VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/Crypto.vcproj
diff options
context:
space:
mode:
authorMounir IDRASSI <mounir.idrassi@idrix.fr>2017-07-08 15:20:54 +0200
committerMounir IDRASSI <mounir.idrassi@idrix.fr>2017-07-09 00:19:12 +0200
commit2577797fc4e60052b54a8c0e67ba9a4328dcdef0 (patch)
tree34acb380d617165346fe36495b88a47a499eef48 /src/Crypto/Crypto.vcproj
parentbf571681fe8879a156b3fd0f465d8ca1d5408dc5 (diff)
downloadVeraCrypt-2577797fc4e60052b54a8c0e67ba9a4328dcdef0.tar.gz
VeraCrypt-2577797fc4e60052b54a8c0e67ba9a4328dcdef0.zip
Windows: preserve volatile registers XMM6-XMM15 in 64-bit assembly of Camellia.
Diffstat (limited to 'src/Crypto/Crypto.vcproj')
0 files changed, 0 insertions, 0 deletions
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 Legal Notice: Some portions of the source code contained in this file were
 derived from the source code of TrueCrypt 7.1a, which is
 Copyright (c) 2003-2012 TrueCrypt Developers Association and which is
 governed by the TrueCrypt License 3.0, also from the source code of
 Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
 and which is governed by the 'License Agreement for Encryption for the Masses'
 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages. */

#include "Common/Tcdefs.h"
#include "Platform/Platform.h"
#include "Volume/VolumeHeader.h"
#include "FatFormatter.h"
#include "RandomNumberGenerator.h"

namespace VeraCrypt
{
	struct fatparams
	{
		char volume_name[11];
		uint32 num_sectors;	/* total number of sectors */
		uint32 cluster_count;	/* number of clusters */
		uint32 size_root_dir;	/* size of the root directory in bytes */
		uint32 size_fat;		/* size of FAT */
		uint32 fats;
		uint32 media;
		uint32 cluster_size;
		uint32 fat_length;
		uint16 dir_entries;
		uint16 sector_size;
		uint32 hidden;
		uint16 reserved;
		uint16 sectors;
		uint32 total_sect;

		uint16 heads;
		uint16 secs_track;

	};

	static void GetFatParams (fatparams * ft)
	{
		uint64 volumeSize = (uint64) ft->num_sectors * ft->sector_size;
		unsigned int fatsecs;

		if(ft->cluster_size == 0)	// 'Default' cluster size
		{
			uint32 clusterSize;

			// Determine optimal cluster size to minimize FAT size (mounting delay), maximize number of files, keep 4 KB alignment, etc.
			if (volumeSize >= 2 * BYTES_PER_TB)
				clusterSize = 256 * BYTES_PER_KB;
			else if (volumeSize >= 512 * BYTES_PER_GB)
				clusterSize = 128 * BYTES_PER_KB;
			else if (volumeSize >= 128 * BYTES_PER_GB)
				clusterSize = 64 * BYTES_PER_KB;
			else if (volumeSize >= 64 * BYTES_PER_GB)
				clusterSize = 32 * BYTES_PER_KB;
			else if (volumeSize >= 32 * BYTES_PER_GB)
				clusterSize = 16 * BYTES_PER_KB;
			else if (volumeSize >= 16 * BYTES_PER_GB)
				clusterSize = 8 * BYTES_PER_KB;
			else if (volumeSize >= 512 * BYTES_PER_MB)
				clusterSize = 4 * BYTES_PER_KB;
			else if (volumeSize >= 256 * BYTES_PER_MB)
				clusterSize = 2 * BYTES_PER_KB;
			else if (volumeSize >= 1 * BYTES_PER_MB)
				clusterSize = 1 * BYTES_PER_KB;
			else
				clusterSize = 512;

			ft->cluster_size = clusterSize / ft->sector_size;

			if (ft->cluster_size == 0)
				ft->cluster_size = 1;

			if (ft->cluster_size * ft->sector_size > TC_MAX_FAT_CLUSTER_SIZE)
				ft->cluster_size = TC_MAX_FAT_CLUSTER_SIZE / ft->sector_size;

			if (ft->cluster_size > 128)
				ft->cluster_size = 128;
		}

		if (volumeSize <= TC_MAX_FAT_CLUSTER_SIZE * 4)
			ft->cluster_size = 1;

		// Geometry always set to SECTORS/1/1
		ft->secs_track = 1;
		ft->heads = 1;

		ft->dir_entries = 512;
		ft->fats = 2;
		ft->media = 0xf8;
		ft->hidden = 0;

		ft->size_root_dir = ft->dir_entries * 32;

