VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/Xml.c
diff options
context:
space:
mode:
authorJertzukka <Jertzukka@gmail.com>2023-08-12 10:18:57 +0300
committerGitHub <noreply@github.com>2023-08-12 09:18:57 +0200
commiteb2f5f33c96840efef46e97d994182a25540bb17 (patch)
treeb1beded9eaea0ee683fececb6c781bd07877f2d0 /src/Common/Xml.c
parent5c9e135c9e1b8fb3832dbebaecdadd073c054864 (diff)
downloadVeraCrypt-eb2f5f33c96840efef46e97d994182a25540bb17.tar.gz
VeraCrypt-eb2f5f33c96840efef46e97d994182a25540bb17.zip
Linux: Flush stdout explicitly when reading stdin (#1172)
Rules of automatic flushing of stdout buffer is implementation-defined behaviour. In glibc this is automatically flushed, but we can't rely on it for other implementations such as musl.
Diffstat (limited to 'src/Common/Xml.c')
0 files changed, 0 insertions, 0 deletions
'#n118'>118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
/*
 ---------------------------------------------------------------------------
 Copyright (c) 2002, Dr Brian Gladman, Worcester, UK.   All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 01/08/2005

 This is a byte oriented version of SHA2 that operates on arrays of bytes
 stored in memory. This code implements sha256, sha384 and sha512 but the
 latter two functions rely on efficient 64-bit integer operations that
 may not be very efficient on 32-bit machines

 The sha256 functions use a type 'sha256_ctx' to hold details of the
 current hash state and uses the following three calls:

       void sha256_begin(sha256_ctx ctx[1])
       void sha256_hash(const unsigned char data[],
                            unsigned long len, sha256_ctx ctx[1])
       void sha_end1(unsigned char hval[], sha256_ctx ctx[1])

 The first subroutine initialises a hash computation by setting up the
 context in the sha256_ctx context. The second subroutine hashes 8-bit
 bytes from array data[] into the hash state withinh sha256_ctx context,
 the number of bytes to be hashed being given by the the unsigned long
 integer len.  The third subroutine completes the hash calculation and
 places the resulting digest value in the array of 8-bit bytes hval[].

 The sha384 and sha512 functions are similar and use the interfaces:

       void sha384_begin(sha384_ctx ctx[1]);
       void sha384_hash(const unsigned char data[],
                            unsigned long len, sha384_ctx ctx[1]);
       void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);

       void sha512_begin(sha512_ctx ctx[1]);
       void sha512_hash(const unsigned char data[],
                            unsigned long len, sha512_ctx ctx[1]);
       void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);

 In addition there is a function sha2 that can be used to call all these
 functions using a call with a hash length parameter as follows:

       int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
       void sha2_hash(const unsigned char data[],
                            unsigned long len, sha2_ctx ctx[1]);
       void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);

 My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
 on big-endian systems and for his assistance with corrections
*/

#include "Common/Endian.h"
#include "Common/Tcdefs.h"
#include "Crypto/misc.h"

#define PLATFORM_BYTE_ORDER BYTE_ORDER
#define IS_LITTLE_ENDIAN LITTLE_ENDIAN

#if 0
#define UNROLL_SHA2     /* for SHA2 loop unroll     */
#endif

#if !defined(_UEFI)
#include <string.h>     /* for memcpy() etc.        */
#endif !defined(_UEFI)

#include "Sha2.h"

#if defined(__cplusplus)
extern "C"
{
#endif

#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) && !defined(_UEFI)
#pragma intrinsic(memcpy)
#endif

#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef  SWAP_BYTES
#endif

#if 0

#define ch(x,y,z)       (((x) & (y)) ^ (~(x) & (z)))
#define maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

#else   /* Thanks to Rich Schroeppel and Colin Plumb for the following      */

#define ch(x,y,z)       ((z) ^ ((x) & ((y) ^ (z))))
#define maj(x,y,z)      (((x) & (y)) | ((z) & ((x) ^ (y))))

#endif

/* round transforms for SHA256 and SHA512 compression functions */

#define vf(n,i) v[(n - i) & 7]

#define hf(i) (p[i & 15] += \
    g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))

#define v_cycle(i,j)                                \
    vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j]        \
    + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i));   \
    vf(3,i) += vf(7,i);                             \
    vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))

#if defined(SHA_224) || defined(SHA_256)

#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)

#if defined(SWAP_BYTES)
#define bsw_32(p,n) \
    { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
#else
#define bsw_32(p,n)
#endif

