restore global bit buffer */
+ G.bk = k;
+
+
+ /* done */
+ return 0;
+}
+
+#endif /* ASM_INFLATECODES */
+
+
+
+static int inflate_stored(__G)
+ __GDEF
+/* "decompress" an inflated type 0 (stored) block. */
+{
+ unsigned n; /* number of bytes in block */
+ unsigned w; /* current window position */
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local copies of globals */
+ Trace((stderr, "\nstored block"));
+ b = G.bb; /* initialize bit buffer */
+ k = G.bk;
+ w = G.wp; /* initialize window position */
+
+
+ /* go to byte boundary */
+ n = k & 7;
+ DUMPBITS(n);
+
+
+ /* get the length and its complement */
+ NEEDBITS(16)
+ n = ((unsigned)b & 0xffff);
+ DUMPBITS(16)
+ NEEDBITS(16)
+ if (n != (unsigned)((~b) & 0xffff))
+ return 1; /* error in compressed data */
+ DUMPBITS(16)
+
+
+ /* read and output the compressed data */
+ while (n--)
+ {
+ NEEDBITS(8)
+ redirSlide[w++] = (uch)b;
+ if (w == wsize)
+ {
+ FLUSH(w);
+ w = 0;
+ }
+ DUMPBITS(8)
+ }
+
+
+ /* restore the globals from the locals */
+ G.wp = w; /* restore global window pointer */
+ G.bb = b; /* restore global bit buffer */
+ G.bk = k;
+ return 0;
+}
+
+
+/* Globals for literal tables (built once) */
+/* Moved to globals.h */
+#if 0
+struct huft *fixed_tl = (struct huft *)NULL;
+struct huft *fixed_td;
+int fixed_bl, fixed_bd;
+#endif
+
+static int inflate_fixed(__G)
+ __GDEF
+/* decompress an inflated type 1 (fixed Huffman codes) block. We should
+ either replace this with a custom decoder, or at least precompute the
+ Huffman tables. */
+{
+ /* if first time, set up tables for fixed blocks */
+ Trace((stderr, "\nliteral block"));
+ if (G.fixed_tl == (struct huft *)NULL)
+ {
+ int i; /* temporary variable */
+ unsigned l[288]; /* length list for huft_build */
+
+ /* literal table */
+ for (i = 0; i < 144; i++)
+ l[i] = 8;
+ for (; i < 256; i++)
+ l[i] = 9;
+ for (; i < 280; i++)
+ l[i] = 7;
+ for (; i < 288; i++) /* make a complete, but wrong code set */
+ l[i] = 8;
+ G.fixed_bl = 7;
+ if ((i = huft_build(__G__ l, 288, 257, cplens, cplext,
+ &G.fixed_tl, &G.fixed_bl)) != 0)
+ {
+ G.fixed_tl = (struct huft *)NULL;
+ return i;
+ }
+
+ /* distance table */
+ for (i = 0; i < 30; i++) /* make an incomplete code set */
+ l[i] = 5;
+ G.fixed_bd = 5;
+ if ((i = huft_build(__G__ l, 30, 0, cpdist, cpdext,
+ &G.fixed_td, &G.fixed_bd)) > 1)
+ {
+ huft_free(G.fixed_tl);
+ G.fixed_tl = (struct huft *)NULL;
+ return i;
+ }
+ }
+
+ /* decompress until an end-of-block code */
+ return inflate_codes(__G__ G.fixed_tl, G.fixed_td,
+ G.fixed_bl, G.fixed_bd) != 0;
+}
+
+
+
+static int inflate_dynamic(__G)
+ __GDEF
+/* decompress an inflated type 2 (dynamic Huffman codes) block. */
+{
+ int i; /* temporary variables */
+ unsigned j;
+ unsigned l; /* last length */
+ unsigned m; /* mask for bit lengths table */
+ unsigned n; /* number of lengths to get */
+ struct huft *tl; /* literal/length code table */
+ struct huft *td; /* distance code table */
+ int bl; /* lookup bits for tl */
+ int bd; /* lookup bits for td */
+ unsigned nb; /* number of bit length codes */
+ unsigned nl; /* number of literal/length codes */
+ unsigned nd; /* number of distance codes */
