diff options
author | Mounir IDRASSI <mounir.idrassi@idrix.fr> | 2016-05-10 22:34:27 +0200 |
---|---|---|
committer | Mounir IDRASSI <mounir.idrassi@idrix.fr> | 2016-05-10 22:34:27 +0200 |
commit | 268ef2d8e904db5068dbdc0fdc7ce3940d6452ea (patch) | |
tree | b1afa687c97fbf5e1ba2c92c5a10479ae5f832f5 /src/Crypto/Twofish.c | |
parent | 6d61f06a5348aebe7dbc0bf44d3e2729c20f7fd0 (diff) | |
parent | 5f47d8b6f11cdb3c4c2f43e04e5acfc6ffcb3035 (diff) | |
download | VeraCrypt-268ef2d8e904db5068dbdc0fdc7ce3940d6452ea.tar.gz VeraCrypt-268ef2d8e904db5068dbdc0fdc7ce3940d6452ea.zip |
Merge pull request #61 from davidfoerster/normalize-line-terminators
Normalize line terminators
Diffstat (limited to 'src/Crypto/Twofish.c')
-rw-r--r-- | src/Crypto/Twofish.c | 1098 |
1 files changed, 549 insertions, 549 deletions
diff --git a/src/Crypto/Twofish.c b/src/Crypto/Twofish.c index 2273ac5e..09f6edaf 100644 --- a/src/Crypto/Twofish.c +++ b/src/Crypto/Twofish.c @@ -1,549 +1,549 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1999, Dr Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
-
- My thanks to Doug Whiting and Niels Ferguson for comments that led
- to improvements in this implementation.
-
- Issue Date: 14th January 1999
-*/
-
-/* Adapted for TrueCrypt */
-/* Adapted for VeraCrypt */
-
-
-#ifdef TC_WINDOWS_BOOT
-#pragma optimize ("tl", on)
-#endif
-
-#include "Twofish.h"
-#include "Common/Endian.h"
-
-#define Q_TABLES
-#define M_TABLE
-
-#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH)
-# define MK_TABLE
-# define ONE_STEP
-#endif
-
-/* finite field arithmetic for GF(2**8) with the modular */
-/* polynomial x^8 + x^6 + x^5 + x^3 + 1 (0x169) */
-
-#define G_M 0x0169
-
-static u1byte tab_5b[4] = { 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) };
-static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };
-
-#define ffm_01(x) (x)
-#define ffm_5b(x) ((x) ^ ((x) >> 2) ^ tab_5b[(x) & 3])
-#define ffm_ef(x) ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef[(x) & 3])
-
-static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 };
-static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 };
-
-static u1byte qt0[2][16] =
-{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },
- { 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
-};
-
-static u1byte qt1[2][16] =
-{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
- { 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
-};
-
-static u1byte qt2[2][16] =
-{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },
- { 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
-};
-
-static u1byte qt3[2][16] =
-{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },
- { 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
-};
-
-static u1byte qp(const u4byte n, const u1byte x)
-{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4;
-
- a0 = x >> 4; b0 = x & 15;
- a1 = a0 ^ b0; b1 = ror4[b0] ^ ashx[a0];
- a2 = qt0[n][a1]; b2 = qt1[n][b1];
- a3 = a2 ^ b2; b3 = ror4[b2] ^ ashx[a2];
- a4 = qt2[n][a3]; b4 = qt3[n][b3];
- return (b4 << 4) | a4;
-};
-
-#ifdef Q_TABLES
-
-static u4byte qt_gen = 0;
-static u1byte q_tab[2][256];
-
-#define q(n,x) q_tab[n][x]
-
-static void gen_qtab(void)
-{ u4byte i;
-
- for(i = 0; i < 256; ++i)
- {
- q(0,i) = qp(0, (u1byte)i);
- q(1,i) = qp(1, (u1byte)i);
- }
-};
-
-#else
-
-#define q(n,x) qp(n, x)
-
-#endif
-
-#ifdef M_TABLE
-
-static u4byte mt_gen = 0;
-static u4byte m_tab[4][256];
-
-static void gen_mtab(void)
-{ u4byte i, f01, f5b, fef;
-
- for(i = 0; i < 256; ++i)
- {
