diff options
author | David Foerster <david.foerster@informatik.hu-berlin.de> | 2016-05-10 20:20:14 +0200 |
---|---|---|
committer | David Foerster <david.foerster@informatik.hu-berlin.de> | 2016-05-10 20:20:14 +0200 |
commit | fc37cc4a02ed13d1a73b941a9f80975600fd1b99 (patch) | |
tree | ad9e5ac81111402b5c47dc06944cc5243824c4b5 /src/Crypto | |
parent | 98b04198c6ea5bc07cca50956809068adf1fea82 (diff) | |
download | VeraCrypt-fc37cc4a02ed13d1a73b941a9f80975600fd1b99.tar.gz VeraCrypt-fc37cc4a02ed13d1a73b941a9f80975600fd1b99.zip |
Normalize all line terminators
Diffstat (limited to 'src/Crypto')
30 files changed, 11276 insertions, 11276 deletions
diff --git a/src/Crypto/Aes.h b/src/Crypto/Aes.h index 7a1eff47..e12c6fc8 100644 --- a/src/Crypto/Aes.h +++ b/src/Crypto/Aes.h @@ -1,215 +1,215 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-
- This file contains the definitions required to use AES in C. See aesopt.h
- for optimisation details.
-*/
-
-/* Adapted for TrueCrypt */
-
-#ifndef _AES_H
-#define _AES_H
-
-#include "Common/Tcdefs.h"
-
-#ifndef EXIT_SUCCESS
-#define EXIT_SUCCESS 0
-#define EXIT_FAILURE 1
-#endif
-#define INT_RETURN int
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-// #define AES_128 /* define if AES with 128 bit keys is needed */
-// #define AES_192 /* define if AES with 192 bit keys is needed */
-#define AES_256 /* define if AES with 256 bit keys is needed */
-// #define AES_VAR /* define if a variable key size is needed */
-// #define AES_MODES /* define if support is needed for modes */
-
-/* The following must also be set in assembler files if being used */
-
-#define AES_ENCRYPT /* if support for encryption is needed */
-#define AES_DECRYPT /* if support for decryption is needed */
-#define AES_ERR_CHK /* for parameter checks & error return codes */
-#define AES_REV_DKS /* define to reverse decryption key schedule */
-
-#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */
-#define N_COLS 4 /* the number of columns in the state */
-
-/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */
-/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */
-/* or 44, 52 or 60 32-bit words. */
-
-#if defined( AES_VAR ) || defined( AES_256 )
-#define KS_LENGTH 60
-#elif defined( AES_192 )
-#define KS_LENGTH 52
-#else
-#define KS_LENGTH 44
-#endif
-
-#if defined( AES_ERR_CHK )
-#define AES_RETURN INT_RETURN
-#else
-#define AES_RETURN VOID_RETURN
-#endif
-
-/* the character array 'inf' in the following structures is used */
-/* to hold AES context information. This AES code uses cx->inf.b[0] */
-/* to hold the number of rounds multiplied by 16. The other three */
-/* elements can be used by code that implements additional modes */
-
-typedef union
-{ uint_32t l;
- uint_8t b[4];
-} aes_inf;
-
-typedef struct
-{ uint_32t ks[KS_LENGTH];
- aes_inf inf;
-} aes_encrypt_ctx;
-
-typedef struct
-{ uint_32t ks[KS_LENGTH];
- aes_inf inf;
-} aes_decrypt_ctx;
-
-/* This routine must be called before first use if non-static */
-/* tables are being used */
-
-AES_RETURN aes_init(void);
-
-/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */
-/* those in the range 128 <= key_len <= 256 are given in bits */
-
-#if defined( AES_ENCRYPT )
-
-#if defined(AES_128) || defined(AES_VAR)
-AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_VAR)
-AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]);
-#endif
-
-AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]);
-
-#endif
-
-#if defined( AES_DECRYPT )
-
-#if defined(AES_128) || defined(AES_VAR)
-AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
-#endif
-
-#if defined(AES_VAR)
-AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]);
-#endif
-
-AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]);
-
-#endif
-
-#if defined(AES_MODES)
-
-/* Multiple calls to the following subroutines for multiple block */
-/* ECB, CBC, CFB, OFB and CTR mode encryption can be used to handle */
-/* long messages incremantally provided that the context AND the iv */
-/* are preserved between all such calls. For the ECB and CBC modes */
-/* each individual call within a series of incremental calls must */
-/* process only full blocks (i.e. len must be a multiple of 16) but */
-/* the CFB, OFB and CTR mode calls can handle multiple incremental */
-/* calls of any length. Each mode is reset when a new AES key is */
-/* set but ECB and CBC operations can be reset without setting a */
-/* new key by setting a new IV value. To reset CFB, OFB and CTR */
-/* without setting the key, aes_mode_reset() must be called and the */
-/* IV must be set. NOTE: All these calls update the IV on exit so */
-/* this has to be reset if a new operation with the same IV as the */
-/* previous one is required (or decryption follows encryption with */
-/* the same IV array). */
-
-AES_RETURN aes_test_alignment_detection(unsigned int n);
-
-AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, const aes_encrypt_ctx cx[1]);
-
-AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, const aes_decrypt_ctx cx[1]);
-
-AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
-
-AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
-
-AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]);
-
-AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
-
-AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
-
-#define aes_ofb_encrypt aes_ofb_crypt
-#define aes_ofb_decrypt aes_ofb_crypt
-
-AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
-
-typedef void cbuf_inc(unsigned char *cbuf);
-
-#define aes_ctr_encrypt aes_ctr_crypt
-#define aes_ctr_decrypt aes_ctr_crypt
-
-AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