#define s_0(x)  (rotr32((x),  2) ^ rotr32((x), 13) ^ rotr32((x), 22))
#define s_1(x)  (rotr32((x),  6) ^ rotr32((x), 11) ^ rotr32((x), 25))
#define g_0(x)  (rotr32((x),  7) ^ rotr32((x), 18) ^ ((x) >>  3))
#define g_1(x)  (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
#define k_0     k256

/* rotated SHA256 round definition. Rather than swapping variables as in    */
/* FIPS-180, different variables are 'rotated' on each round, returning     */
/* to their starting positions every eight rounds                           */

#define q(n)  v##n

#define one_cycle(a,b,c,d,e,f,g,h,k,w)  \
    q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
    q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))

/* SHA256 mixing data   */

const uint_32t k256[64] =
{   0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
    0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
    0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
    0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
    0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
    0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
    0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
    0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
    0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
    0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
    0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
    0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
    0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
    0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
    0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
    0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
};

/* Compile 64 bytes of hash data into SHA256 digest value   */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is such that low address bytes */
/* in the ORIGINAL byte stream will go into the high end of */
/* words on BOTH big and little endian systems              */

VOID_RETURN sha256_compile(sha256_ctx ctx[1])
{
#if !defined(UNROLL_SHA2)

    uint_32t j, *p = ctx->wbuf, v[8];

    memcpy(v, ctx->hash, 8 * sizeof(uint_32t));

    for(j = 0; j < 64; j += 16)
    {
        v_cycle( 0, j); v_cycle( 1, j);
        v_cycle( 2, j); v_cycle( 3, j);
        v_cycle( 4, j); v_cycle( 5, j);
        v_cycle( 6, j); v_cycle( 7, j);
        v_cycle( 8, j); v_cycle( 9, j);
        v_cycle(10, j); v_cycle(11, j);
        v_cycle(12, j); v_cycle(13, j);
        v_cycle(14, j); v_cycle(15, j);
    }

    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
    ctx->hash[6] += v[6]; ctx->hash[7] += v[7];

#else

    uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;

    v0 = ctx->hash[0]; v1 = ctx->hash[1];
    v2 = ctx->hash[2]; v3 = ctx->hash[3];
    v4 = ctx->hash[4]; v5 = ctx->hash[5];
    v6 = ctx->hash[6]; v7 = ctx->hash[7];

    one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
    one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
    one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
    one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
    one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
    one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
    one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
    one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
    one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
    one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
    one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
    one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
    one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
    one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
    one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
    one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);

    one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
    one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
    one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
    one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
    one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
    one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
    one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
    one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
    one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
    one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
    one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
    one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
    one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
    one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
    one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
    one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));

    one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
    one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
    one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
    one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
    one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
    one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
    one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
    one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
    one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
    one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
    one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
    one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
    one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
    one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
    one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
    one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));

    one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
    one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
    one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
    one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
    one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
    one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
    one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
    one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
    one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
    one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
    one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
    one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
    one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
    one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
    one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
    one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));

    ctx->hash[0] += v0; ctx->hash[1] += v1;
    ctx->hash[2] += v2; ctx->hash[3] += v3;
    ctx->hash[4] += v4; ctx->hash[5] += v5;
    ctx->hash[6] += v6; ctx->hash[7] += v7;
#endif
}

/* SHA256 hash data in an array of bytes into hash buffer   */
/* and call the hash_compile function as required.          */

VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
{   uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
             space = SHA256_BLOCK_SIZE - pos;
    const unsigned char *sp = data;

    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);

    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
        bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
        sha256_compile(ctx);
    }

    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}

/* SHA256 Final padding and digest calculation  */

static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
{   uint_32t    i = (uint_32t)(ctx->count[0] & SHA256_MASK);

    /* put bytes in the buffer in an order in which references to   */
    /* 32-bit words will put bytes with lower addresses into the    */
    /* top of 32 bit words on BOTH big and little endian machines   */
    bsw_32(ctx->wbuf, (i + 3) >> 2)

    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary. Note that */
    /* we can always add the first padding byte here because the    */
    /* buffer always has at least one empty slot                    */
    ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
    ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);

    /* we need 9 or more empty positions, one for the padding byte  */
    /* (above) and eight for the length count.  If there is not     */
    /* enough space pad and empty the buffer                        */
    if(i > SHA256_BLOCK_SIZE - 9)
    {
        if(i < 60) ctx->wbuf[15] = 0;
        sha256_compile(ctx);
        i = 0;
    }
    else    /* compute a word index for the empty buffer positions  */
        i = (i >> 2) + 1;

    while(i < 14) /* and zero pad all but last two positions        */
        ctx->wbuf[i++] = 0;

    /* the following 32-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 32-bit      */
    /* word values.                                                 */
    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
    ctx->wbuf[15] = ctx->count[0] << 3;
    sha256_compile(ctx);