- f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
- m_tab[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24);
- m_tab[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24);
-
- f01 = q(0,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
- m_tab[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24);
- m_tab[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24);
- }
-};
-
-#define mds(n,x) m_tab[n][x]
-
-#else
-
-#define fm_00 ffm_01
-#define fm_10 ffm_5b
-#define fm_20 ffm_ef
-#define fm_30 ffm_ef
-#define q_0(x) q(1,x)
-
-#define fm_01 ffm_ef
-#define fm_11 ffm_ef
-#define fm_21 ffm_5b
-#define fm_31 ffm_01
-#define q_1(x) q(0,x)
-
-#define fm_02 ffm_5b
-#define fm_12 ffm_ef
-#define fm_22 ffm_01
-#define fm_32 ffm_ef
-#define q_2(x) q(1,x)
-
-#define fm_03 ffm_5b
-#define fm_13 ffm_01
-#define fm_23 ffm_ef
-#define fm_33 ffm_5b
-#define q_3(x) q(0,x)
-
-#define f_0(n,x) ((u4byte)fm_0##n(x))
-#define f_1(n,x) ((u4byte)fm_1##n(x) << 8)
-#define f_2(n,x) ((u4byte)fm_2##n(x) << 16)
-#define f_3(n,x) ((u4byte)fm_3##n(x) << 24)
-
-#define mds(n,x) f_0(n,q_##n(x)) ^ f_1(n,q_##n(x)) ^ f_2(n,q_##n(x)) ^ f_3(n,q_##n(x))
-
-#endif
-
-static u4byte h_fun(TwofishInstance *instance, const u4byte x, const u4byte key[])
-{ u4byte b0, b1, b2, b3;
-
-#ifndef M_TABLE
- u4byte m5b_b0, m5b_b1, m5b_b2, m5b_b3;
- u4byte mef_b0, mef_b1, mef_b2, mef_b3;
-#endif
-
- b0 = extract_byte(x, 0); b1 = extract_byte(x, 1); b2 = extract_byte(x, 2); b3 = extract_byte(x, 3);
-
- switch(instance->k_len)
- {
- case 4: b0 = q(1, (u1byte) b0) ^ extract_byte(key[3],0);
- b1 = q(0, (u1byte) b1) ^ extract_byte(key[3],1);
- b2 = q(0, (u1byte) b2) ^ extract_byte(key[3],2);
- b3 = q(1, (u1byte) b3) ^ extract_byte(key[3],3);
- case 3: b0 = q(1, (u1byte) b0) ^ extract_byte(key[2],0);
- b1 = q(1, (u1byte) b1) ^ extract_byte(key[2],1);
- b2 = q(0, (u1byte) b2) ^ extract_byte(key[2],2);
- b3 = q(0, (u1byte) b3) ^ extract_byte(key[2],3);
- case 2: b0 = q(0, (u1byte) (q(0, (u1byte) b0) ^ extract_byte(key[1],0))) ^ extract_byte(key[0],0);
- b1 = q(0, (u1byte) (q(1, (u1byte) b1) ^ extract_byte(key[1],1))) ^ extract_byte(key[0],1);
- b2 = q(1, (u1byte) (q(0, (u1byte) b2) ^ extract_byte(key[1],2))) ^ extract_byte(key[0],2);
- b3 = q(1, (u1byte) (q(1, (u1byte) b3) ^ extract_byte(key[1],3))) ^ extract_byte(key[0],3);
- }
-#ifdef M_TABLE
-
- return mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3);
-
-#else
-
- b0 = q(1, (u1byte) b0); b1 = q(0, (u1byte) b1); b2 = q(1, (u1byte) b2); b3 = q(0, (u1byte) b3);
- m5b_b0 = ffm_5b(b0); m5b_b1 = ffm_5b(b1); m5b_b2 = ffm_5b(b2); m5b_b3 = ffm_5b(b3);
- mef_b0 = ffm_ef(b0); mef_b1 = ffm_ef(b1); mef_b2 = ffm_ef(b2); mef_b3 = ffm_ef(b3);
- b0 ^= mef_b1 ^ m5b_b2 ^ m5b_b3; b3 ^= m5b_b0 ^ mef_b1 ^ mef_b2;
- b2 ^= mef_b0 ^ m5b_b1 ^ mef_b3; b1 ^= mef_b0 ^ mef_b2 ^ m5b_b3;
-
- return b0 | (b3 << 8) | (b2 << 16) | (b1 << 24);
-
-#endif
-};
-
-#ifdef MK_TABLE
-
-#ifdef ONE_STEP
-//u4byte mk_tab[4][256];
-#else
-static u1byte sb[4][256];
-#endif
-
-#define q20(x) q(0,q(0,x) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
-#define q21(x) q(0,q(1,x) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
-#define q22(x) q(1,q(0,x) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
-#define q23(x) q(1,q(1,x) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
-
-#define q30(x) q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
-#define q31(x) q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
-#define q32(x) q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