- int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 + + This file contains the definitions required to use AES in C. See aesopt.h + for optimisation details. +*/ + +/* Adapted for TrueCrypt */ + +#ifndef _AES_H +#define _AES_H + +#include "Common/Tcdefs.h" + +#ifndef EXIT_SUCCESS +#define EXIT_SUCCESS 0 +#define EXIT_FAILURE 1 +#endif +#define INT_RETURN int + +#if defined(__cplusplus) +extern "C" +{ +#endif + +// #define AES_128 /* define if AES with 128 bit keys is needed */ +// #define AES_192 /* define if AES with 192 bit keys is needed */ +#define AES_256 /* define if AES with 256 bit keys is needed */ +// #define AES_VAR /* define if a variable key size is needed */ +// #define AES_MODES /* define if support is needed for modes */ + +/* The following must also be set in assembler files if being used */ + +#define AES_ENCRYPT /* if support for encryption is needed */ +#define AES_DECRYPT /* if support for decryption is needed */ +#define AES_ERR_CHK /* for parameter checks & error return codes */ +#define AES_REV_DKS /* define to reverse decryption key schedule */ + +#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */ +#define N_COLS 4 /* the number of columns in the state */ + +/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */ +/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */ +/* or 44, 52 or 60 32-bit words. */ + +#if defined( AES_VAR ) || defined( AES_256 ) +#define KS_LENGTH 60 +#elif defined( AES_192 ) +#define KS_LENGTH 52 +#else +#define KS_LENGTH 44 +#endif + +#if defined( AES_ERR_CHK ) +#define AES_RETURN INT_RETURN +#else +#define AES_RETURN VOID_RETURN +#endif + +/* the character array 'inf' in the following structures is used */ +/* to hold AES context information. This AES code uses cx->inf.b[0] */ +/* to hold the number of rounds multiplied by 16. The other three */ +/* elements can be used by code that implements additional modes */ + +typedef union +{ uint_32t l; + uint_8t b[4]; +} aes_inf; + +typedef struct +{ uint_32t ks[KS_LENGTH]; + aes_inf inf; +} aes_encrypt_ctx; + +typedef struct +{ uint_32t ks[KS_LENGTH]; + aes_inf inf; +} aes_decrypt_ctx; + +/* This routine must be called before first use if non-static */ +/* tables are being used */ + +AES_RETURN aes_init(void); + +/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */ +/* those in the range 128 <= key_len <= 256 are given in bits */ + +#if defined( AES_ENCRYPT ) + +#if defined(AES_128) || defined(AES_VAR) +AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]); +#endif + +#if defined(AES_192) || defined(AES_VAR) +AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]); +#endif + +#if defined(AES_256) || defined(AES_VAR) +AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]); +#endif + +#if defined(AES_VAR) +AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]); +#endif + +AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]); + +#endif + +#if defined( AES_DECRYPT ) + +#if defined(AES_128) || defined(AES_VAR) +AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]); +#endif + +#if defined(AES_192) || defined(AES_VAR) +AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]); +#endif + +#if defined(AES_256) || defined(AES_VAR) +AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]); +#endif + +#if defined(AES_VAR) +AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]); +#endif + +AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]); + +#endif + +#if defined(AES_MODES) + +/* Multiple calls to the following subroutines for multiple block */ +/* ECB, CBC, CFB, OFB and CTR mode encryption can be used to handle */ +/* long messages incremantally provided that the context AND the iv */ +/* are preserved between all such calls. For the ECB and CBC modes */ +/* each individual call within a series of incremental calls must */ +/* process only full blocks (i.e. len must be a multiple of 16) but */ +/* the CFB, OFB and CTR mode calls can handle multiple incremental */ +/* calls of any length. Each mode is reset when a new AES key is */ +/* set but ECB and CBC operations can be reset without setting a */ +/* new key by setting a new IV value. To reset CFB, OFB and CTR */ +/* without setting the key, aes_mode_reset() must be called and the */ +/* IV must be set. NOTE: All these calls update the IV on exit so */ +/* this has to be reset if a new operation with the same IV as the */ +/* previous one is required (or decryption follows encryption with */ +/* the same IV array). */ + +AES_RETURN aes_test_alignment_detection(unsigned int n); + +AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf, + int len, const aes_encrypt_ctx cx[1]); + +AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf, + int len, const aes_decrypt_ctx cx[1]); + +AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf, + int len, unsigned char *iv, const aes_encrypt_ctx cx[1]); + +AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf, + int len, unsigned char *iv, const aes_decrypt_ctx cx[1]); + +AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]); + +AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf, + int len, unsigned char *iv, aes_encrypt_ctx cx[1]); + +AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf, + int len, unsigned char *iv, aes_encrypt_ctx cx[1]); + +#define aes_ofb_encrypt aes_ofb_crypt +#define aes_ofb_decrypt aes_ofb_crypt + +AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf, + int len, unsigned char *iv, aes_encrypt_ctx cx[1]); + +typedef void cbuf_inc(unsigned char *cbuf); + +#define aes_ctr_encrypt aes_ctr_crypt +#define aes_ctr_decrypt aes_ctr_crypt + +AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf, + int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]); + +#endif + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/Crypto/AesSmall.c b/src/Crypto/AesSmall.c index 91c89873..10e7cf83 100644 --- a/src/Crypto/AesSmall.c +++ b/src/Crypto/AesSmall.c @@ -1,953 +1,953 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue 09/09/2006
-
- This is an AES implementation that uses only 8-bit byte operations on the
- cipher state (there are options to use 32-bit types if available).
