diff options
author | David Foerster <david.foerster@informatik.hu-berlin.de> | 2016-05-10 20:20:14 +0200 |
---|---|---|
committer | David Foerster <david.foerster@informatik.hu-berlin.de> | 2016-05-10 20:20:14 +0200 |
commit | fc37cc4a02ed13d1a73b941a9f80975600fd1b99 (patch) | |
tree | ad9e5ac81111402b5c47dc06944cc5243824c4b5 /src/Crypto/AesSmall.h | |
parent | 98b04198c6ea5bc07cca50956809068adf1fea82 (diff) | |
download | VeraCrypt-fc37cc4a02ed13d1a73b941a9f80975600fd1b99.tar.gz VeraCrypt-fc37cc4a02ed13d1a73b941a9f80975600fd1b99.zip |
Normalize all line terminators
Diffstat (limited to 'src/Crypto/AesSmall.h')
-rw-r--r-- | src/Crypto/AesSmall.h | 338 |
1 files changed, 169 insertions, 169 deletions
diff --git a/src/Crypto/AesSmall.h b/src/Crypto/AesSmall.h index 516c6964..ebeb24ef 100644 --- a/src/Crypto/AesSmall.h +++ b/src/Crypto/AesSmall.h @@ -1,169 +1,169 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
-
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
-
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue 09/09/2006
-
- This is an AES implementation that uses only 8-bit byte operations on the
- cipher state.
- */
-
-#ifndef AES_H
-#define AES_H
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/* This provides speed optimisation opportunities if 32-bit word
- operations are available
-*/
-#if 1
-# define HAVE_UINT_32T
-#endif
-
-#if 1
-# define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */
-#endif
-#if 1
-# define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */
-#endif
-#if 0
-# define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */
-#endif
-#if 0
-# define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */
-#endif
-#if 0
-# define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */
-#endif
-#if 0
-# define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */
-#endif
-
-#define N_ROW 4
-#define N_COL 4
-#define N_BLOCK (N_ROW * N_COL)
-#define N_MAX_ROUNDS 14
-
-typedef unsigned char uint_8t;
-
-typedef uint_8t return_type;
-typedef uint_8t length_type;
-typedef uint_8t uint_type;
-
-typedef unsigned char uint_8t;
-
-typedef struct
-{ uint_8t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK];
- uint_8t rnd;
-} aes_context;
-
-/* The following calls are for a precomputed key schedule
-
- NOTE: If the length_type used for the key length is an
- unsigned 8-bit character, a key length of 256 bits must
- be entered as a length in bytes (valid inputs are hence
- 128, 192, 16, 24 and 32).
-*/
-
-#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
-
-return_type aes_set_key( const unsigned char key[],
- length_type keylen,
- aes_context ctx[1] );
-#endif
-
-#if defined( AES_ENC_PREKEYED )
-
-return_type aes_encrypt( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const aes_context ctx[1] );
-#endif
-
-#if defined( AES_DEC_PREKEYED )
-
-return_type aes_decrypt( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const aes_context ctx[1] );
-#endif
-
-/* The following calls are for 'on the fly' keying. In this case the
- encryption and decryption keys are different.
-
- The encryption subroutines take a key in an array of bytes in
- key[L] where L is 16, 24 or 32 bytes for key lengths of 128,
- 192, and 256 bits respectively. They then encrypts the input
- data, in[] with this key and put the reult in the output array
- out[]. In addition, the second key array, o_key[L], is used
- to output the key that is needed by the decryption subroutine
- to reverse the encryption operation. The two key arrays can
- be the same array but in this case the original key will be
- overwritten.
-
- In the same way, the decryption subroutines output keys that
- can be used to reverse their effect when used for encryption.
-
- Only 128 and 256 bit keys are supported in these 'on the fly'
- modes.
-*/
-
-#if defined( AES_ENC_128_OTFK )
-void aes_encrypt_128( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[N_BLOCK],
- uint_8t o_key[N_BLOCK] );
-#endif
-
-#if defined( AES_DEC_128_OTFK )
-void aes_decrypt_128( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[N_BLOCK],
- unsigned char o_key[N_BLOCK] );
-#endif
-
-#if defined( AES_ENC_256_OTFK )
-void aes_encrypt_256( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[2 * N_BLOCK],
- unsigned char o_key[2 * N_BLOCK] );
-#endif
-
-#if defined( AES_DEC_256_OTFK )
-void aes_decrypt_256( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[2 * N_BLOCK],
- unsigned char o_key[2 * N_BLOCK] );
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue 09/09/2006 + + This is an AES implementation that uses only 8-bit byte operations on the + cipher state. + */ + +#ifndef AES_H +#define AES_H + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* This provides speed optimisation opportunities if 32-bit word + operations are available +*/ +#if 1 +# define HAVE_UINT_32T +#endif + +#if 1 +# define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */ +#endif +#if 1 +# define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */ +#endif +#if 0 +# define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */ +#endif +#if 0 +# define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */ +#endif +#if 0 +# define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */ +#endif +#if 0 +# define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */ +#endif + +#define N_ROW 4 +#define N_COL 4 +#define N_BLOCK (N_ROW * N_COL) +#define N_MAX_ROUNDS 14 + +typedef unsigned char uint_8t; + +typedef uint_8t return_type; +typedef uint_8t length_type; +typedef uint_8t uint_type; + +typedef unsigned char uint_8t; + +typedef struct +{ uint_8t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK]; + uint_8t rnd; +} aes_context; + +/* The following calls are for a precomputed key schedule + + NOTE: If the length_type used for the key length is an + unsigned 8-bit character, a key length of 256 bits must + be entered as a length in bytes (valid inputs are hence + 128, 192, 16, 24 and 32). +*/ + +#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED ) + +return_type aes_set_key( const unsigned char key[], + length_type keylen, + aes_context ctx[1] ); +#endif + +#if defined( AES_ENC_PREKEYED ) + +return_type aes_encrypt( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const aes_context ctx[1] ); +#endif + +#if defined( AES_DEC_PREKEYED ) + +return_type aes_decrypt( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const aes_context ctx[1] ); +#endif + +/* The following calls are for 'on the fly' keying. In this case the + encryption and decryption keys are different. + + The encryption subroutines take a key in an array of bytes in + key[L] where L is 16, 24 or 32 bytes for key lengths of 128, + 192, and 256 bits respectively. They then encrypts the input + data, in[] with this key and put the reult in the output array + out[]. In addition, the second key array, o_key[L], is used + to output the key that is needed by the decryption subroutine + to reverse the encryption operation. The two key arrays can + be the same array but in this case the original key will be + overwritten. + + In the same way, the decryption subroutines output keys that + can be used to reverse their effect when used for encryption. + + Only 128 and 256 bit keys are supported in these 'on the fly' + modes. +*/ + +#if defined( AES_ENC_128_OTFK ) +void aes_encrypt_128( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[N_BLOCK], + uint_8t o_key[N_BLOCK] ); +#endif + +#if defined( AES_DEC_128_OTFK ) +void aes_decrypt_128( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[N_BLOCK], + unsigned char o_key[N_BLOCK] ); +#endif + +#if defined( AES_ENC_256_OTFK ) +void aes_encrypt_256( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[2 * N_BLOCK], + unsigned char o_key[2 * N_BLOCK] ); +#endif + +#if defined( AES_DEC_256_OTFK ) +void aes_decrypt_256( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[2 * N_BLOCK], + unsigned char o_key[2 * N_BLOCK] ); +#endif + +#if defined(__cplusplus) +} +#endif + +#endif |