-#define q33(x) q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
-
-#define q40(x) q(0,q(0,q(1, q(1, x) ^ extract_byte(key[3],0)) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
-#define q41(x) q(0,q(1,q(1, q(0, x) ^ extract_byte(key[3],1)) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
-#define q42(x) q(1,q(0,q(0, q(0, x) ^ extract_byte(key[3],2)) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
-#define q43(x) q(1,q(1,q(0, q(1, x) ^ extract_byte(key[3],3)) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
-
-static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
-{ u4byte i;
- u1byte by;
-
- u4byte *mk_tab = instance->mk_tab;
-
- switch(instance->k_len)
- {
- case 2: for(i = 0; i < 256; ++i)
- {
- by = (u1byte)i;
-#ifdef ONE_STEP
- mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by));
- mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by));
-#else
- sb[0][i] = q20(by); sb[1][i] = q21(by);
- sb[2][i] = q22(by); sb[3][i] = q23(by);
-#endif
- }
- break;
-
- case 3: for(i = 0; i < 256; ++i)
- {
- by = (u1byte)i;
-#ifdef ONE_STEP
- mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by));
- mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by));
-#else
- sb[0][i] = q30(by); sb[1][i] = q31(by);
- sb[2][i] = q32(by); sb[3][i] = q33(by);
-#endif
- }
- break;
-
- case 4: for(i = 0; i < 256; ++i)
- {
- by = (u1byte)i;
-#ifdef ONE_STEP
- mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by));
- mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by));
-#else
- sb[0][i] = q40(by); sb[1][i] = q41(by);
- sb[2][i] = q42(by); sb[3][i] = q43(by);
-#endif
- }
- }
-};
-
-# ifdef ONE_STEP
-# define g0_fun(x) ( mk_tab[0 + 4*extract_byte(x,0)] ^ mk_tab[1 + 4*extract_byte(x,1)] \
- ^ mk_tab[2 + 4*extract_byte(x,2)] ^ mk_tab[3 + 4*extract_byte(x,3)] )
-# define g1_fun(x) ( mk_tab[0 + 4*extract_byte(x,3)] ^ mk_tab[1 + 4*extract_byte(x,0)] \
- ^ mk_tab[2 + 4*extract_byte(x,1)] ^ mk_tab[3 + 4*extract_byte(x,2)] )
-
-
-# else
-# define g0_fun(x) ( mds(0, sb[0][extract_byte(x,0)]) ^ mds(1, sb[1][extract_byte(x,1)]) \
- ^ mds(2, sb[2][extract_byte(x,2)]) ^ mds(3, sb[3][extract_byte(x,3)]) )
-# define g1_fun(x) ( mds(0, sb[0][extract_byte(x,3)]) ^ mds(1, sb[1][extract_byte(x,0)]) \
- ^ mds(2, sb[2][extract_byte(x,1)]) ^ mds(3, sb[3][extract_byte(x,2)]) )
-# endif
-
-#else
-
-#define g0_fun(x) h_fun(instance, x, instance->s_key)
-#define g1_fun(x) h_fun(instance, rotl(x,8), instance->s_key)
-
-#endif
-
-/* The (12,8) Reed Soloman code has the generator polynomial
-
- g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1
-
-where the coefficients are in the finite field GF(2^8) with a
-modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the
-remainder we have to start with a 12th order polynomial with our
-eight input bytes as the coefficients of the 4th to 11th terms.
-That is:
-
- m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
-
-We then multiply the generator polynomial by m[7] * x^7 and subtract
-it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
-artihmetic on the coefficients is done in GF(2^8). We then multiply
-the generator polynomial by x^6 * coeff(x^10) and use this to remove
-the x^10 term. We carry on in this way until the x^4 term is removed
-so that we are left with:
-
- r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]
-
-which give the resulting 4 bytes of the remainder. This is equivalent
-to the matrix multiplication in the Twofish description but much faster
-to implement.