+#ifdef PKZIP_BUG_WORKAROUND
+ unsigned ll[288+32]; /* literal/length and distance code lengths */
+#else
+ unsigned ll[286+30]; /* literal/length and distance code lengths */
+#endif
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local bit buffer */
+ Trace((stderr, "\ndynamic block"));
+ b = G.bb;
+ k = G.bk;
+
+
+ /* read in table lengths */
+ NEEDBITS(5)
+ nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
+ DUMPBITS(5)
+ NEEDBITS(5)
+ nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
+ DUMPBITS(5)
+ NEEDBITS(4)
+ nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
+ DUMPBITS(4)
+#ifdef PKZIP_BUG_WORKAROUND
+ if (nl > 288 || nd > 32)
+#else
+ if (nl > 286 || nd > 30)
+#endif
+ return 1; /* bad lengths */
+
+
+ /* read in bit-length-code lengths */
+ for (j = 0; j < nb; j++)
+ {
+ NEEDBITS(3)
+ ll[border[j]] = (unsigned)b & 7;
+ DUMPBITS(3)
+ }
+ for (; j < 19; j++)
+ ll[border[j]] = 0;
+
+
+ /* build decoding table for trees--single level, 7 bit lookup */
+ bl = 7;
+ i = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl);
+ if (bl == 0) /* no bit lengths */
+ i = 1;
+ if (i)
+ {
+ if (i == 1)
+ huft_free(tl);
+ return i; /* incomplete code set */
+ }
+
+
+ /* read in literal and distance code lengths */
+ n = nl + nd;
+ m = mask_bits[bl];
+ i = l = 0;
+ while ((unsigned)i < n)
+ {
+ NEEDBITS((unsigned)bl)
+ j = (td = tl + ((unsigned)b & m))->b;
+ DUMPBITS(j)
+ j = td->v.n;
+ if (j < 16) /* length of code in bits (0..15) */
+ ll[i++] = l = j; /* save last length in l */
+ else if (j == 16) /* repeat last length 3 to 6 times */
+ {
+ NEEDBITS(2)
+ j = 3 + ((unsigned)b & 3);
+ DUMPBITS(2)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = l;
+ }
+ else if (j == 17) /* 3 to 10 zero length codes */
+ {
+ NEEDBITS(3)
+ j = 3 + ((unsigned)b & 7);
+ DUMPBITS(3)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = 0;
+ l = 0;
+ }
+ else /* j == 18: 11 to 138 zero length codes */
+ {
+ NEEDBITS(7)
+ j = 11 + ((unsigned)b & 0x7f);
+ DUMPBITS(7)
+ if ((unsigned)i + j > n)
+ return 1;
+ while (j--)
+ ll[i++] = 0;
+ l = 0;
+ }
+ }
+
+
+ /* free decoding table for trees */
+ huft_free(tl);
+
+
+ /* restore the global bit buffer */
+ G.bb = b;
+ G.bk = k;
+
+
+ /* build the decoding tables for literal/length and distance codes */
+ bl = lbits;
+ i = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl);
+ if (bl == 0) /* no literals or lengths */
+ i = 1;
+ if (i)
+ {
+ if (i == 1) {
+ //if (!uO.qflag)
+ MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1);
+ huft_free(tl);
+ }
+ return i; /* incomplete code set */
+ }
+ bd = dbits;
+ i = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
+ if (bd == 0 && nl > 257) /* lengths but no distances */
+ {
+ //if (!uO.qflag)
+ MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
+ huft_free(tl);
+ return 1;
+ }
+ if (i == 1) {
+#ifdef PKZIP_BUG_WORKAROUND
+ i = 0;
+#else
+ //if (!uO.qflag)
+ MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
+ huft_free(td);
+#endif
+ }
+ if (i)
+ {
+ huft_free(tl);
+ return i;
+ }
+
+
+ /* decompress until an end-of-block code */
+ if (inflate_codes(__G__ tl, td, bl, bd))
