VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/Des.c
diff options
context:
space:
mode:
authorMounir IDRASSI <mounir.idrassi@idrix.fr>2014-07-14 17:41:09 +0200
committerMounir IDRASSI <mounir.idrassi@idrix.fr>2014-11-08 23:21:27 +0100
commitc220db01281564bf5b50575ee7e24b38e45f5050 (patch)
tree5e66aa935ec029ca2bac6fa282f4c18710fc2d0d /src/Crypto/Des.c
parentc01f392a7ba1d5cdd4aa182eeb273cf41717d94f (diff)
downloadVeraCrypt-c220db01281564bf5b50575ee7e24b38e45f5050.tar.gz
VeraCrypt-c220db01281564bf5b50575ee7e24b38e45f5050.zip
Static Code Analysis : Generalize the use of Safe String functions. Add some NULL pointer checks. Avoid false-positive detection in AppendMenu (MF_SEPARATOR) calls by setting the last parameter to "" instead of NULL.
Diffstat (limited to 'src/Crypto/Des.c')
0 files changed, 0 insertions, 0 deletions
118' href='#n118'>118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
/*
 ---------------------------------------------------------------------------
 Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 20/12/2007
*/

#include "Aesopt.h"
#include "Aestab.h"

#if defined(__cplusplus)
extern "C"
{
#endif

#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
#define so(y,x,c)   word_out(y, c, s(x,c))

#if defined(ARRAYS)
#define locals(y,x)     x[4],y[4]
#else
#define locals(y,x)     x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
#endif

#define l_copy(y, x)    s(y,0) = s(x,0); s(y,1) = s(x,1); \
                        s(y,2) = s(x,2); s(y,3) = s(x,3);
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
#define state_out(y,x)  so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)

#if ( FUNCS_IN_C & ENCRYPTION_IN_C )

/* Visual C++ .Net v7.1 provides the fastest encryption code when using
   Pentium optimiation with small code but this is poor for decryption
   so we need to control this with the following VC++ pragmas
*/

#if defined( _MSC_VER ) && !defined( _WIN64 )
#pragma optimize( "s", on )
#endif

/* Given the column (c) of the output state variable, the following
   macros give the input state variables which are needed in its
   computation for each row (r) of the state. All the alternative
   macros give the same end values but expand into different ways
   of calculating these values.  In particular the complex macro
   used for dynamically variable block sizes is designed to expand
   to a compile time constant whenever possible but will expand to
   conditional clauses on some branches (I am grateful to Frank
   Yellin for this construction)
*/

#define fwd_var(x,r,c)\
 ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
 : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
 : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
 :          ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))

#if defined(FT4_SET)
#undef  dec_fmvars
#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
#elif defined(FT1_SET)
#undef  dec_fmvars
#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
#else
#define fwd_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
#endif

#if defined(FL4_SET)
#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
#elif defined(FL1_SET)
#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
#else
#define fwd_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
#endif

AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
{   uint_32t         locals(b0, b1);
    const uint_32t   *kp;
#if defined( dec_fmvars )
    dec_fmvars; /* declare variables for fwd_mcol() if needed */
#endif

#if defined( AES_ERR_CHK )
    if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
        return EXIT_FAILURE;
#endif

    kp = cx->ks;
    state_in(b0, in, kp);

#if (ENC_UNROLL == FULL)

    switch(cx->inf.b[0])
    {
    case 14 * 16:
        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
        kp += 2 * N_COLS;
    case 12 * 16:
        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
        kp += 2 * N_COLS;
    case 10 * 16:
        round(fwd_rnd,  b1, b0, kp + 1 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 2 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 3 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 4 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 5 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 6 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 7 * N_COLS);
        round(fwd_rnd,  b0, b1, kp + 8 * N_COLS);
        round(fwd_rnd,  b1, b0, kp + 9 * N_COLS);
        round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
    }

#else

#if (ENC_UNROLL == PARTIAL)
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
        {
            kp += N_COLS;
            round(fwd_rnd, b1, b0, kp);
            kp += N_COLS;
            round(fwd_rnd, b0, b1, kp);
        }
        kp += N_COLS;
        round(fwd_rnd,  b1, b0, kp);
#else
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
        {
            kp += N_COLS;
            round(fwd_rnd, b1, b0, kp);
            l_copy(b0, b1);
        }
#endif
        kp += N_COLS;
        round(fwd_lrnd, b0, b1, kp);
    }
#endif

    state_out(out, b0);

