diff options
author | Mounir IDRASSI <mounir.idrassi@idrix.fr> | 2016-05-10 22:34:27 +0200 |
---|---|---|
committer | Mounir IDRASSI <mounir.idrassi@idrix.fr> | 2016-05-10 22:34:27 +0200 |
commit | 268ef2d8e904db5068dbdc0fdc7ce3940d6452ea (patch) | |
tree | b1afa687c97fbf5e1ba2c92c5a10479ae5f832f5 /src/Crypto/Sha2.c | |
parent | 6d61f06a5348aebe7dbc0bf44d3e2729c20f7fd0 (diff) | |
parent | 5f47d8b6f11cdb3c4c2f43e04e5acfc6ffcb3035 (diff) | |
download | VeraCrypt-268ef2d8e904db5068dbdc0fdc7ce3940d6452ea.tar.gz VeraCrypt-268ef2d8e904db5068dbdc0fdc7ce3940d6452ea.zip |
Merge pull request #61 from davidfoerster/normalize-line-terminators
Normalize line terminators
Diffstat (limited to 'src/Crypto/Sha2.c')
-rw-r--r-- | src/Crypto/Sha2.c | 1506 |
1 files changed, 753 insertions, 753 deletions
diff --git a/src/Crypto/Sha2.c b/src/Crypto/Sha2.c index f1a9850a..02680eb5 100644 --- a/src/Crypto/Sha2.c +++ b/src/Crypto/Sha2.c @@ -1,753 +1,753 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 01/08/2005
-
- This is a byte oriented version of SHA2 that operates on arrays of bytes
- stored in memory. This code implements sha256, sha384 and sha512 but the
- latter two functions rely on efficient 64-bit integer operations that
- may not be very efficient on 32-bit machines
-
- The sha256 functions use a type 'sha256_ctx' to hold details of the
- current hash state and uses the following three calls:
-
- void sha256_begin(sha256_ctx ctx[1])
- void sha256_hash(const unsigned char data[],
- unsigned long len, sha256_ctx ctx[1])
- void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
-
- The first subroutine initialises a hash computation by setting up the
- context in the sha256_ctx context. The second subroutine hashes 8-bit
- bytes from array data[] into the hash state withinh sha256_ctx context,
- the number of bytes to be hashed being given by the the unsigned long
- integer len. The third subroutine completes the hash calculation and
- places the resulting digest value in the array of 8-bit bytes hval[].
-
- The sha384 and sha512 functions are similar and use the interfaces:
-
- void sha384_begin(sha384_ctx ctx[1]);
- void sha384_hash(const unsigned char data[],
- unsigned long len, sha384_ctx ctx[1]);
- void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
-
- void sha512_begin(sha512_ctx ctx[1]);
- void sha512_hash(const unsigned char data[],
- unsigned long len, sha512_ctx ctx[1]);
- void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
-
- In addition there is a function sha2 that can be used to call all these
- functions using a call with a hash length parameter as follows:
-
- int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
- void sha2_hash(const unsigned char data[],
- unsigned long len, sha2_ctx ctx[1]);
- void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
-
- My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
- on big-endian systems and for his assistance with corrections
-*/
-
-#include "Common/Endian.h"
-#include "Crypto/misc.h"
-#define PLATFORM_BYTE_ORDER BYTE_ORDER
-#define IS_LITTLE_ENDIAN LITTLE_ENDIAN
-
-#if 0
-#define UNROLL_SHA2 /* for SHA2 loop unroll */
-#endif
-
-#include <string.h> /* for memcpy() etc. */
-
-#include "Sha2.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
-#pragma intrinsic(memcpy)
-#endif
-
-#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
-#define SWAP_BYTES
-#else
-#undef SWAP_BYTES
-#endif
-
-#if 0
-
-#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
-#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
-
-#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
-#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
-
-#endif
-
-/* round transforms for SHA256 and SHA512 compression functions */
-
-#define vf(n,i) v[(n - i) & 7]
-
-#define hf(i) (p[i & 15] += \
- g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
-
-#define v_cycle(i,j) \
- vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
- + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
- vf(3,i) += vf(7,i); \
- vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
-
-#if defined(SHA_224) || defined(SHA_256)
-
-#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
-
-#if defined(SWAP_BYTES)
-#define bsw_32(p,n) \
- { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
-#else
-#define bsw_32(p,n)
-#endif
-
-#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
-#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
-#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
-#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
-#define k_0 k256
-
-/* rotated SHA256 round definition. Rather than swapping variables as in */
-/* FIPS-180, different variables are 'rotated' on each round, returning */
-/* to their starting positions every eight rounds */
-
-#define q(n) v##n
-
-#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
- q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
- q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
-
-/* SHA256 mixing data */
-
-const uint_32t k256[64] =
-{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
- 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
- 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
- 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
- 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
- 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
- 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
- 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
- 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
- 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
- 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