-
-*/
-
-#define G_MOD 0x0000014d
-
-static u4byte mds_rem(u4byte p0, u4byte p1)
-{ u4byte i, t, u;
-
- for(i = 0; i < 8; ++i)
- {
- t = p1 >> 24; // get most significant coefficient
-
- p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up
-
- // multiply t by a (the primitive element - i.e. left shift)
-
- u = (t << 1);
-
- if(t & 0x80) // subtract modular polynomial on overflow
-
- u ^= G_MOD;
-
- p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
-
- u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
-
- if(t & 0x01) // add the modular polynomial on underflow
-
- u ^= G_MOD >> 1;
-
- p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)
- }
-
- return p1;
-};
-
-/* initialise the key schedule from the user supplied key */
-
-u4byte *twofish_set_key(TwofishInstance *instance, const u4byte in_key[])
-{ u4byte i, a, b, me_key[4], mo_key[4];
- u4byte *l_key, *s_key;
-
- l_key = instance->l_key;
- s_key = instance->s_key;
-
-#ifdef Q_TABLES
- if(!qt_gen)
- {
- gen_qtab(); qt_gen = 1;
- }
-#endif
-
-#ifdef M_TABLE
- if(!mt_gen)
- {
- gen_mtab(); mt_gen = 1;
- }
-#endif
-
- instance->k_len = 4;
-
- for(i = 0; i < instance->k_len; ++i)
- {
- a = LE32(in_key[i + i]); me_key[i] = a;
- b = LE32(in_key[i + i + 1]); mo_key[i] = b;
- s_key[instance->k_len - i - 1] = mds_rem(a, b);
- }
-
- for(i = 0; i < 40; i += 2)
- {
- a = 0x01010101 * i; b = a + 0x01010101;
- a = h_fun(instance, a, me_key);
- b = rotl(h_fun(instance, b, mo_key), 8);
- l_key[i] = a + b;
- l_key[i + 1] = rotl(a + 2 * b, 9);
- }
-
-#ifdef MK_TABLE
- gen_mk_tab(instance, s_key);
-#endif
-
- return l_key;
-};
-
-/* encrypt a block of text */
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-#define f_rnd(i) \
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \
- blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); \
- blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); \
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \
- blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); \
- blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11])
-
-void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
- u4byte *mk_tab = instance->mk_tab;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[0];
- blk[1] = LE32(in_blk[1]) ^ l_key[1];
- blk[2] = LE32(in_blk[2]) ^ l_key[2];
- blk[3] = LE32(in_blk[3]) ^ l_key[3];
-
- f_rnd(0); f_rnd(1); f_rnd(2); f_rnd(3);
- f_rnd(4); f_rnd(5); f_rnd(6); f_rnd(7);
-
- out_blk[0] = LE32(blk[2] ^ l_key[4]);
- out_blk[1] = LE32(blk[3] ^ l_key[5]);
- out_blk[2] = LE32(blk[0] ^ l_key[6]);
- out_blk[3] = LE32(blk[1] ^ l_key[7]);
-};
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
-#ifdef TC_WINDOWS_BOOT_TWOFISH
- u4byte *mk_tab = instance->mk_tab;
-#endif
- int i;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[0];
- blk[1] = LE32(in_blk[1]) ^ l_key[1];
- blk[2] = LE32(in_blk[2]) ^ l_key[2];
- blk[3] = LE32(in_blk[3]) ^ l_key[3];
-
- for (i = 0; i <= 7; ++i)
- {
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
- blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1);
- blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]);
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
- blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1);
- blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]);
- }
-
- out_blk[0] = LE32(blk[2] ^ l_key[4]);
- out_blk[1] = LE32(blk[3] ^ l_key[5]);
- out_blk[2] = LE32(blk[0] ^ l_key[6]);
- out_blk[3] = LE32(blk[1] ^ l_key[7]);
-};
-
-#endif // TC_MINIMIZE_CODE_SIZE
-
-/* decrypt a block of text */
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-#define i_rnd(i) \
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \
- blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); \
- blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); \
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \
- blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); \
- blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1)
-
-void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
- u4byte *mk_tab = instance->mk_tab;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[4];