-
- The combination of mix columns and byte substitution used here is based on
- that developed by Karl Malbrain. His contribution is acknowledged.
- */
-
-/* Adapted for TrueCrypt:
- - Macro-generated tables were replaced with static data to enable compiling
- with MSVC++ 1.5 which runs out of resources when expanding large macros.
-*/
-
-#pragma optimize ("t", on)
-
-/* define if you have a fast memcpy function on your system */
-#if 1
-# define HAVE_MEMCPY
-# include <string.h>
-# if defined( _MSC_VER )
-# ifndef DEBUG
-# pragma intrinsic( memcpy )
-# endif
-# endif
-#endif
-
-/* define if you have fast 32-bit types on your system */
-#if 1
-# define HAVE_UINT_32T
-#endif
-
-/* alternative versions (test for performance on your system) */
-#if 0
-# define VERSION_1
-#endif
-
-#include "AesSmall.h"
-
-#define WPOLY 0x011b
-#define DPOLY 0x008d
-#define f1(x) (x)
-#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
-#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
-#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
- ^ (((x>>5) & 4) * WPOLY))
-#define d2(x) (((x) >> 1) ^ ((x) & 1 ? DPOLY : 0))
-
-#define f3(x) (f2(x) ^ x)
-#define f9(x) (f8(x) ^ x)
-#define fb(x) (f8(x) ^ f2(x) ^ x)
-#define fd(x) (f8(x) ^ f4(x) ^ x)
-#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
-
-static const uint_8t s_box[256] = {
- 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,
- 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
- 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,
- 0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
- 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,
- 0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
- 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,
- 0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
- 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,
- 0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
- 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,
- 0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
- 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,
- 0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
- 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,
- 0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
- 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,
- 0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
- 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,
- 0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
- 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,
- 0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
- 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,
- 0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
- 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,
- 0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
- 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,
- 0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
- 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,
- 0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
- 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,
- 0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16
-};
-
-static const uint_8t inv_s_box[256] = {
- 0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
- 0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
- 0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
- 0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
- 0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
- 0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
- 0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
- 0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
- 0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
- 0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
- 0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
- 0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
- 0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
- 0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
- 0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
- 0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
- 0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
- 0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
- 0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,
- 0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
- 0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
- 0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
- 0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
- 0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
- 0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
- 0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
- 0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
- 0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
- 0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
- 0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
- 0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
- 0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d
-};
-