- 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
- 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
- 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
- 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
- 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
-};
-
-/* Compile 64 bytes of hash data into SHA256 digest value */
-/* NOTE: this routine assumes that the byte order in the */
-/* ctx->wbuf[] at this point is such that low address bytes */
-/* in the ORIGINAL byte stream will go into the high end of */
-/* words on BOTH big and little endian systems */
-
-VOID_RETURN sha256_compile(sha256_ctx ctx[1])
-{
-#if !defined(UNROLL_SHA2)
-
- uint_32t j, *p = ctx->wbuf, v[8];
-
- memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
-
- for(j = 0; j < 64; j += 16)
- {
- v_cycle( 0, j); v_cycle( 1, j);
- v_cycle( 2, j); v_cycle( 3, j);
- v_cycle( 4, j); v_cycle( 5, j);
- v_cycle( 6, j); v_cycle( 7, j);
- v_cycle( 8, j); v_cycle( 9, j);
- v_cycle(10, j); v_cycle(11, j);
- v_cycle(12, j); v_cycle(13, j);
- v_cycle(14, j); v_cycle(15, j);
- }
-
- ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
- ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
- ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
- ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
-
-#else
-
- uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
-
- v0 = ctx->hash[0]; v1 = ctx->hash[1];
- v2 = ctx->hash[2]; v3 = ctx->hash[3];
- v4 = ctx->hash[4]; v5 = ctx->hash[5];
- v6 = ctx->hash[6]; v7 = ctx->hash[7];
-
- one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
- one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
- one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
- one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
- one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
- one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
- one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
- one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
- one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
- one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
- one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
- one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
- one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
- one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
- one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
- one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
-
- one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
-
- one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
-
- one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
-
- ctx->hash[0] += v0; ctx->hash[1] += v1;
- ctx->hash[2] += v2; ctx->hash[3] += v3;
- ctx->hash[4] += v4; ctx->hash[5] += v5;
- ctx->hash[6] += v6; ctx->hash[7] += v7;
-#endif
-}
-
-/* SHA256 hash data in an array of bytes into hash buffer */
-/* and call the hash_compile function as required. */
-
-VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
-{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
- space = SHA256_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
-
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
-
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
- bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
- sha256_compile(ctx);
- }
-
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
-}
-
-/* SHA256 Final padding and digest calculation */
-
-static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
-{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK);
-
- /* put bytes in the buffer in an order in which references to */
- /* 32-bit words will put bytes with lower addresses into the */
- /* top of 32 bit words on BOTH big and little endian machines */
- bsw_32(ctx->wbuf, (i + 3) >> 2)
-
- /* we now need to mask valid bytes and add the padding which is */
- /* a single 1 bit and as many zero bits as necessary. Note that */
- /* we can always add the first padding byte here because the */
- /* buffer always has at least one empty slot */
- ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
- ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
-
- /* we need 9 or more empty positions, one for the padding byte */
- /* (above) and eight for the length count. If there is not */
- /* enough space pad and empty the buffer */
- if(i > SHA256_BLOCK_SIZE - 9)
- {
- if(i < 60) ctx->wbuf[15] = 0;
- sha256_compile(ctx);
- i = 0;
- }
- else /* compute a word index for the empty buffer positions */
- i = (i >> 2) + 1;
-
- while(i < 14) /* and zero pad all but last two positions */
- ctx->wbuf[i++] = 0;
-
- /* the following 32-bit length fields are assembled in the */
- /* wrong byte order on little endian machines but this is */
- /* corrected later since they are only ever used as 32-bit */
- /* word values. */
- ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
- ctx->wbuf[15] = ctx->count[0] << 3;
- sha256_compile(ctx);
-
- /* extract the hash value as bytes in case the hash buffer is */
- /* mislaigned for 32-bit words */
- for(i = 0; i < hlen; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
-}
-
-#endif
-
-#if defined(SHA_224)
-
-const uint_32t i224[8] =
-{
- 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
- 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
-};
-
-VOID_RETURN sha224_begin(sha224_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
-}
-
-VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
-{
- sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
-}
-
-VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha224_ctx cx[1];
-
- sha224_begin(cx);