#if defined( AES_ERR_CHK )
    return EXIT_SUCCESS;
#endif
}

#endif

#if ( FUNCS_IN_C & DECRYPTION_IN_C)

/* Visual C++ .Net v7.1 provides the fastest encryption code when using
   Pentium optimiation with small code but this is poor for decryption
   so we need to control this with the following VC++ pragmas
*/

#if defined( _MSC_VER ) && !defined( _WIN64 )
#pragma optimize( "t", on )
#endif

/* Given the column (c) of the output state variable, the following
   macros give the input state variables which are needed in its
   computation for each row (r) of the state. All the alternative
   macros give the same end values but expand into different ways
   of calculating these values.  In particular the complex macro
   used for dynamically variable block sizes is designed to expand
   to a compile time constant whenever possible but will expand to
   conditional clauses on some branches (I am grateful to Frank
   Yellin for this construction)
*/

#define inv_var(x,r,c)\
 ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
 : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
 : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
 :          ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))

#if defined(IT4_SET)
#undef  dec_imvars
#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
#elif defined(IT1_SET)
#undef  dec_imvars
#define inv_rnd(y,x,k,c)    (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
#else
#define inv_rnd(y,x,k,c)    (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
#endif

#if defined(IL4_SET)
#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
#elif defined(IL1_SET)
#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
#else
#define inv_lrnd(y,x,k,c)   (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
#endif

/* This code can work with the decryption key schedule in the   */
/* order that is used for encrytpion (where the 1st decryption  */
/* round key is at the high end ot the schedule) or with a key  */
/* schedule that has been reversed to put the 1st decryption    */
/* round key at the low end of the schedule in memory (when     */
/* AES_REV_DKS is defined)                                      */

#ifdef AES_REV_DKS
#define key_ofs     0
#define rnd_key(n)  (kp + n * N_COLS)
#else
#define key_ofs     1
#define rnd_key(n)  (kp - n * N_COLS)
#endif

AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
{   uint_32t        locals(b0, b1);
#if defined( dec_imvars )
    dec_imvars; /* declare variables for inv_mcol() if needed */
#endif
    const uint_32t *kp;

#if defined( AES_ERR_CHK )
    if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
        return EXIT_FAILURE;
#endif

    kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
    state_in(b0, in, kp);

#if (DEC_UNROLL == FULL)

    kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
    switch(cx->inf.b[0])
    {
    case 14 * 16:
        round(inv_rnd,  b1, b0, rnd_key(-13));
        round(inv_rnd,  b0, b1, rnd_key(-12));
    case 12 * 16:
        round(inv_rnd,  b1, b0, rnd_key(-11));
        round(inv_rnd,  b0, b1, rnd_key(-10));
    case 10 * 16:
        round(inv_rnd,  b1, b0, rnd_key(-9));
        round(inv_rnd,  b0, b1, rnd_key(-8));
        round(inv_rnd,  b1, b0, rnd_key(-7));
        round(inv_rnd,  b0, b1, rnd_key(-6));
        round(inv_rnd,  b1, b0, rnd_key(-5));
        round(inv_rnd,  b0, b1, rnd_key(-4));
        round(inv_rnd,  b1, b0, rnd_key(-3));
        round(inv_rnd,  b0, b1, rnd_key(-2));
        round(inv_rnd,  b1, b0, rnd_key(-1));
        round(inv_lrnd, b0, b1, rnd_key( 0));
    }

#else

#if (DEC_UNROLL == PARTIAL)
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
        {
            kp = rnd_key(1);
            round(inv_rnd, b1, b0, kp);
            kp = rnd_key(1);
            round(inv_rnd, b0, b1, kp);
        }
        kp = rnd_key(1);
        round(inv_rnd, b1, b0, kp);
#else
    {   uint_32t    rnd;
        for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
        {
            kp = rnd_key(1);
            round(inv_rnd, b1, b0, kp);
            l_copy(b0, b1);
        }
#endif
        kp = rnd_key(1);
        round(inv_lrnd, b0, b1, kp);
        }
#endif

    state_out(out, b0);

#if defined( AES_ERR_CHK )
    return EXIT_SUCCESS;
#endif
}

#endif

#if defined(__cplusplus)
}
#endif