+ return 1;
+
+
+ /* free the decoding tables, return */
+ huft_free(tl);
+ huft_free(td);
+ return 0;
+}
+
+
+
+static int inflate_block(__G__ e)
+ __GDEF
+ int *e; /* last block flag */
+/* decompress an inflated block */
+{
+ unsigned t; /* block type */
+ register ulg b; /* bit buffer */
+ register unsigned k; /* number of bits in bit buffer */
+
+
+ /* make local bit buffer */
+ b = G.bb;
+ k = G.bk;
+
+
+ /* read in last block bit */
+ NEEDBITS(1)
+ *e = (int)b & 1;
+ DUMPBITS(1)
+
+
+ /* read in block type */
+ NEEDBITS(2)
+ t = (unsigned)b & 3;
+ DUMPBITS(2)
+
+
+ /* restore the global bit buffer */
+ G.bb = b;
+ G.bk = k;
+
+
+ /* inflate that block type */
+ if (t == 2)
+ return inflate_dynamic(__G);
+ if (t == 0)
+ return inflate_stored(__G);
+ if (t == 1)
+ return inflate_fixed(__G);
+
+
+ /* bad block type */
+ return 2;
+}
+
+
+
+int inflate(__G)
+ __GDEF
+/* decompress an inflated entry */
+{
+ int e; /* last block flag */
+ int r; /* result code */
+//#ifdef DEBUG
+// unsigned h = 0; /* maximum struct huft's malloc'ed */
+//#endif
+
+#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
+ if (G.redirect_slide)
+ wsize = G.redirect_size, redirSlide = G.redirect_buffer;
+ else
+ wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */
+#endif
+
+ /* initialize window, bit buffer */
+ G.wp = 0;
+ G.bk = 0;
+ G.bb = 0;
+
+
+ /* decompress until the last block */
+ do {
+//#ifdef DEBUG
+// G.hufts = 0;
+//#endif
+ if ((r = inflate_block(__G__ &e)) != 0)
+ return r;
+//#ifdef DEBUG
+// if (G.hufts > h)
+// h = G.hufts;
+//#endif
+ } while (!e);
+
+
+ /* flush out redirSlide */
+ FLUSH(G.wp);
+
+
+ /* return success */
+ //Trace((stderr, "\n%u bytes in Huffman tables (%d/entry)\n",
+ // h * sizeof(struct huft), sizeof(struct huft)));
+ return 0;
+}
+
+
+
+int inflate_free(__G)
+ __GDEF
+{
+ if (G.fixed_tl != (struct huft *)NULL)
+ {
+ huft_free(G.fixed_td);
+ huft_free(G.fixed_tl);
+ G.fixed_td = G.fixed_tl = (struct huft *)NULL;
+ }
+ return 0;
+}
+
+#endif /* ?USE_ZLIB */
+
+
+/*
+ * GRR: moved huft_build() and huft_free() down here; used by explode()
+ * and fUnZip regardless of whether USE_ZLIB defined or not
+ */
+
+
+/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
+#define BMAX 16 /* maximum bit length of any code (16 for explode) */
+#define N_MAX 288 /* maximum number of codes in any set */
+
+
+int huft_build(
+ __GDEF
+ ZCONST unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
+ unsigned n, /* number of codes (assumed <= N_MAX) */
+ unsigned s, /* number of simple-valued codes (0..s-1) */
+ ZCONST ush *d, /* list of base values for non-simple codes */
+ ZCONST ush *e, /* list of extra bits for non-simple codes */
+ struct huft **t, /* result: starting table */
+ int *m /* maximum lookup bits, returns actual */
+ )
+/* Given a list of code lengths and a maximum table size, make a set of
+ tables to decode that set of codes. Return zero on success, one if
+ the given code set is incomplete (the tables are still built in this
+ case), two if the input is invalid (all zero length codes or an
+ oversubscribed set of lengths), and three if not enough memory.