    /* extract the hash value as bytes in case the hash buffer is   */
    /* mislaigned for 32-bit words                                  */
    for(i = 0; i < hlen; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
}

#endif

#if defined(SHA_224)

const uint_32t i224[8] =
{
    0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
    0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
};

VOID_RETURN sha224_begin(sha224_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
}

VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
{
    sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
}

VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha224_ctx  cx[1];

    sha224_begin(cx);
    sha224_hash(data, len, cx);
    sha_end1(hval, cx, SHA224_DIGEST_SIZE);
}

#endif

#if defined(SHA_256)

const uint_32t i256[8] =
{
    0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
    0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
};

VOID_RETURN sha256_begin(sha256_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
}

VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
{
    sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
}

VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha256_ctx  cx[1];

    sha256_begin(cx);
    sha256_hash(data, len, cx);
    sha_end1(hval, cx, SHA256_DIGEST_SIZE);
}

#endif

#if defined(SHA_384) || defined(SHA_512)

#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)

#if defined(SWAP_BYTES)
#define bsw_64(p,n) \
    { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
#else
#define bsw_64(p,n)
#endif

/* SHA512 mixing function definitions   */

#ifdef   s_0
# undef  s_0
# undef  s_1
# undef  g_0
# undef  g_1
# undef  k_0
#endif

#define s_0(x)  (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
#define s_1(x)  (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
#define g_0(x)  (rotr64((x),  1) ^ rotr64((x),  8) ^ ((x) >>  7))
#define g_1(x)  (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >>  6))
#define k_0     k512

/* SHA384/SHA512 mixing data    */

const uint_64t  k512[80] =
{
    li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
    li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
    li_64(3956c25bf348b538), li_64(59f111f1b605d019),
    li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
    li_64(d807aa98a3030242), li_64(12835b0145706fbe),
    li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
    li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
    li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
    li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
    li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
    li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
    li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
    li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
    li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
    li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
    li_64(06ca6351e003826f), li_64(142929670a0e6e70),
    li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
    li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
    li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
    li_64(81c2c92e47edaee6), li_64(92722c851482353b),
    li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
    li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
    li_64(d192e819d6ef5218), li_64(d69906245565a910),
    li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
    li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
    li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
    li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
    li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
    li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
    li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
    li_64(90befffa23631e28), li_64(a4506cebde82bde9),
    li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
    li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
    li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
    li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
    li_64(113f9804bef90dae), li_64(1b710b35131c471b),
    li_64(28db77f523047d84), li_64(32caab7b40c72493),
    li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
    li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
    li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
};

/* Compile 128 bytes of hash data into SHA384/512 digest    */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is such that low address bytes */
/* in the ORIGINAL byte stream will go into the high end of */
/* words on BOTH big and little endian systems              */

VOID_RETURN sha512_compile(sha512_ctx ctx[1])
{   uint_64t    v[8], *p = ctx->wbuf;
    uint_32t    j;

    memcpy(v, ctx->hash, 8 * sizeof(uint_64t));

    for(j = 0; j < 80; j += 16)
    {
        v_cycle( 0, j); v_cycle( 1, j);
        v_cycle( 2, j); v_cycle( 3, j);
        v_cycle( 4, j); v_cycle( 5, j);
        v_cycle( 6, j); v_cycle( 7, j);
        v_cycle( 8, j); v_cycle( 9, j);
        v_cycle(10, j); v_cycle(11, j);
        v_cycle(12, j); v_cycle(13, j);
        v_cycle(14, j); v_cycle(15, j);
    }

    ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
    ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
    ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
    ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
}

/* Compile 128 bytes of hash data into SHA256 digest value  */
/* NOTE: this routine assumes that the byte order in the    */
/* ctx->wbuf[] at this point is in such an order that low   */
/* address bytes in the ORIGINAL byte stream placed in this */
/* buffer will now go to the high end of words on BOTH big  */
/* and little endian systems                                */

VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
{   uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
             space = SHA512_BLOCK_SIZE - pos;
    const unsigned char *sp = data;

    if((ctx->count[0] += len) < len)
        ++(ctx->count[1]);

    while(len >= space)     /* tranfer whole blocks while possible  */
    {
        memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
        sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
        bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
        sha512_compile(ctx);
    }

    memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}

/* SHA384/512 Final padding and digest calculation  */

static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
{   uint_32t    i = (uint_32t)(ctx->count[0] & SHA512_MASK);

    /* put bytes in the buffer in an order in which references to   */
    /* 32-bit words will put bytes with lower addresses into the    */
    /* top of 32 bit words on BOTH big and little endian machines   */
    bsw_64(ctx->wbuf, (i + 7) >> 3);