		// FAT12
		ft->size_fat = 12;
		ft->reserved = 2;
		fatsecs = ft->num_sectors - (ft->size_root_dir + ft->sector_size - 1) / ft->sector_size - ft->reserved;
		ft->cluster_count = (int) (((int64) fatsecs * ft->sector_size) / (ft->cluster_size * ft->sector_size));
		ft->fat_length = (((ft->cluster_count * 3 + 1) >> 1) + ft->sector_size - 1) / ft->sector_size;

		if (ft->cluster_count >= 4085) // FAT16
		{
			ft->size_fat = 16;
			ft->reserved = 2;
			fatsecs = ft->num_sectors - (ft->size_root_dir + ft->sector_size - 1) / ft->sector_size - ft->reserved;
			ft->cluster_count = (int) (((int64) fatsecs * ft->sector_size) / (ft->cluster_size * ft->sector_size));
			ft->fat_length = (ft->cluster_count * 2 + ft->sector_size - 1) / ft->sector_size;
		}

		if(ft->cluster_count >= 65525) // FAT32
		{
			ft->size_fat = 32;
			ft->reserved = 32 - 1;

			do
			{
				ft->reserved++;

				fatsecs = ft->num_sectors - ft->reserved;
				ft->size_root_dir = ft->cluster_size * ft->sector_size;
				ft->cluster_count = (int) (((int64) fatsecs * ft->sector_size) / (ft->cluster_size * ft->sector_size));
				ft->fat_length = (ft->cluster_count * 4 + ft->sector_size - 1) / ft->sector_size;

				// Align data area on TC_MAX_VOLUME_SECTOR_SIZE

			} while (ft->sector_size == TC_SECTOR_SIZE_LEGACY
				&& (ft->reserved * ft->sector_size + ft->fat_length * ft->fats * ft->sector_size) % TC_MAX_VOLUME_SECTOR_SIZE != 0);
		}

		ft->cluster_count -= ft->fat_length * ft->fats / ft->cluster_size;

		if (ft->num_sectors >= 65536 || ft->size_fat == 32)
		{
			ft->sectors = 0;
			ft->total_sect = ft->num_sectors;
		}
		else
		{
			ft->sectors = (uint16) ft->num_sectors;
			ft->total_sect = 0;
		}
	}

	static void PutBoot (fatparams * ft, uint8 *boot, uint32 volumeId)
	{
		int cnt = 0;

		boot[cnt++] = 0xeb;	/* boot jump */		
		boot[cnt++] = (ft->size_fat == 32)? 0x58: 0x3c;
		boot[cnt++] = 0x90;
		memcpy (boot + cnt, "MSDOS5.0", 8); /* system id */
		cnt += 8;
		*(int16 *)(boot + cnt) = Endian::Little (ft->sector_size);	/* bytes per sector */
		cnt += 2;
		boot[cnt++] = (int8) ft->cluster_size;			/* sectors per cluster */
		*(int16 *)(boot + cnt) = Endian::Little (ft->reserved);		/* reserved sectors */
		cnt += 2;
		boot[cnt++] = (int8) ft->fats;					/* 2 fats */

		if(ft->size_fat == 32)
		{
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x00;
		}
		else
		{
			*(int16 *)(boot + cnt) = Endian::Little (ft->dir_entries);	/* 512 root entries */
			cnt += 2;
		}

		*(int16 *)(boot + cnt) = Endian::Little (ft->sectors);		/* # sectors */
		cnt += 2;
		boot[cnt++] = (int8) ft->media;					/* media byte */

		if(ft->size_fat == 32)
		{
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x00;
		}
		else
		{
			*(uint16 *)(boot + cnt) = Endian::Little ((uint16) ft->fat_length);	/* fat size */
			cnt += 2;
		}

		*(int16 *)(boot + cnt) = Endian::Little (ft->secs_track);	/* # sectors per track */
		cnt += 2;
		*(int16 *)(boot + cnt) = Endian::Little (ft->heads);			/* # heads */
		cnt += 2;
		*(int32 *)(boot + cnt) = Endian::Little (ft->hidden);		/* # hidden sectors */
		cnt += 4;
		*(int32 *)(boot + cnt) = Endian::Little (ft->total_sect);	/* # huge sectors */
		cnt += 4;

		if(ft->size_fat == 32)
		{
			*(int32 *)(boot + cnt) = Endian::Little (ft->fat_length); cnt += 4;	/* fat size 32 */
			boot[cnt++] = 0x00;	/* ExtFlags */
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x00;	/* FSVer */
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x02;	/* RootClus */
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x01;	/* FSInfo */
			boot[cnt++] = 0x00;
			boot[cnt++] = 0x06;	/* BkBootSec */
			boot[cnt++] = 0x00;
			memset(boot+cnt, 0, 12); cnt+=12;	/* Reserved */
		}

		boot[cnt++] = 0x00;	/* drive number */   // FIXED 80 > 00
		boot[cnt++] = 0x00;	/* reserved */
		boot[cnt++] = 0x29;	/* boot sig */

		*(int32 *)(boot + cnt) = volumeId;
		cnt += 4;

		memcpy (boot + cnt, ft->volume_name, 11);	/* vol title */
		cnt += 11;

		switch(ft->size_fat) /* filesystem type */
		{
		case 12: memcpy (boot + cnt, "FAT12   ", 8); break;
		case 16: memcpy (boot + cnt, "FAT16   ", 8); break;
		case 32: memcpy (boot + cnt, "FAT32   ", 8); break;
		}
		cnt += 8;

		memset (boot + cnt, 0, ft->size_fat==32 ? 420:448);	/* boot code */
		cnt += ft->size_fat==32 ? 420:448;
		boot[cnt++] = 0x55;
		boot[cnt++] = 0xaa;	/* boot sig */
	}