- sha224_hash(data, len, cx);
- sha_end1(hval, cx, SHA224_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_256)
-
-const uint_32t i256[8] =
-{
- 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
- 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
-};
-
-VOID_RETURN sha256_begin(sha256_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
-}
-
-VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
-{
- sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
-}
-
-VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha256_ctx cx[1];
-
- sha256_begin(cx);
- sha256_hash(data, len, cx);
- sha_end1(hval, cx, SHA256_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_384) || defined(SHA_512)
-
-#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
-
-#if defined(SWAP_BYTES)
-#define bsw_64(p,n) \
- { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
-#else
-#define bsw_64(p,n)
-#endif
-
-/* SHA512 mixing function definitions */
-
-#ifdef s_0
-# undef s_0
-# undef s_1
-# undef g_0
-# undef g_1
-# undef k_0
-#endif
-
-#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
-#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
-#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
-#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
-#define k_0 k512
-
-/* SHA384/SHA512 mixing data */
-
-const uint_64t k512[80] =
-{
- li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
- li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
- li_64(3956c25bf348b538), li_64(59f111f1b605d019),
- li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
- li_64(d807aa98a3030242), li_64(12835b0145706fbe),
- li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
- li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
- li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
- li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
- li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
- li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
- li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
- li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
- li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
- li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
- li_64(06ca6351e003826f), li_64(142929670a0e6e70),
- li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
- li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
- li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
- li_64(81c2c92e47edaee6), li_64(92722c851482353b),
- li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
- li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
- li_64(d192e819d6ef5218), li_64(d69906245565a910),
- li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
- li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
- li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
- li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
- li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
- li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
- li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
- li_64(90befffa23631e28), li_64(a4506cebde82bde9),
- li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
- li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
- li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
- li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
- li_64(113f9804bef90dae), li_64(1b710b35131c471b),
- li_64(28db77f523047d84), li_64(32caab7b40c72493),
- li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
- li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
- li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
-};
-
-/* Compile 128 bytes of hash data into SHA384/512 digest */
-/* NOTE: this routine assumes that the byte order in the */
-/* ctx->wbuf[] at this point is such that low address bytes */
-/* in the ORIGINAL byte stream will go into the high end of */
-/* words on BOTH big and little endian systems */
-
-VOID_RETURN sha512_compile(sha512_ctx ctx[1])
-{ uint_64t v[8], *p = ctx->wbuf;
- uint_32t j;
-
- memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
-
- for(j = 0; j < 80; j += 16)
- {
- v_cycle( 0, j); v_cycle( 1, j);
- v_cycle( 2, j); v_cycle( 3, j);
- v_cycle( 4, j); v_cycle( 5, j);
- v_cycle( 6, j); v_cycle( 7, j);
- v_cycle( 8, j); v_cycle( 9, j);
- v_cycle(10, j); v_cycle(11, j);
- v_cycle(12, j); v_cycle(13, j);
- v_cycle(14, j); v_cycle(15, j);
- }
-
- ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
- ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
- ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
- ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
-}
-
-/* Compile 128 bytes of hash data into SHA256 digest value */
-/* NOTE: this routine assumes that the byte order in the */
-/* ctx->wbuf[] at this point is in such an order that low */
-/* address bytes in the ORIGINAL byte stream placed in this */
-/* buffer will now go to the high end of words on BOTH big */
-/* and little endian systems */
-
-VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
-{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
- space = SHA512_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
-
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
-
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
- bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
- sha512_compile(ctx);
- }
-
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
-}
-
-/* SHA384/512 Final padding and digest calculation */
-
-static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
-{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK);
-
- /* put bytes in the buffer in an order in which references to */