-static const uint_8t gfm2_s_box[256] = {
- 0xc6,0xf8,0xee,0xf6,0xff,0xd6,0xde,0x91,
- 0x60,0x02,0xce,0x56,0xe7,0xb5,0x4d,0xec,
- 0x8f,0x1f,0x89,0xfa,0xef,0xb2,0x8e,0xfb,
- 0x41,0xb3,0x5f,0x45,0x23,0x53,0xe4,0x9b,
- 0x75,0xe1,0x3d,0x4c,0x6c,0x7e,0xf5,0x83,
- 0x68,0x51,0xd1,0xf9,0xe2,0xab,0x62,0x2a,
- 0x08,0x95,0x46,0x9d,0x30,0x37,0x0a,0x2f,
- 0x0e,0x24,0x1b,0xdf,0xcd,0x4e,0x7f,0xea,
- 0x12,0x1d,0x58,0x34,0x36,0xdc,0xb4,0x5b,
- 0xa4,0x76,0xb7,0x7d,0x52,0xdd,0x5e,0x13,
- 0xa6,0xb9,0x00,0xc1,0x40,0xe3,0x79,0xb6,
- 0xd4,0x8d,0x67,0x72,0x94,0x98,0xb0,0x85,
- 0xbb,0xc5,0x4f,0xed,0x86,0x9a,0x66,0x11,
- 0x8a,0xe9,0x04,0xfe,0xa0,0x78,0x25,0x4b,
- 0xa2,0x5d,0x80,0x05,0x3f,0x21,0x70,0xf1,
- 0x63,0x77,0xaf,0x42,0x20,0xe5,0xfd,0xbf,
- 0x81,0x18,0x26,0xc3,0xbe,0x35,0x88,0x2e,
- 0x93,0x55,0xfc,0x7a,0xc8,0xba,0x32,0xe6,
- 0xc0,0x19,0x9e,0xa3,0x44,0x54,0x3b,0x0b,
- 0x8c,0xc7,0x6b,0x28,0xa7,0xbc,0x16,0xad,
- 0xdb,0x64,0x74,0x14,0x92,0x0c,0x48,0xb8,
- 0x9f,0xbd,0x43,0xc4,0x39,0x31,0xd3,0xf2,
- 0xd5,0x8b,0x6e,0xda,0x01,0xb1,0x9c,0x49,
- 0xd8,0xac,0xf3,0xcf,0xca,0xf4,0x47,0x10,
- 0x6f,0xf0,0x4a,0x5c,0x38,0x57,0x73,0x97,
- 0xcb,0xa1,0xe8,0x3e,0x96,0x61,0x0d,0x0f,
- 0xe0,0x7c,0x71,0xcc,0x90,0x06,0xf7,0x1c,
- 0xc2,0x6a,0xae,0x69,0x17,0x99,0x3a,0x27,
- 0xd9,0xeb,0x2b,0x22,0xd2,0xa9,0x07,0x33,
- 0x2d,0x3c,0x15,0xc9,0x87,0xaa,0x50,0xa5,
- 0x03,0x59,0x09,0x1a,0x65,0xd7,0x84,0xd0,
- 0x82,0x29,0x5a,0x1e,0x7b,0xa8,0x6d,0x2c
-};
-
-static const uint_8t gfm3_s_box[256] = {
- 0xa5,0x84,0x99,0x8d,0x0d,0xbd,0xb1,0x54,
- 0x50,0x03,0xa9,0x7d,0x19,0x62,0xe6,0x9a,
- 0x45,0x9d,0x40,0x87,0x15,0xeb,0xc9,0x0b,
- 0xec,0x67,0xfd,0xea,0xbf,0xf7,0x96,0x5b,
- 0xc2,0x1c,0xae,0x6a,0x5a,0x41,0x02,0x4f,
- 0x5c,0xf4,0x34,0x08,0x93,0x73,0x53,0x3f,
- 0x0c,0x52,0x65,0x5e,0x28,0xa1,0x0f,0xb5,
- 0x09,0x36,0x9b,0x3d,0x26,0x69,0xcd,0x9f,
- 0x1b,0x9e,0x74,0x2e,0x2d,0xb2,0xee,0xfb,
- 0xf6,0x4d,0x61,0xce,0x7b,0x3e,0x71,0x97,
- 0xf5,0x68,0x00,0x2c,0x60,0x1f,0xc8,0xed,
- 0xbe,0x46,0xd9,0x4b,0xde,0xd4,0xe8,0x4a,
- 0x6b,0x2a,0xe5,0x16,0xc5,0xd7,0x55,0x94,
- 0xcf,0x10,0x06,0x81,0xf0,0x44,0xba,0xe3,
- 0xf3,0xfe,0xc0,0x8a,0xad,0xbc,0x48,0x04,
- 0xdf,0xc1,0x75,0x63,0x30,0x1a,0x0e,0x6d,
- 0x4c,0x14,0x35,0x2f,0xe1,0xa2,0xcc,0x39,
- 0x57,0xf2,0x82,0x47,0xac,0xe7,0x2b,0x95,
- 0xa0,0x98,0xd1,0x7f,0x66,0x7e,0xab,0x83,
- 0xca,0x29,0xd3,0x3c,0x79,0xe2,0x1d,0x76,
- 0x3b,0x56,0x4e,0x1e,0xdb,0x0a,0x6c,0xe4,
- 0x5d,0x6e,0xef,0xa6,0xa8,0xa4,0x37,0x8b,
- 0x32,0x43,0x59,0xb7,0x8c,0x64,0xd2,0xe0,
- 0xb4,0xfa,0x07,0x25,0xaf,0x8e,0xe9,0x18,
- 0xd5,0x88,0x6f,0x72,0x24,0xf1,0xc7,0x51,
- 0x23,0x7c,0x9c,0x21,0xdd,0xdc,0x86,0x85,
- 0x90,0x42,0xc4,0xaa,0xd8,0x05,0x01,0x12,
- 0xa3,0x5f,0xf9,0xd0,0x91,0x58,0x27,0xb9,
- 0x38,0x13,0xb3,0x33,0xbb,0x70,0x89,0xa7,
- 0xb6,0x22,0x92,0x20,0x49,0xff,0x78,0x7a,
- 0x8f,0xf8,0x80,0x17,0xda,0x31,0xc6,0xb8,
- 0xc3,0xb0,0x77,0x11,0xcb,0xfc,0xd6,0x3a
-};
-
-static const uint_8t gfmul_9[256] = {
- 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,
- 0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,
- 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,
- 0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,
- 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,
- 0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,
- 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,
- 0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,
- 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,
- 0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,
- 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,
- 0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,
- 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,
- 0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,
- 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,
- 0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,
- 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,
- 0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,
- 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,
- 0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,
- 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,
- 0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,
- 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,
- 0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,
- 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,
- 0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,
- 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,
- 0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,
- 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,
- 0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,
- 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,
- 0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46
-};
-
-static const uint_8t gfmul_b[256] = {
- 0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,
- 0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,
- 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,
- 0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,
- 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,