	/* FAT32 FSInfo */
	static void PutFSInfo (uint8 *sector, fatparams *ft)
	{
		memset (sector, 0, ft->sector_size);
		sector[3] = 0x41; /* LeadSig */
		sector[2] = 0x61;
		sector[1] = 0x52;
		sector[0] = 0x52;
		sector[484+3] = 0x61; /* StrucSig */
		sector[484+2] = 0x41;
		sector[484+1] = 0x72;
		sector[484+0] = 0x72;

		// Free cluster count
		*(uint32 *)(sector + 488) = Endian::Little (ft->cluster_count - ft->size_root_dir / ft->sector_size / ft->cluster_size);

		// Next free cluster
		*(uint32 *)(sector + 492) = Endian::Little ((uint32) 2);

		sector[508+3] = 0xaa; /* TrailSig */
		sector[508+2] = 0x55;
		sector[508+1] = 0x00;
		sector[508+0] = 0x00;
	}

	void FatFormatter::Format (WriteSectorCallback &writeSector, uint64 deviceSize, uint32 clusterSize, uint32 sectorSize)
	{
		fatparams fatParams;

#if TC_MAX_VOLUME_SECTOR_SIZE > 0xFFFF
#error TC_MAX_VOLUME_SECTOR_SIZE > 0xFFFF
#endif
		fatParams.sector_size = (uint16) sectorSize;

		if (deviceSize / fatParams.sector_size > 0xffffFFFF)
			throw ParameterIncorrect (SRC_POS);

		fatParams.num_sectors = (uint32) (deviceSize / fatParams.sector_size);
		fatParams.cluster_size = clusterSize / fatParams.sector_size;
		memcpy (fatParams.volume_name, "NO NAME    ", 11);
		GetFatParams (&fatParams);
		fatparams *ft = &fatParams;

		SecureBuffer sector (ft->sector_size);
		uint32 sectorNumber = 0;

		/* Write the data area */

		sector.Zero();

		uint32 volumeId;
		RandomNumberGenerator::GetDataFast (BufferPtr ((uint8 *) &volumeId, sizeof (volumeId)));

		PutBoot (ft, (uint8 *) sector, volumeId);
		writeSector (sector); ++sectorNumber;

		/* fat32 boot area */
		if (ft->size_fat == 32)
		{
			/* fsinfo */
			PutFSInfo((uint8 *) sector, ft);
			writeSector (sector); ++sectorNumber;

			/* reserved */
			while (sectorNumber < 6)
			{
				sector.Zero();
				sector[508+3] = 0xaa; /* TrailSig */
				sector[508+2] = 0x55;
				writeSector (sector); ++sectorNumber;
			}

			/* bootsector backup */
			sector.Zero();
			PutBoot (ft, (uint8 *) sector, volumeId);
			writeSector (sector); ++sectorNumber;

			PutFSInfo((uint8 *) sector, ft);
			writeSector (sector); ++sectorNumber;
		}

		/* reserved */
		while (sectorNumber < (uint32)ft->reserved)
		{
			sector.Zero();
			writeSector (sector); ++sectorNumber;
		}

		/* write fat */
		for (uint32 x = 1; x <= ft->fats; x++)
		{
			for (uint32 n = 0; n < ft->fat_length; n++)
			{
				sector.Zero();

				if (n == 0)
				{
					uint8 fat_sig[12];
					if (ft->size_fat == 32)
					{
						fat_sig[0] = (uint8) ft->media;
						fat_sig[1] = fat_sig[2] = 0xff;
						fat_sig[3] = 0x0f;
						fat_sig[4] = fat_sig[5] = fat_sig[6] = 0xff;
						fat_sig[7] = 0x0f;
						fat_sig[8] = fat_sig[9] = fat_sig[10] = 0xff;
						fat_sig[11] = 0x0f;
						memcpy (sector, fat_sig, 12);
					}
					else if (ft->size_fat == 16)
					{
						fat_sig[0] = (uint8) ft->media;
						fat_sig[1] = 0xff;
						fat_sig[2] = 0xff;
						fat_sig[3] = 0xff;
						memcpy (sector, fat_sig, 4);
					}
					else if (ft->size_fat == 12)
					{
						fat_sig[0] = (uint8) ft->media;
						fat_sig[1] = 0xff;
						fat_sig[2] = 0xff;
						fat_sig[3] = 0x00;
						memcpy (sector, fat_sig, 4);
					}
				}

				if (!writeSector (sector))
					return;
			}
		}

		/* write rootdir */
		for (uint32 x = 0; x < ft->size_root_dir / ft->sector_size; x++)
		{
			sector.Zero();
			if (!writeSector (sector))
				return;
		}
	}
}