- /* 32-bit words will put bytes with lower addresses into the */
- /* top of 32 bit words on BOTH big and little endian machines */
- bsw_64(ctx->wbuf, (i + 7) >> 3);
-
- /* we now need to mask valid bytes and add the padding which is */
- /* a single 1 bit and as many zero bits as necessary. Note that */
- /* we can always add the first padding byte here because the */
- /* buffer always has at least one empty slot */
- ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
- ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
-
- /* we need 17 or more empty byte positions, one for the padding */
- /* byte (above) and sixteen for the length count. If there is */
- /* not enough space pad and empty the buffer */
- if(i > SHA512_BLOCK_SIZE - 17)
- {
- if(i < 120) ctx->wbuf[15] = 0;
- sha512_compile(ctx);
- i = 0;
- }
- else
- i = (i >> 3) + 1;
-
- while(i < 14)
- ctx->wbuf[i++] = 0;
-
- /* the following 64-bit length fields are assembled in the */
- /* wrong byte order on little endian machines but this is */
- /* corrected later since they are only ever used as 64-bit */
- /* word values. */
- ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
- ctx->wbuf[15] = ctx->count[0] << 3;
- sha512_compile(ctx);
-
- /* extract the hash value as bytes in case the hash buffer is */
- /* misaligned for 32-bit words */
- for(i = 0; i < hlen; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
-}
-
-#endif
-
-#if defined(SHA_384)
-
-/* SHA384 initialisation data */
-
-const uint_64t i384[80] =
-{
- li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
- li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
- li_64(67332667ffc00b31), li_64(8eb44a8768581511),
- li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
-};
-
-VOID_RETURN sha384_begin(sha384_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
-}
-
-VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
-{
- sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
-}
-
-VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha384_ctx cx[1];
-
- sha384_begin(cx);
- sha384_hash(data, len, cx);
- sha_end2(hval, cx, SHA384_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_512)
-
-/* SHA512 initialisation data */
-
-const uint_64t i512[80] =
-{
- li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
- li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
- li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
- li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
-};
-
-VOID_RETURN sha512_begin(sha512_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
-}
-
-VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
-{
- sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
-}
-
-VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha512_ctx cx[1];
-
- sha512_begin(cx);
- sha512_hash(data, len, cx);
- sha_end2(hval, cx, SHA512_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_2)
-
-#define CTX_224(x) ((x)->uu->ctx256)
-#define CTX_256(x) ((x)->uu->ctx256)
-#define CTX_384(x) ((x)->uu->ctx512)
-#define CTX_512(x) ((x)->uu->ctx512)
-
-/* SHA2 initialisation */
-
-INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
-{
- switch(len)
- {
-#if defined(SHA_224)
- case 224:
- case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
- memcpy(CTX_256(ctx)->hash, i224, 32);
- ctx->sha2_len = 28; return EXIT_SUCCESS;
-#endif
-#if defined(SHA_256)
- case 256:
- case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
- memcpy(CTX_256(ctx)->hash, i256, 32);
- ctx->sha2_len = 32; return EXIT_SUCCESS;
-#endif
-#if defined(SHA_384)
- case 384:
- case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
- memcpy(CTX_384(ctx)->hash, i384, 64);
- ctx->sha2_len = 48; return EXIT_SUCCESS;
-#endif
-#if defined(SHA_512)
- case 512:
- case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
- memcpy(CTX_512(ctx)->hash, i512, 64);
- ctx->sha2_len = 64; return EXIT_SUCCESS;
-#endif
- default: return EXIT_FAILURE;
- }
-}
-
-VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
-{
- switch(ctx->sha2_len)
- {
-#if defined(SHA_224)
- case 28: sha224_hash(data, len, CTX_224(ctx)); return;
-#endif
-#if defined(SHA_256)
- case 32: sha256_hash(data, len, CTX_256(ctx)); return;
-#endif
-#if defined(SHA_384)
- case 48: sha384_hash(data, len, CTX_384(ctx)); return;
-#endif
-#if defined(SHA_512)
- case 64: sha512_hash(data, len, CTX_512(ctx)); return;
-#endif
- }
-}
-
-VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
-{
- switch(ctx->sha2_len)
- {
-#if defined(SHA_224)
- case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
-#endif
-#if defined(SHA_256)
- case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
-#endif
-#if defined(SHA_384)
- case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
-#endif
-#if defined(SHA_512)
- case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
-#endif
- }
-}
-
-INT_RETURN sha2(unsigned char hval[], unsigned long size,
- const unsigned char data[], unsigned long len)
-{ sha2_ctx cx[1];
-
- if(sha2_begin(size, cx) == EXIT_SUCCESS)
- {
- sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
- }
- else
- return EXIT_FAILURE;
-}