- 0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,
- 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,
- 0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,
- 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,
- 0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,
- 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,
- 0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,
- 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,
- 0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,
- 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,
- 0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,
- 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,
- 0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,
- 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,
- 0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,
- 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,
- 0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,
- 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,
- 0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,
- 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,
- 0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,
- 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,
- 0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,
- 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,
- 0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,
- 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,
- 0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3
-};
-
-static const uint_8t gfmul_d[256] = {
- 0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,
- 0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,
- 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,
- 0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,
- 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,
- 0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,
- 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,
- 0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,
- 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,
- 0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,
- 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,
- 0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,
- 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,
- 0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,
- 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,
- 0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,
- 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,
- 0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,
- 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,
- 0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,
- 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,
- 0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,
- 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,
- 0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,
- 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,
- 0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,
- 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,
- 0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,
- 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,
- 0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,
- 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,
- 0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97
-};
-
-static const uint_8t gfmul_e[256] = {
- 0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,
- 0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,
- 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,
- 0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,
- 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,
- 0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,
- 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,
- 0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,
- 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,
- 0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,
- 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,
- 0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,
- 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,
- 0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,
- 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,
- 0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,
- 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,
- 0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,
- 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,
- 0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,
- 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,
- 0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,
- 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,
- 0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,
- 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,
- 0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,
- 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,
- 0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,