    /* we now need to mask valid bytes and add the padding which is */
    /* a single 1 bit and as many zero bits as necessary. Note that */
    /* we can always add the first padding byte here because the    */
    /* buffer always has at least one empty slot                    */
    ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
    ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);

    /* we need 17 or more empty byte positions, one for the padding */
    /* byte (above) and sixteen for the length count.  If there is  */
    /* not enough space pad and empty the buffer                    */
    if(i > SHA512_BLOCK_SIZE - 17)
    {
        if(i < 120) ctx->wbuf[15] = 0;
        sha512_compile(ctx);
        i = 0;
    }
    else
        i = (i >> 3) + 1;

    while(i < 14)
        ctx->wbuf[i++] = 0;

    /* the following 64-bit length fields are assembled in the      */
    /* wrong byte order on little endian machines but this is       */
    /* corrected later since they are only ever used as 64-bit      */
    /* word values.                                                 */
    ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
    ctx->wbuf[15] = ctx->count[0] << 3;
    sha512_compile(ctx);

    /* extract the hash value as bytes in case the hash buffer is   */
    /* misaligned for 32-bit words                                  */
    for(i = 0; i < hlen; ++i)
        hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
}

#endif

#if defined(SHA_384)

/* SHA384 initialisation data   */

const uint_64t  i384[80] =
{
    li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
    li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
    li_64(67332667ffc00b31), li_64(8eb44a8768581511),
    li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
};

VOID_RETURN sha384_begin(sha384_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
}

VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
{
    sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
}

VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha384_ctx  cx[1];

    sha384_begin(cx);
    sha384_hash(data, len, cx);
    sha_end2(hval, cx, SHA384_DIGEST_SIZE);
}

#endif

#if defined(SHA_512)

/* SHA512 initialisation data   */

const uint_64t  i512[80] =
{
    li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
    li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
    li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
    li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
};

VOID_RETURN sha512_begin(sha512_ctx ctx[1])
{
    ctx->count[0] = ctx->count[1] = 0;
    memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
}

VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
{
    sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
}

VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
{   sha512_ctx  cx[1];

    sha512_begin(cx);
    sha512_hash(data, len, cx);
    sha_end2(hval, cx, SHA512_DIGEST_SIZE);
}

#endif

#if defined(SHA_2)

#define CTX_224(x)  ((x)->uu->ctx256)
#define CTX_256(x)  ((x)->uu->ctx256)
#define CTX_384(x)  ((x)->uu->ctx512)
#define CTX_512(x)  ((x)->uu->ctx512)

/* SHA2 initialisation */

INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
{
    switch(len)
    {
#if defined(SHA_224)
        case 224:
        case  28:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
                    memcpy(CTX_256(ctx)->hash, i224, 32);
                    ctx->sha2_len = 28; return EXIT_SUCCESS;
#endif
#if defined(SHA_256)
        case 256:
        case  32:   CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
                    memcpy(CTX_256(ctx)->hash, i256, 32);
                    ctx->sha2_len = 32; return EXIT_SUCCESS;
#endif
#if defined(SHA_384)
        case 384:
        case  48:   CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
                    memcpy(CTX_384(ctx)->hash, i384, 64);
                    ctx->sha2_len = 48; return EXIT_SUCCESS;
#endif
#if defined(SHA_512)
        case 512:
        case  64:   CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
                    memcpy(CTX_512(ctx)->hash, i512, 64);
                    ctx->sha2_len = 64; return EXIT_SUCCESS;
#endif
        default:    return EXIT_FAILURE;
    }
}

VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
{
    switch(ctx->sha2_len)
    {
#if defined(SHA_224)
        case 28: sha224_hash(data, len, CTX_224(ctx)); return;
#endif
#if defined(SHA_256)
        case 32: sha256_hash(data, len, CTX_256(ctx)); return;
#endif
#if defined(SHA_384)
        case 48: sha384_hash(data, len, CTX_384(ctx)); return;
#endif
#if defined(SHA_512)
        case 64: sha512_hash(data, len, CTX_512(ctx)); return;
#endif
    }
}

VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
{
    switch(ctx->sha2_len)
    {
#if defined(SHA_224)
        case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
#endif
#if defined(SHA_256)
        case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
#endif
#if defined(SHA_384)
        case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
#endif
#if defined(SHA_512)
        case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
#endif
    }
}

INT_RETURN sha2(unsigned char hval[], unsigned long size,
                                const unsigned char data[], unsigned long len)
{   sha2_ctx    cx[1];

    if(sha2_begin(size, cx) == EXIT_SUCCESS)
    {
        sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
    }
    else
        return EXIT_FAILURE;
}

#endif

#if defined(__cplusplus)
}
#endif