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 + + This is a byte oriented version of SHA2 that operates on arrays of bytes + stored in memory. This code implements sha256, sha384 and sha512 but the + latter two functions rely on efficient 64-bit integer operations that + may not be very efficient on 32-bit machines + + The sha256 functions use a type 'sha256_ctx' to hold details of the + current hash state and uses the following three calls: + + void sha256_begin(sha256_ctx ctx[1]) + void sha256_hash(const unsigned char data[], + unsigned long len, sha256_ctx ctx[1]) + void sha_end1(unsigned char hval[], sha256_ctx ctx[1]) + + The first subroutine initialises a hash computation by setting up the + context in the sha256_ctx context. The second subroutine hashes 8-bit + bytes from array data[] into the hash state withinh sha256_ctx context, + the number of bytes to be hashed being given by the the unsigned long + integer len. The third subroutine completes the hash calculation and + places the resulting digest value in the array of 8-bit bytes hval[]. + + The sha384 and sha512 functions are similar and use the interfaces: + + void sha384_begin(sha384_ctx ctx[1]); + void sha384_hash(const unsigned char data[], + unsigned long len, sha384_ctx ctx[1]); + void sha384_end(unsigned char hval[], sha384_ctx ctx[1]); + + void sha512_begin(sha512_ctx ctx[1]); + void sha512_hash(const unsigned char data[], + unsigned long len, sha512_ctx ctx[1]); + void sha512_end(unsigned char hval[], sha512_ctx ctx[1]); + + In addition there is a function sha2 that can be used to call all these + functions using a call with a hash length parameter as follows: + + int sha2_begin(unsigned long len, sha2_ctx ctx[1]); + void sha2_hash(const unsigned char data[], + unsigned long len, sha2_ctx ctx[1]); + void sha2_end(unsigned char hval[], sha2_ctx ctx[1]); + + My thanks to Erik Andersen <andersen@codepoet.org> for testing this code + on big-endian systems and for his assistance with corrections +*/ + +#include "Common/Endian.h" +#include "Crypto/misc.h" +#define PLATFORM_BYTE_ORDER BYTE_ORDER +#define IS_LITTLE_ENDIAN LITTLE_ENDIAN + +#if 0 +#define UNROLL_SHA2 /* for SHA2 loop unroll */ +#endif + +#include <string.h> /* for memcpy() etc. */ + +#include "Sha2.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) +#pragma intrinsic(memcpy) +#endif + +#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) +#define SWAP_BYTES +#else +#undef SWAP_BYTES +#endif + +#if 0 + +#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) +#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */ + +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) + +#endif + +/* round transforms for SHA256 and SHA512 compression functions */ + +#define vf(n,i) v[(n - i) & 7] + +#define hf(i) (p[i & 15] += \ + g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15])) + +#define v_cycle(i,j) \ + vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \ + + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \ + vf(3,i) += vf(7,i); \ + vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i)) + +#if defined(SHA_224) || defined(SHA_256) + +#define SHA256_MASK (SHA256_BLOCK_SIZE - 1) + +#if defined(SWAP_BYTES) +#define bsw_32(p,n) \ + { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } +#else +#define bsw_32(p,n) +#endif + +#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) +#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) +#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) +#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) +#define k_0 k256 + +/* rotated SHA256 round definition. Rather than swapping variables as in */ +/* FIPS-180, different variables are 'rotated' on each round, returning */ +/* to their starting positions every eight rounds */ + +#define q(n) v##n + +#define one_cycle(a,b,c,d,e,f,g,h,k,w) \ + q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \ + q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c)) + +/* SHA256 mixing data */ + +const uint_32t k256[64] = +{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, + 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, + 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, + 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, + 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, + 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, + 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, + 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, + 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, + 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, + 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, + 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, + 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, + 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, + 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, + 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul, +}; + +/* Compile 64 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha256_compile(sha256_ctx ctx[1]) +{ +#if !defined(UNROLL_SHA2) + + uint_32t j, *p = ctx->wbuf, v[8]; + + memcpy(v, ctx->hash, 8 * sizeof(uint_32t)); + + for(j = 0; j < 64; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; + +#else + + uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7; + + v0 = ctx->hash[0]; v1 = ctx->hash[1]; + v2 = ctx->hash[2]; v3 = ctx->hash[3]; + v4 = ctx->hash[4]; v5 = ctx->hash[5]; + v6 = ctx->hash[6]; v7 = ctx->hash[7]; + + one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]); + one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]); + one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]); + one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]); + one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]); + one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]); + one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]); + one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]); + one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]); + one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]); + one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]); + one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]); + one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]); + one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]); + + one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15)); + + ctx->hash[0] += v0; ctx->hash[1] += v1; + ctx->hash[2] += v2; ctx->hash[3] += v3; + ctx->hash[4] += v4; ctx->hash[5] += v5; + ctx->hash[6] += v6; ctx->hash[7] += v7; +#endif +} + +/* SHA256 hash data in an array of bytes into hash buffer */ +/* and call the hash_compile function as required. */ + +VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK), + space = SHA256_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks while possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0; + bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2) + sha256_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA256 Final padding and digest calculation */ + +static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_32(ctx->wbuf, (i + 3) >> 2) + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3); + ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3); + + /* we need 9 or more empty positions, one for the padding byte */ + /* (above) and eight for the length count. If there is not */ + /* enough space pad and empty the buffer */ + if(i > SHA256_BLOCK_SIZE - 9) + { + if(i < 60) ctx->wbuf[15] = 0; + sha256_compile(ctx); + i = 0; + } + else /* compute a word index for the empty buffer positions */ + i = (i >> 2) + 1; + + while(i < 14) /* and zero pad all but last two positions */ + ctx->wbuf[i++] = 0; + + /* the following 32-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 32-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29); + ctx->wbuf[15] = ctx->count[0] << 3; + sha256_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* mislaigned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); +} + +#endif + +#if defined(SHA_224) + +const uint_32t i224[8] = +{ + 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, + 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul +}; + +VOID_RETURN sha224_begin(sha224_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i224, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA224_DIGEST_SIZE); +} + +VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha224_ctx cx[1]; + + sha224_begin(cx); + sha224_hash(data, len, cx); + sha_end1(hval, cx, SHA224_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_256) + +const uint_32t i256[8] = +{ + 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, + 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul +}; + +VOID_RETURN sha256_begin(sha256_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i256, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA256_DIGEST_SIZE); +} + +VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha256_ctx cx[1]; + + sha256_begin(cx); + sha256_hash(data, len, cx); + sha_end1(hval, cx, SHA256_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_384) || defined(SHA_512) + +#define SHA512_MASK (SHA512_BLOCK_SIZE - 1) + +#if defined(SWAP_BYTES) +#define bsw_64(p,n) \ + { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); } +#else +#define bsw_64(p,n) +#endif + +/* SHA512 mixing function definitions */ + +#ifdef s_0 +# undef s_0 +# undef s_1 +# undef g_0 +# undef g_1 +# undef k_0 +#endif + +#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) +#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) +#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) +#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) +#define k_0 k512 + +/* SHA384/SHA512 mixing data */ + +const uint_64t k512[80] = +{ + li_64(428a2f98d728ae22), li_64(7137449123ef65cd), + li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc), + li_64(3956c25bf348b538), li_64(59f111f1b605d019), + li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118), + li_64(d807aa98a3030242), li_64(12835b0145706fbe), + li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2), + li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1), + li_64(9bdc06a725c71235), li_64(c19bf174cf692694), + li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3), + li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65), + li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483), + li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5), + li_64(983e5152ee66dfab), li_64(a831c66d2db43210), + li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4), + li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725), + li_64(06ca6351e003826f), li_64(142929670a0e6e70), + li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926), + li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df), + li_64(650a73548baf63de), li_64(766a0abb3c77b2a8), + li_64(81c2c92e47edaee6), li_64(92722c851482353b), + li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001), + li_64(c24b8b70d0f89791), li_64(c76c51a30654be30), + li_64(d192e819d6ef5218), li_64(d69906245565a910), + li_64(f40e35855771202a), li_64(106aa07032bbd1b8), + li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53), + li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8), + li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb), + li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3), + li_64(748f82ee5defb2fc), li_64(78a5636f43172f60), + li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec), + li_64(90befffa23631e28), li_64(a4506cebde82bde9), + li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b), + li_64(ca273eceea26619c), li_64(d186b8c721c0c207), + li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178), + li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6), + li_64(113f9804bef90dae), li_64(1b710b35131c471b), + li_64(28db77f523047d84), li_64(32caab7b40c72493), + li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c), + li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a), + li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817) +}; + +/* Compile 