- 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,
- 0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,
- 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,
- 0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d
-};
-
-#if defined( HAVE_UINT_32T )
- typedef unsigned long uint_32t;
-#endif
-
-#if defined( HAVE_MEMCPY )
-# define block_copy(d, s, l) memcpy(d, s, l)
-# define block16_copy(d, s) memcpy(d, s, N_BLOCK)
-#else
-# define block_copy(d, s, l) copy_block(d, s, l)
-# define block16_copy(d, s) copy_block16(d, s)
-#endif
-
-/* block size 'nn' must be a multiple of four */
-
-static void copy_block16( void *d, const void *s )
-{
-#if defined( HAVE_UINT_32T )
- ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0];
- ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1];
- ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2];
- ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3];
-#else
- ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0];
- ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1];
- ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2];
- ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3];
- ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4];
- ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5];
- ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6];
- ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7];
- ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8];
- ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9];
- ((uint_8t*)d)[10] = ((uint_8t*)s)[10];
- ((uint_8t*)d)[11] = ((uint_8t*)s)[11];
- ((uint_8t*)d)[12] = ((uint_8t*)s)[12];
- ((uint_8t*)d)[13] = ((uint_8t*)s)[13];
- ((uint_8t*)d)[14] = ((uint_8t*)s)[14];
- ((uint_8t*)d)[15] = ((uint_8t*)s)[15];
-#endif
-}
-
-static void copy_block( void * d, void *s, uint_8t nn )
-{
- while( nn-- )
- *((uint_8t*)d)++ = *((uint_8t*)s)++;
-}
-
-static void xor_block( void *d, const void *s )
-{
-#if defined( HAVE_UINT_32T )
- ((uint_32t*)d)[ 0] ^= ((uint_32t*)s)[ 0];
- ((uint_32t*)d)[ 1] ^= ((uint_32t*)s)[ 1];
- ((uint_32t*)d)[ 2] ^= ((uint_32t*)s)[ 2];
- ((uint_32t*)d)[ 3] ^= ((uint_32t*)s)[ 3];
-#else
- ((uint_8t*)d)[ 0] ^= ((uint_8t*)s)[ 0];
- ((uint_8t*)d)[ 1] ^= ((uint_8t*)s)[ 1];
- ((uint_8t*)d)[ 2] ^= ((uint_8t*)s)[ 2];
- ((uint_8t*)d)[ 3] ^= ((uint_8t*)s)[ 3];
- ((uint_8t*)d)[ 4] ^= ((uint_8t*)s)[ 4];
- ((uint_8t*)d)[ 5] ^= ((uint_8t*)s)[ 5];
- ((uint_8t*)d)[ 6] ^= ((uint_8t*)s)[ 6];
- ((uint_8t*)d)[ 7] ^= ((uint_8t*)s)[ 7];
- ((uint_8t*)d)[ 8] ^= ((uint_8t*)s)[ 8];
- ((uint_8t*)d)[ 9] ^= ((uint_8t*)s)[ 9];
- ((uint_8t*)d)[10] ^= ((uint_8t*)s)[10];
- ((uint_8t*)d)[11] ^= ((uint_8t*)s)[11];
- ((uint_8t*)d)[12] ^= ((uint_8t*)s)[12];
- ((uint_8t*)d)[13] ^= ((uint_8t*)s)[13];
- ((uint_8t*)d)[14] ^= ((uint_8t*)s)[14];
- ((uint_8t*)d)[15] ^= ((uint_8t*)s)[15];
-#endif
-}
-
-static void copy_and_key( void *d, const void *s, const void *k )
-{
-#if defined( HAVE_UINT_32T )
- ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0] ^ ((uint_32t*)k)[ 0];
- ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1] ^ ((uint_32t*)k)[ 1];
- ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2] ^ ((uint_32t*)k)[ 2];
- ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3] ^ ((uint_32t*)k)[ 3];
-#elif 1
- ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0] ^ ((uint_8t*)k)[ 0];
- ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1] ^ ((uint_8t*)k)[ 1];
- ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2] ^ ((uint_8t*)k)[ 2];
- ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3] ^ ((uint_8t*)k)[ 3];
- ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4] ^ ((uint_8t*)k)[ 4];
- ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5] ^ ((uint_8t*)k)[ 5];
- ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6] ^ ((uint_8t*)k)[ 6];
- ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7] ^ ((uint_8t*)k)[ 7];
- ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8] ^ ((uint_8t*)k)[ 8];
- ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9] ^ ((uint_8t*)k)[ 9];
- ((uint_8t*)d)[10] = ((uint_8t*)s)[10] ^ ((uint_8t*)k)[10];
- ((uint_8t*)d)[11] = ((uint_8t*)s)[11] ^ ((uint_8t*)k)[11];
- ((uint_8t*)d)[12] = ((uint_8t*)s)[12] ^ ((uint_8t*)k)[12];
- ((uint_8t*)d)[13] = ((uint_8t*)s)[13] ^ ((uint_8t*)k)[13];
- ((uint_8t*)d)[14] = ((uint_8t*)s)[14] ^ ((uint_8t*)k)[14];
- ((uint_8t*)d)[15] = ((uint_8t*)s)[15] ^ ((uint_8t*)k)[15];
-#else
- block16_copy(d, s);
- xor_block(d, k);
-#endif
-}
-
-static void add_round_key( uint_8t d[N_BLOCK], const uint_8t k[N_BLOCK] )
-{
- xor_block(d, k);
-}
-
-static void shift_sub_rows( uint_8t st[N_BLOCK] )
-{ uint_8t tt;
-
- st[ 0] = s_box[st[ 0]]; st[ 4] = s_box[st[ 4]];
- st[ 8] = s_box[st[ 8]]; st[12] = s_box[st[12]];
-
- tt = st[1]; st[ 1] = s_box[st[ 5]]; st[ 5] = s_box[st[ 9]];
- st[ 9] = s_box[st[13]]; st[13] = s_box[ tt ];
-
- tt = st[2]; st[ 2] = s_box[st[10]]; st[10] = s_box[ tt ];
- tt = st[6]; st[ 6] = s_box[st[14]]; st[14] = s_box[ tt ];
-
- tt = st[15]; st[15] = s_box[st[11]]; st[11] = s_box[st[ 7]];