+ The code with value 256 is special, and the tables are constructed
+ so that no bits beyond that code are fetched when that code is
+ decoded. */
+{
+ unsigned a; /* counter for codes of length k */
+ unsigned c[BMAX+1]; /* bit length count table */
+ unsigned el; /* length of EOB code (value 256) */
+ unsigned f; /* i repeats in table every f entries */
+ int g; /* maximum code length */
+ int h; /* table level */
+ register unsigned i; /* counter, current code */
+ register unsigned j; /* counter */
+ register int k; /* number of bits in current code */
+ int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
+ int *l = lx+1; /* stack of bits per table */
+ register unsigned *p; /* pointer into c[], b[], or v[] */
+ register struct huft *q; /* points to current table */
+ struct huft r; /* table entry for structure assignment */
+ struct huft *u[BMAX]; /* table stack */
+ unsigned v[N_MAX]; /* values in order of bit length */
+ register int w; /* bits before this table == (l * h) */
+ unsigned x[BMAX+1]; /* bit offsets, then code stack */
+ unsigned *xp; /* pointer into x */
+ int y; /* number of dummy codes added */
+ unsigned z; /* number of entries in current table */
+
+
+ /* Generate counts for each bit length */
+ el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
+ memset(c, 0, sizeof(c));
+ p = (unsigned *)b; i = n;
+ do {
+ c[*p]++; p++; /* assume all entries <= BMAX */
+ } while (--i);
+ if (c[0] == n) /* null input--all zero length codes */
+ {
+ *t = (struct huft *)NULL;
+ *m = 0;
+ return 0;
+ }
+
+
+ /* Find minimum and maximum length, bound *m by those */
+ for (j = 1; j <= BMAX; j++)
+ if (c[j])
+ break;
+ k = j; /* minimum code length */
+ if ((unsigned)*m < j)
+ *m = j;
+ for (i = BMAX; i; i--)
+ if (c[i])
+ break;
+ g = i; /* maximum code length */
+ if ((unsigned)*m > i)
+ *m = i;
+
+
+ /* Adjust last length count to fill out codes, if needed */
+ for (y = 1 << j; j < i; j++, y <<= 1)
+ if ((y -= c[j]) < 0)
+ return 2; /* bad input: more codes than bits */
+ if ((y -= c[i]) < 0)
+ return 2;
+ c[i] += y;
+
+
+ /* Generate starting offsets into the value table for each length */
+ x[1] = j = 0;
+ p = c + 1; xp = x + 2;
+ while (--i) { /* note that i == g from above */
+ *xp++ = (j += *p++);
+ }
+
+
+ /* Make a table of values in order of bit lengths */
+ memset(v, 0, sizeof(v));
+ p = (unsigned *)b; i = 0;
+ do {
+ if ((j = *p++) != 0)
+ v[x[j]++] = i;
+ } while (++i < n);
+ n = x[g]; /* set n to length of v */
+
+
+ /* Generate the Huffman codes and for each, make the table entries */
+ x[0] = i = 0; /* first Huffman code is zero */
+ p = v; /* grab values in bit order */
+ h = -1; /* no tables yet--level -1 */
+ w = l[-1] = 0; /* no bits decoded yet */
+ u[0] = (struct huft *)NULL; /* just to keep compilers happy */
+ q = (struct huft *)NULL; /* ditto */
+ z = 0; /* ditto */
+
+ /* go through the bit lengths (k already is bits in shortest code) */
+ for (; k <= g; k++)
+ {
+ a = c[k];
+ while (a--)
+ {
+ /* here i is the Huffman code of length k bits for value *p */
+ /* make tables up to required level */
+ while (k > w + l[h])
+ {
+ w += l[h++]; /* add bits already decoded */
+