- blk[1] = LE32(in_blk[1]) ^ l_key[5];
- blk[2] = LE32(in_blk[2]) ^ l_key[6];
- blk[3] = LE32(in_blk[3]) ^ l_key[7];
-
- i_rnd(7); i_rnd(6); i_rnd(5); i_rnd(4);
- i_rnd(3); i_rnd(2); i_rnd(1); i_rnd(0);
-
- out_blk[0] = LE32(blk[2] ^ l_key[0]);
- out_blk[1] = LE32(blk[3] ^ l_key[1]);
- out_blk[2] = LE32(blk[0] ^ l_key[2]);
- out_blk[3] = LE32(blk[1] ^ l_key[3]);
-};
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
-#ifdef TC_WINDOWS_BOOT_TWOFISH
- u4byte *mk_tab = instance->mk_tab;
-#endif
- int i;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[4];
- blk[1] = LE32(in_blk[1]) ^ l_key[5];
- blk[2] = LE32(in_blk[2]) ^ l_key[6];
- blk[3] = LE32(in_blk[3]) ^ l_key[7];
-
- for (i = 7; i >= 0; --i)
- {
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
- blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]);
- blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1);
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
- blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]);
- blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1);
- }
-
- out_blk[0] = LE32(blk[2] ^ l_key[0]);
- out_blk[1] = LE32(blk[3] ^ l_key[1]);
- out_blk[2] = LE32(blk[0] ^ l_key[2]);
- out_blk[3] = LE32(blk[1] ^ l_key[3]);
-};
-
-#endif // TC_MINIMIZE_CODE_SIZE
+/* + --------------------------------------------------------------------------- + Copyright (c) 1999, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + + My thanks to Doug Whiting and Niels Ferguson for comments that led + to improvements in this implementation. + + Issue Date: 14th January 1999 +*/ + +/* Adapted for TrueCrypt */ +/* Adapted for VeraCrypt */ + + +#ifdef TC_WINDOWS_BOOT +#pragma optimize ("tl", on) +#endif + +#include "Twofish.h" +#include "Common/Endian.h" + +#define Q_TABLES +#define M_TABLE + +#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH) +# define MK_TABLE +# define ONE_STEP +#endif + +/* finite field arithmetic for GF(2**8) with the modular */ +/* polynomial x^8 + x^6 + x^5 + x^3 + 1 (0x169) */ + +#define G_M 0x0169 + +static u1byte tab_5b[4] = { 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) }; +static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 }; + +#define ffm_01(x) (x) +#define ffm_5b(x) ((x) ^ ((x) >> 2) ^ tab_5b[(x) & 3]) +#define ffm_ef(x) ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef[(x) & 3]) + +static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 }; +static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 }; + +static u1byte qt0[2][16] = +{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 }, + { 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 } +}; + +static u1byte qt1[2][16] = +{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 }, + { 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 } +}; + +static u1byte qt2[2][16] = +{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 }, + { 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 } +}; + +static u1byte qt3[2][16] = +{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 }, + { 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 } +}; + +static u1byte qp(const u4byte n, const u1byte x) +{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4; + + a0 = x >> 4; b0 = x & 15; + a1 = a0 ^ b0; b1 = ror4[b0] ^ ashx[a0]; + a2 = qt0[n][a1]; b2 = qt1[n][b1]; + a3 = a2 ^ b2; b3 = ror4[b2] ^ ashx[a2]; + a4 = qt2[n][a3]; b4 = qt3[n][b3]; + return (b4 << 4) | a4; +}; + +#ifdef Q_TABLES + +static u4byte qt_gen = 0; +static u1byte q_tab[2][256]; + +#define q(n,x) q_tab[n][x] + +static void gen_qtab(void) +{ u4byte i; + + for(i = 0; i < 256; ++i) + { + q(0,i) = qp(0, (u1byte)i); + q(1,i) = qp(1, (u1byte)i); + } +}; + +#else + +#define q(n,x) qp(n, x) + +#endif + +#ifdef M_TABLE + +static u4byte mt_gen = 0; +static u4byte m_tab[4][256]; + +static void gen_mtab(void) +{ u4byte i, f01, f5b, fef; + + for(i = 0; i < 256; ++i) + { + f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01); + m_tab[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24); + m_tab[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24); + + f01 = q(0,i); f5b = ffm_5b(f01); fef = ffm_ef(f01); + m_tab[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24); + m_tab[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24); + } +}; + +#define mds(n,x) m_tab[n][x] + +#else + +#define fm_00 ffm_01 +#define fm_10 ffm_5b +#define fm_20 ffm_ef +#define fm_30 ffm_ef +#define q_0(x) q(1,x) + +#define fm_01 ffm_ef +#define fm_11 ffm_ef +#define fm_21 ffm_5b +#define fm_31 ffm_01 +#define q_1(x) q(0,x) + +#define fm_02 ffm_5b +#define fm_12 ffm_ef +#define fm_22 ffm_01 +#define fm_32 ffm_ef +#define q_2(x) q(1,x) + +#define fm_03 ffm_5b +#define fm_13 ffm_01 +#define fm_23 ffm_ef +#define fm_33 ffm_5b +#define q_3(x) q(0,x) + +#define f_0(n,x) ((u4byte)fm_0##n(x)) +#define f_1(n,x) ((u4byte)fm_1##n(x) << 8) +#define f_2(n,x) ((u4byte)fm_2##n(x) << 16) +#define f_3(n,x) ((u4byte)fm_3##n(x) << 24) + +#define mds(n,x) f_0(n,q_##n(x)) ^ f_1(n,q_##n(x)) ^ f_2(n,q_##n(x)) ^ f_3(n,q_##n(x)) + +#endif + +static u4byte h_fun(TwofishInstance *instance, const u4byte x, const u4byte key[]) +{ u4byte b0, b1, b2, b3; + +#ifndef M_TABLE + u4byte m5b_b0, m5b_b1, m5b_b2, m5b_b3; + u4byte mef_b0, mef_b1, mef_b2, mef_b3; +#endif + + b0 = extract_byte(x, 0); b1 = extract_byte(x, 1); b2 = extract_byte(x, 2); b3 = extract_byte(x, 3); + + switch(instance->k_len) + { + case 4: b0 = q(1, (u1byte) b0) ^ extract_byte(key[3],0); + b1 = q(0, (u1byte) b1) ^ extract_byte(key[3],1); + b2 = q(0, (u1byte) b2) ^ extract_byte(key[3],2); + b3 = q(1, (u1byte) b3) ^ extract_byte(key[3],3); + case 3: b0 = q(1, (u1byte) b0) ^ extract_byte(key[2],0); + b1 = q(1, (u1byte) b1) ^ extract_byte(key[2],1); + b2 = q(0, (u1byte) b2) ^ extract_byte(key[2],2); + b3 = q(0, (u1byte) b3) ^ extract_byte(key[2],3); + case 2: b0 = q(0, (u1byte) (q(0, (u1byte) b0) ^ extract_byte(key[1],0))) ^ extract_byte(key[0],0); + b1 = q(0, (u1byte) (q(1, (u1byte) b1) ^ extract_byte(key[1],1))) ^ extract_byte(key[0],1); + b2 = q(1, (u1byte) (q(0, (u1byte) b2) ^ extract_byte(key[1],2))) ^ extract_byte(key[0],2); + b3 = q(1, (u1byte) (q(1, (u1byte) b3) ^ extract_byte(key[1],3))) ^ extract_byte(key[0],3); + } +#ifdef M_TABLE + + return mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3); + +#else + + b0 = q(1, (u1byte) b0); b1 = q(0, (u1byte) b1); b2 = q(1, (u1byte) b2); b3 = q(0, (u1byte) b3); + m5b_b0 = ffm_5b(b0); m5b_b1 = ffm_5b(b1); m5b_b2 = ffm_5b(b2); m5b_b3 = ffm_5b(b3); + mef_b0 = ffm_ef(b0); mef_b1 = ffm_ef(b1); mef_b2 = ffm_ef(b2); mef_b3 = ffm_ef(b3); + b0 ^= mef_b1 ^ m5b_b2 ^ m5b_b3; b3 ^= m5b_b0 ^ mef_b1 ^ mef_b2; + b2 ^= mef_b0 ^ m5b_b1 ^ mef_b3; b1 ^= mef_b0 ^ mef_b2 ^ m5b_b3; + + return b0 | (b3 << 8) | (b2 << 16) | (b1 << 24); + +#endif +}; + +#ifdef MK_TABLE + +#ifdef ONE_STEP +//u4byte mk_tab[4][256]; +#else +static u1byte sb[4][256]; +#endif + +#define q20(x) q(0,q(0,x) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0) +#define q21(x) q(0,q(1,x) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1) +#define q22(x) q(1,q(0,x) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2) +#define q23(x) q(1,q(1,x) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3) + +#define q30(x) q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0) +#define q31(x) q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1) +#define q32(x) q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2) +#define q33(x) q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3) + +#define q40(x) q(0,q(0,q(1, q(1, x) ^ extract_byte(key[3],0)) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0) +#define q41(x) q(0,q(1,q(1, q(0, x) ^ extract_byte(key[3],1)) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1) +#define q42(x) q(1,q(0,q(0, q(0, x) ^ extract_byte(key[3],2)) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2) +#define q43(x) q(1,q(1,q(0, q(1, x) ^ extract_byte(key[3],3)) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3) + +static void gen_mk_tab(TwofishInstance *instance, u4byte key[]) +{ u4byte i; + u1byte by; + + u4byte *mk_tab = instance->mk_tab; + + switch(instance->k_len) + { + case 2: for(i = 0; i < 256; ++i) + { + by = (u1byte)i; +#ifdef ONE_STEP + mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by)); + mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by)); +#else + sb[0][i] = q20(by); sb[1][i] = q21(by); + sb[2][i] = q22(by); sb[3][i] = q23(by); +#endif + } + break; + + case 3: for(i = 0; i < 256; ++i) + { + by = (u1byte)i; +#ifdef ONE_STEP + mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by)); + mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by)); +#else + sb[0][i] = q30(by); sb[1][i] = q31(by); + sb[2][i] = q32(by); sb[3][i] = q33(by); +#endif + } + break; + + case 4: for(i = 0; i < 256; ++i) + { + by = (u1byte)i; +#ifdef ONE_STEP + mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by)); + mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by)); +#else + sb[0][i] = q40(by); sb[1][i] = q41(by); + sb[2][i] = q42(by); sb[3][i] = q43(by); +#endif + } + } +}; + +# ifdef ONE_STEP +# define g0_fun(x) ( mk_tab[0 + 4*extract_byte(x,0)] ^ mk_tab[1 + 4*extract_byte(x,1)] \ + ^ mk_tab[2 + 4*extract_byte(x,2)] ^ mk_tab[3 + 4*extract_byte(x,3)] ) +# define g1_fun(x) ( mk_tab[0 + 4*extract_byte(x,3)] ^ mk_tab[1 + 4*extract_byte(x,0)] \ + ^ mk_tab[2 + 4*extract_byte(x,1)] ^ mk_tab[3 + 4*extract_byte(x,2)] ) + + +# else +# define g0_fun(x) ( mds(0, sb[0][extract_byte(x,0)]) ^ mds(1, sb[1][extract_byte(x,1)]) \ + ^ mds(2, sb[2][extract_byte(x,2)]) ^ mds(3, sb[3][extract_byte(x,3)]) ) +# define g1_fun(x) ( mds(0, sb[0][extract_byte(x,3)]) ^ mds(1, sb[1][extract_byte(x,0)]) \ + ^ mds(2, sb[2][extract_byte(x,1)]) ^ mds(3, sb[3][extract_byte(x,2)]) ) +# endif + +#else + +#define g0_fun(x) h_fun(instance, x, instance->s_key) +#define g1_fun(x) h_fun(instance, rotl(x,8), instance->s_key) + +#endif + +/* The (12,8) Reed Soloman code has the generator polynomial + + g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1 + +where the coefficients are in the finite field GF(2^8) with a +modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the +remainder we have to start with a 12th order polynomial with our +eight input bytes as the coefficients of the 4th to 11th terms. +That is: + + m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0 + +We then multiply the generator polynomial by m[7] * x^7 and subtract +it - xor in GF(2^8) - from the above to eliminate the x^7 term (the +artihmetic on the coefficients is done in GF(2^8). We then multiply +the generator polynomial by x^6 * coeff(x^10) and use this to remove +the x^10 term. We carry on in this way until the x^4 term is removed +so that we are left with: + + r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0] + +which give the resulting 4 bytes of the remainder. This is equivalent +to the matrix multiplication in the Twofish description but much faster +to implement. + +*/ + +#define G_MOD 0x0000014d + +static u4byte mds_rem(u4byte p0, u4byte p1) +{ u4byte i, t, u; + + for(i = 0; i < 8; ++i) + { + t = p1 >> 24; // get most significant coefficient + + p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up + + // multiply t by a (the primitive element - i.e. left shift) + + u = (t << 1); + + if(t & 0x80) // subtract modular polynomial on overflow + + u ^= G_MOD; + + p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1) + + u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a); + + if(t & 0x01) // add the modular polynomial on underflow + + u ^= G_MOD >> 1; + + p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x) + } + + return p1; +}; + +/* initialise the key schedule from the user supplied key */ + +u4byte *twofish_set_key(TwofishInstance *instance, const u4byte in_key[]) +{ u4byte i, a, b, me_key[4], mo_key[4]; + u4byte *l_key, *s_key; + + l_key = instance->l_key; + s_key = instance->s_key; + +#ifdef Q_TABLES + if(!qt_gen) + { + gen_qtab(); qt_gen = 1; + } +#endif + +#ifdef M_TABLE + if(!mt_gen) + { + gen_mtab(); mt_gen = 1; + } +#endif + + instance->k_len = 4; + + for(i = 0; i < instance->k_len; ++i) + { + a = LE32(in_key[i + i]); me_key[i] = a; + b = LE32(in_key[i + i + 1]); mo_key[i] = b; + s_key[instance->k_len - i - 1] = mds_rem(a, b); + } + + for(i = 0; i < 40; i += 2) + { + a = 0x01010101 * i; b = a + 0x01010101; + a = h_fun(instance, a, me_key); + b = rotl(h_fun(instance, b, mo_key), 8); + l_key[i] = a + b; + l_key[i + 1] = rotl(a + 2 * b, 9); + } + +#ifdef MK_TABLE + gen_mk_tab(instance, s_key); +#endif + + return l_key; +}; + +/* encrypt a block of text */ + +#ifndef TC_MINIMIZE_CODE_SIZE + +#define f_rnd(i) \ + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \ + blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); \ + blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); \ + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \ + blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); \ + blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]) + +void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; + u4byte *mk_tab = instance->mk_tab; + + blk[0] = LE32(in_blk[0]) ^ l_key[0]; + blk[1] = LE32(in_blk[1]) ^ l_key[1]; + blk[2] = LE32(in_blk[2]) ^ l_key[2]; + blk[3] = LE32(in_blk[3]) ^ l_key[3]; + + f_rnd(0); f_rnd(1); f_rnd(2); f_rnd(3); + f_rnd(4); f_rnd(5); f_rnd(6); f_rnd(7); + + out_blk[0] = LE32(blk[2] ^ l_key[4]); + out_blk[1] = LE32(blk[3] ^ l_key[5]); + out_blk[2] = LE32(blk[0] ^ l_key[6]); + out_blk[3] = LE32(blk[1] ^ l_key[7]); +}; + +#else // TC_MINIMIZE_CODE_SIZE + +void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; +#ifdef TC_WINDOWS_BOOT_TWOFISH + u4byte *mk_tab = instance->mk_tab; +#endif + int i; + + blk[0] = LE32(in_blk[0]) ^ l_key[0]; + blk[1] = LE32(in_blk[1]) ^ l_key[1]; + blk[2] = LE32(in_blk[2]) ^ l_key[2]; + blk[3] = LE32(in_blk[3]) ^ l_key[3]; + + for (i = 0; i <= 7; ++i) + { + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); + blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); + blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); + blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); + blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]); + } + + out_blk[0] = LE32(blk[2] ^ l_key[4]); + out_blk[1] = LE32(blk[3] ^ l_key[5]); + out_blk[2] = LE32(blk[0] ^ l_key[6]); + out_blk[3] = LE32(blk[1] ^ l_key[7]); +}; + +#endif // TC_MINIMIZE_CODE_SIZE + +/* decrypt a block of text */ + +#ifndef TC_MINIMIZE_CODE_SIZE + +#define i_rnd(i) \ + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \ + blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); \ + blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); \ + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \ + blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); \ + blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1) + +void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; + u4byte *mk_tab = instance->mk_tab; + + blk[0] = LE32(in_blk[0]) ^ l_key[4]; + blk[1] = LE32(in_blk[1]) ^ l_key[5]; + blk[2] = LE32(in_blk[2]) ^ l_key[6]; + blk[3] = LE32(in_blk[3]) ^ l_key[7]; + + i_rnd(7); i_rnd(6); i_rnd(5); i_rnd(4); + i_rnd(3); i_rnd(2); i_rnd(1); i_rnd(0); + + out_blk[0] = LE32(blk[2] ^ l_key[0]); + out_blk[1] = LE32(blk[3] ^ l_key[1]); + out_blk[2] = LE32(blk[0] ^ l_key[2]); + out_blk[3] = LE32(blk[1] ^ l_key[3]); +}; + +#else // TC_MINIMIZE_CODE_SIZE + +void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; +#ifdef TC_WINDOWS_BOOT_TWOFISH + u4byte *mk_tab = instance->mk_tab; +#endif + int i; + + blk[0] = LE32(in_blk[0]) ^ l_key[4]; + blk[1] = LE32(in_blk[1]) ^ l_key[5]; + blk[2] = LE32(in_blk[2]) ^ l_key[6]; + blk[3] = LE32(in_blk[3]) ^ l_key[7]; + + for (i = 7; i >= 0; --i) + { + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); + blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); + blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); + blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); + blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1); + } + + out_blk[0] = LE32(blk[2] ^ l_key[0]); + out_blk[1] = LE32(blk[3] ^ l_key[1]); + out_blk[2] = LE32(blk[0] ^ l_key[2]); + out_blk[3] = LE32(blk[1] ^ l_key[3]); +}; + +#endif // TC_MINIMIZE_CODE_SIZE |