128 bytes of hash data into SHA384/512 digest */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha512_compile(sha512_ctx ctx[1]) +{ uint_64t v[8], *p = ctx->wbuf; + uint_32t j; + + memcpy(v, ctx->hash, 8 * sizeof(uint_64t)); + + for(j = 0; j < 80; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; +} + +/* Compile 128 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is in such an order that low */ +/* address bytes in the ORIGINAL byte stream placed in this */ +/* buffer will now go to the high end of words on BOTH big */ +/* and little endian systems */ + +VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK), + space = SHA512_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks while possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0; + bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3); + sha512_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA384/512 Final padding and digest calculation */ + +static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_64(ctx->wbuf, (i + 7) >> 3); + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7); + ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7); + + /* we need 17 or more empty byte positions, one for the padding */ + /* byte (above) and sixteen for the length count. If there is */ + /* not enough space pad and empty the buffer */ + if(i > SHA512_BLOCK_SIZE - 17) + { + if(i < 120) ctx->wbuf[15] = 0; + sha512_compile(ctx); + i = 0; + } + else + i = (i >> 3) + 1; + + while(i < 14) + ctx->wbuf[i++] = 0; + + /* the following 64-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 64-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61); + ctx->wbuf[15] = ctx->count[0] << 3; + sha512_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* misaligned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7))); +} + +#endif + +#if defined(SHA_384) + +/* SHA384 initialisation data */ + +const uint_64t i384[80] = +{ + li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507), + li_64(9159015a3070dd17), li_64(152fecd8f70e5939), + li_64(67332667ffc00b31), li_64(8eb44a8768581511), + li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4) +}; + +VOID_RETURN sha384_begin(sha384_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i384, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA384_DIGEST_SIZE); +} + +VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha384_ctx cx[1]; + + sha384_begin(cx); + sha384_hash(data, len, cx); + sha_end2(hval, cx, SHA384_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_512) + +/* SHA512 initialisation data */ + +const uint_64t i512[80] = +{ + li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b), + li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1), + li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f), + li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179) +}; + +VOID_RETURN sha512_begin(sha512_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i512, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA512_DIGEST_SIZE); +} + +VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha512_ctx cx[1]; + + sha512_begin(cx); + sha512_hash(data, len, cx); + sha_end2(hval, cx, SHA512_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_2) + +#define CTX_224(x) ((x)->uu->ctx256) +#define CTX_256(x) ((x)->uu->ctx256) +#define CTX_384(x) ((x)->uu->ctx512) +#define CTX_512(x) ((x)->uu->ctx512) + +/* SHA2 initialisation */ + +INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1]) +{ + switch(len) + { +#if defined(SHA_224) + case 224: + case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i224, 32); + ctx->sha2_len = 28; return EXIT_SUCCESS; +#endif +#if defined(SHA_256) + case 256: + case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i256, 32); + ctx->sha2_len = 32; return EXIT_SUCCESS; +#endif +#if defined(SHA_384) + case 384: + case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0; + memcpy(CTX_384(ctx)->hash, i384, 64); + ctx->sha2_len = 48; return EXIT_SUCCESS; +#endif +#if defined(SHA_512) + case 512: + case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0; + memcpy(CTX_512(ctx)->hash, i512, 64); + ctx->sha2_len = 64; return EXIT_SUCCESS; +#endif + default: return EXIT_FAILURE; + } +} + +VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha224_hash(data, len, CTX_224(ctx)); return; +#endif +#if defined(SHA_256) + case 32: sha256_hash(data, len, CTX_256(ctx)); return; +#endif +#if defined(SHA_384) + case 48: sha384_hash(data, len, CTX_384(ctx)); return; +#endif +#if defined(SHA_512) + case 64: sha512_hash(data, len, CTX_512(ctx)); return; +#endif + } +} + +VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return; +#endif +#if defined(SHA_256) + case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return; +#endif +#if defined(SHA_384) + case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return; +#endif +#if defined(SHA_512) + case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return; +#endif + } +} + +INT_RETURN sha2(unsigned char hval[], unsigned long size, + const unsigned char data[], unsigned long len) +{ sha2_ctx cx[1]; + + if(sha2_begin(size, cx) == EXIT_SUCCESS) + { + sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS; + } + else + return EXIT_FAILURE; +} + +#endif + +#if defined(__cplusplus) +} +#endif |