+ /* compute minimum size table less than or equal to *m bits */
+ z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
+ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
+ { /* too few codes for k-w bit table */
+ f -= a + 1; /* deduct codes from patterns left */
+ xp = c + k;
+ while (++j < z) /* try smaller tables up to z bits */
+ {
+ if ((f <<= 1) <= *++xp)
+ break; /* enough codes to use up j bits */
+ f -= *xp; /* else deduct codes from patterns */
+ }
+ }
+ if ((unsigned)w + j > el && (unsigned)w < el)
+ j = el - w; /* make EOB code end at table */
+ z = 1 << j; /* table entries for j-bit table */
+ l[h] = j; /* set table size in stack */
+
+ /* allocate and link in new table */
+ if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
+ (struct huft *)NULL)
+ {
+ if (h)
+ huft_free(u[0]);
+ return 3; /* not enough memory */
+ }
+//#ifdef DEBUG
+// G.hufts += z + 1; /* track memory usage */
+//#endif
+ *t = q + 1; /* link to list for huft_free() */
+ *(t = &(q->v.t)) = (struct huft *)NULL;
+ u[h] = ++q; /* table starts after link */
+
+ /* connect to last table, if there is one */
+ if (h)
+ {
+ x[h] = i; /* save pattern for backing up */
+ r.b = (uch)l[h-1]; /* bits to dump before this table */
+ r.e = (uch)(16 + j); /* bits in this table */
+ r.v.t = q; /* pointer to this table */
+ j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
+ u[h-1][j] = r; /* connect to last table */
+ }
+ }
+
+ /* set up table entry in r */
+ r.b = (uch)(k - w);
+ if (p >= v + n)
+ r.e = 99; /* out of values--invalid code */
+ else if (*p < s)
+ {
+ r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
+ r.v.n = (ush)*p++; /* simple code is just the value */
+ }
+ else
+ {
+ r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
+ r.v.n = d[*p++ - s];
+ }
+
+ /* fill code-like entries with r */
+ f = 1 << (k - w);
+ for (j = i >> w; j < z; j += f)
+ q[j] = r;
+
+ /* backwards increment the k-bit code i */
+ for (j = 1 << (k - 1); i & j; j >>= 1)
+ i ^= j;
+ i ^= j;
+
+ /* backup over finished tables */
+ while ((i & ((1 << w) - 1)) != x[h])
+ w -= l[--h]; /* don't need to update q */
+ }
+ }
+
+
+ /* return actual size of base table */
+ *m = l[0];
+
+
+ /* Return true (1) if we were given an incomplete table */
+ return y != 0 && g != 1;
+}
+
+
+
+int huft_free (struct huft *t)
+ /* table to free */
+/* Free the malloc'ed tables built by huft_build(), which makes a linked
+ list of the tables it made, with the links in a dummy first entry of
+ each table. */
+{
+ register struct huft *p, *q;
+
+
+ /* Go through linked list, freeing from the malloced (t[-1]) address. */
+ p = t;
+ while (p != (struct huft *)NULL)
+ {
+ q = (--p)->v.t;
+ free((zvoid *)p);
+ p = q;
+ }
+ return 0;
+}
+
+
+// Main public function. Decompresses raw data compressed using the DEFLATE algorithm (RFC 1951 - e.g. zlib, gzip).
+// Returns 0 if decompression fails or, if successful, returns the size of the decompressed data.
+int DecompressDeflatedData (char *out, char *in, int inLength)
+{
+ G.outbufptr = out;
+ G.inptr = in;
+ G.incnt = inLength;
+ G.outCounter = 0;
+
+ if (inflate(__G) != 0)
+ {
+ // Error decompressing
+ return 0;
+ }
+ return G.outCounter;
+}
+