- st[ 7] = s_box[st[ 3]]; st[ 3] = s_box[ tt ];
-}
-
-static void inv_shift_sub_rows( uint_8t st[N_BLOCK] )
-{ uint_8t tt;
-
- st[ 0] = inv_s_box[st[ 0]]; st[ 4] = inv_s_box[st[ 4]];
- st[ 8] = inv_s_box[st[ 8]]; st[12] = inv_s_box[st[12]];
-
- tt = st[13]; st[13] = inv_s_box[st[9]]; st[ 9] = inv_s_box[st[5]];
- st[ 5] = inv_s_box[st[1]]; st[ 1] = inv_s_box[ tt ];
-
- tt = st[2]; st[ 2] = inv_s_box[st[10]]; st[10] = inv_s_box[ tt ];
- tt = st[6]; st[ 6] = inv_s_box[st[14]]; st[14] = inv_s_box[ tt ];
-
- tt = st[3]; st[ 3] = inv_s_box[st[ 7]]; st[ 7] = inv_s_box[st[11]];
- st[11] = inv_s_box[st[15]]; st[15] = inv_s_box[ tt ];
-}
-
-#if defined( VERSION_1 )
- static void mix_sub_columns( uint_8t dt[N_BLOCK] )
- { uint_8t st[N_BLOCK];
- block16_copy(st, dt);
-#else
- static void mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] )
- {
-#endif
- dt[ 0] = gfm2_s_box[st[0]] ^ gfm3_s_box[st[5]] ^ s_box[st[10]] ^ s_box[st[15]];
- dt[ 1] = s_box[st[0]] ^ gfm2_s_box[st[5]] ^ gfm3_s_box[st[10]] ^ s_box[st[15]];
- dt[ 2] = s_box[st[0]] ^ s_box[st[5]] ^ gfm2_s_box[st[10]] ^ gfm3_s_box[st[15]];
- dt[ 3] = gfm3_s_box[st[0]] ^ s_box[st[5]] ^ s_box[st[10]] ^ gfm2_s_box[st[15]];
-
- dt[ 4] = gfm2_s_box[st[4]] ^ gfm3_s_box[st[9]] ^ s_box[st[14]] ^ s_box[st[3]];
- dt[ 5] = s_box[st[4]] ^ gfm2_s_box[st[9]] ^ gfm3_s_box[st[14]] ^ s_box[st[3]];
- dt[ 6] = s_box[st[4]] ^ s_box[st[9]] ^ gfm2_s_box[st[14]] ^ gfm3_s_box[st[3]];
- dt[ 7] = gfm3_s_box[st[4]] ^ s_box[st[9]] ^ s_box[st[14]] ^ gfm2_s_box[st[3]];
-
- dt[ 8] = gfm2_s_box[st[8]] ^ gfm3_s_box[st[13]] ^ s_box[st[2]] ^ s_box[st[7]];
- dt[ 9] = s_box[st[8]] ^ gfm2_s_box[st[13]] ^ gfm3_s_box[st[2]] ^ s_box[st[7]];
- dt[10] = s_box[st[8]] ^ s_box[st[13]] ^ gfm2_s_box[st[2]] ^ gfm3_s_box[st[7]];
- dt[11] = gfm3_s_box[st[8]] ^ s_box[st[13]] ^ s_box[st[2]] ^ gfm2_s_box[st[7]];
-
- dt[12] = gfm2_s_box[st[12]] ^ gfm3_s_box[st[1]] ^ s_box[st[6]] ^ s_box[st[11]];
- dt[13] = s_box[st[12]] ^ gfm2_s_box[st[1]] ^ gfm3_s_box[st[6]] ^ s_box[st[11]];
- dt[14] = s_box[st[12]] ^ s_box[st[1]] ^ gfm2_s_box[st[6]] ^ gfm3_s_box[st[11]];
- dt[15] = gfm3_s_box[st[12]] ^ s_box[st[1]] ^ s_box[st[6]] ^ gfm2_s_box[st[11]];
- }
-
-#if defined( VERSION_1 )
- static void inv_mix_sub_columns( uint_8t dt[N_BLOCK] )
- { uint_8t st[N_BLOCK];
- block16_copy(st, dt);
-#else
- static void inv_mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] )
- {
-#endif
- dt[ 0] = inv_s_box[gfmul_e[st[ 0]] ^ gfmul_b[st[ 1]] ^ gfmul_d[st[ 2]] ^ gfmul_9[st[ 3]]];
- dt[ 5] = inv_s_box[gfmul_9[st[ 0]] ^ gfmul_e[st[ 1]] ^ gfmul_b[st[ 2]] ^ gfmul_d[st[ 3]]];
- dt[10] = inv_s_box[gfmul_d[st[ 0]] ^ gfmul_9[st[ 1]] ^ gfmul_e[st[ 2]] ^ gfmul_b[st[ 3]]];
- dt[15] = inv_s_box[gfmul_b[st[ 0]] ^ gfmul_d[st[ 1]] ^ gfmul_9[st[ 2]] ^ gfmul_e[st[ 3]]];
-
- dt[ 4] = inv_s_box[gfmul_e[st[ 4]] ^ gfmul_b[st[ 5]] ^ gfmul_d[st[ 6]] ^ gfmul_9[st[ 7]]];
- dt[ 9] = inv_s_box[gfmul_9[st[ 4]] ^ gfmul_e[st[ 5]] ^ gfmul_b[st[ 6]] ^ gfmul_d[st[ 7]]];
- dt[14] = inv_s_box[gfmul_d[st[ 4]] ^ gfmul_9[st[ 5]] ^ gfmul_e[st[ 6]] ^ gfmul_b[st[ 7]]];
- dt[ 3] = inv_s_box[gfmul_b[st[ 4]] ^ gfmul_d[st[ 5]] ^ gfmul_9[st[ 6]] ^ gfmul_e[st[ 7]]];
-
- dt[ 8] = inv_s_box[gfmul_e[st[ 8]] ^ gfmul_b[st[ 9]] ^ gfmul_d[st[10]] ^ gfmul_9[st[11]]];
- dt[13] = inv_s_box[gfmul_9[st[ 8]] ^ gfmul_e[st[ 9]] ^ gfmul_b[st[10]] ^ gfmul_d[st[11]]];
- dt[ 2] = inv_s_box[gfmul_d[st[ 8]] ^ gfmul_9[st[ 9]] ^ gfmul_e[st[10]] ^ gfmul_b[st[11]]];
- dt[ 7] = inv_s_box[gfmul_b[st[ 8]] ^ gfmul_d[st[ 9]] ^ gfmul_9[st[10]] ^ gfmul_e[st[11]]];
-
- dt[12] = inv_s_box[gfmul_e[st[12]] ^ gfmul_b[st[13]] ^ gfmul_d[st[14]] ^ gfmul_9[st[15]]];
- dt[ 1] = inv_s_box[gfmul_9[st[12]] ^ gfmul_e[st[13]] ^ gfmul_b[st[14]] ^ gfmul_d[st[15]]];
- dt[ 6] = inv_s_box[gfmul_d[st[12]] ^ gfmul_9[st[13]] ^ gfmul_e[st[14]] ^ gfmul_b[st[15]]];
- dt[11] = inv_s_box[gfmul_b[st[12]] ^ gfmul_d[st[13]] ^ gfmul_9[st[14]] ^ gfmul_e[st[15]]];
- }
-
-#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
-
-/* Set the cipher key for the pre-keyed version */
-
-return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] )
-{
- uint_8t cc, rc, hi;
-
- switch( keylen )
- {
- case 16:
- case 128:
- keylen = 16;
- break;
- case 24:
- case 192:
- keylen = 24;
- break;
- case 32:
- case 256:
- keylen = 32;
- break;
- default:
- ctx->rnd = 0;
- return (return_type) -1;
- }
- block_copy(ctx->ksch, key, keylen);
- hi = (keylen + 28) << 2;
- ctx->rnd = (hi >> 4) - 1;
- for( cc = keylen, rc = 1; cc < hi; cc += 4 )
- { uint_8t tt, t0, t1, t2, t3;
-
- t0 = ctx->ksch[cc - 4];
- t1 = ctx->ksch[cc - 3];
- t2 = ctx->ksch[cc - 2];
- t3 = ctx->ksch[cc - 1];
- if( cc % keylen == 0 )
- {
- tt = t0;
- t0 = s_box[t1] ^ rc;
- t1 = s_box[t2];
- t2 = s_box[t3];
- t3 = s_box[tt];
- rc = f2(rc);
- }
- else if( keylen > 24 && cc % keylen == 16 )
- {
- t0 = s_box[t0];
- t1 = s_box[t1];
- t2 = s_box[t2];
- t3 = s_box[t3];
- }
- tt = cc - keylen;
- ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0;
- ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1;
- ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2;
- ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3;
- }
- return 0;
-}
-
-#endif
-
-#if defined( AES_ENC_PREKEYED )
-
-/* Encrypt a single block of 16 bytes */
-
-return_type aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] )
-{
- if( ctx->rnd )
- {
- uint_8t s1[N_BLOCK], r;
- copy_and_key( s1, in, ctx->ksch );
-
- for( r = 1 ; r < ctx->rnd ; ++r )
-#if defined( VERSION_1 )
- {
- mix_sub_columns( s1 );
- add_round_key( s1, ctx->ksch + r * N_BLOCK);
- }
-#else
- { uint_8t s2[N_BLOCK];
- mix_sub_columns( s2, s1 );
- copy_and_key( s1, s2, ctx->ksch + r * N_BLOCK);
- }
-#endif
- shift_sub_rows( s1 );
- copy_and_key( out, s1, ctx->ksch + r * N_BLOCK );
- }
- else
- return (return_type) -1;
- return 0;
-}
-
-#endif
-
-#if defined( AES_DEC_PREKEYED )
-
-/* Decrypt a single block of 16 bytes */
-
-return_type aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] )
-{
- if( ctx->rnd )
- {
- uint_8t s1[N_BLOCK], r;
- copy_and_key( s1, in, ctx->ksch + ctx->rnd * N_BLOCK );
- inv_shift_sub_rows( s1 );
-
- for( r = ctx->rnd ; --r ; )
-#if defined( VERSION_1 )
- {
- add_round_key( s1, ctx->ksch + r * N_BLOCK );
- inv_mix_sub_columns( s1 );
- }
-#else
- { uint_8t s2[N_BLOCK];
- copy_and_key( s2, s1, ctx->ksch + r * N_BLOCK );
- inv_mix_sub_columns( s1, s2 );
- }
-#endif
- copy_and_key( out, s1, ctx->ksch );
- }
- else
- return (return_type) -1;
- return 0;
-}
-
-#endif
-
-#if defined( AES_ENC_128_OTFK )
-
-/* The 'on the fly' encryption key update for for 128 bit keys */
-
-static void update_encrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc )
-{ uint_8t cc;
-
- k[0] ^= s_box[k[13]] ^ *rc;
- k[1] ^= s_box[k[14]];
- k[2] ^= s_box[k[15]];
- k[3] ^= s_box[k[12]];
- *rc = f2( *rc );
-
- for(cc = 4; cc < 16; cc += 4 )
- {
- k[cc + 0] ^= k[cc - 4];
- k[cc + 1] ^= k[cc - 3];
- k[cc + 2] ^= k[cc - 2];
- k[cc + 3] ^= k[cc - 1];
- }
-}
-
-/* Encrypt a single block of 16 bytes with 'on the fly' 128 bit keying */
-
-void aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
- const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] )
-{ uint_8t s1[N_BLOCK], r, rc = 1;
-
- if(o_key != key)
- block16_copy( o_key, key );
- copy_and_key( s1, in, o_key );
-
- for( r = 1 ; r < 10 ; ++r )
-#if defined( VERSION_1 )
- {
- mix_sub_columns( s1 );
- update_encrypt_key_128( o_key, &rc );
- add_round_key( s1, o_key );
- }
-#else
- { uint_8t s2[N_BLOCK];
- mix_sub_columns( s2, s1 );
- update_encrypt_key_128( o_key, &rc );
- copy_and_key( s1, s2, o_key );
- }
-#endif
-
- shift_sub_rows( s1 );
- update_encrypt_key_128( o_key, &rc );
- copy_and_key( out, s1, o_key );
-}
-
-#endif
-
-#if defined( AES_DEC_128_OTFK )
-
-/* The 'on the fly' decryption key update for for 128 bit keys */
-
-static void update_decrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc )
-{ uint_8t cc;
-
- for( cc = 12; cc > 0; cc -= 4 )
- {
- k[cc + 0] ^= k[cc - 4];
- k[cc + 1] ^= k[cc - 3];
- k[cc + 2] ^= k[cc - 2];
- k[cc + 3] ^= k[cc - 1];
- }
- *rc = d2(*rc);
- k[0] ^= s_box[k[13]] ^ *rc;
- k[1] ^= s_box[k[14]];
- k[2] ^= s_box[k[15]];
- k[3] ^= s_box[k[12]];
-}
-
-/* Decrypt a single block of 16 bytes with 'on the fly' 128 bit keying */
-
-void aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
- const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] )
-{
- uint_8t s1[N_BLOCK], r, rc = 0x6c;
- if(o_key != key)
- block16_copy( o_key, key );
-
- copy_and_key( s1, in, o_key );
- inv_shift_sub_rows( s1 );
-
- for( r = 10 ; --r ; )
-#if defined( VERSION_1 )
- {
- update_decrypt_key_128( o_key, &rc );
- add_round_key( s1, o_key );
- inv_mix_sub_columns( s1 );
- }
-#else
- { uint_8t s2[N_BLOCK];
- update_decrypt_key_128( o_key, &rc );
- copy_and_key( s2, s1, o_key );
- inv_mix_sub_columns( s1, s2 );
- }
-#endif
- update_decrypt_key_128( o_key, &rc );
- copy_and_key( out, s1, o_key );
-}
-
-#endif
-
-#if defined( AES_ENC_256_OTFK )
-
-/* The 'on the fly' encryption key update for for 256 bit keys */
-
-static void update_encrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc )
-{ uint_8t cc;
-
- k[0] ^= s_box[k[29]] ^ *rc;
- k[1] ^= s_box[k[30]];
- k[2] ^= s_box[k[31]];
- k[3] ^= s_box[k[28]];
- *rc = f2( *rc );
-
- for(cc = 4; cc < 16; cc += 4)
- {
- k[cc + 0] ^= k[cc - 4];
- k[cc + 1] ^= k[cc - 3];
- k[cc + 2] ^= k[cc - 2];
- k[cc + 3] ^= k[cc - 1];
- }
-
- k[16] ^= s_box[k[12]];
- k[17] ^= s_box[k[13]];
- k[18] ^= s_box[k[14]];
- k[19] ^= s_box[k[15]];
-
- for( cc = 20; cc < 32; cc += 4 )
- {
- k[cc + 0] ^= k[cc - 4];
- k[cc + 1] ^= k[cc - 3];
- k[cc + 2] ^= k[cc - 2];
- k[cc + 3] ^= k[cc - 1];
- }
-}
-
-/* Encrypt a single block of 16 bytes with 'on the fly' 256 bit keying */
-
-void aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
- const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] )
-{
- uint_8t s1[N_BLOCK], r, rc = 1;
- if(o_key != key)
- {
- block16_copy( o_key, key );
- block16_copy( o_key + 16, key + 16 );
- }
- copy_and_key( s1, in, o_key );
-
- for( r = 1 ; r < 14 ; ++r )
-#if defined( VERSION_1 )
- {
- mix_sub_columns(s1);
- if( r & 1 )
- add_round_key( s1, o_key + 16 );
- else
- {
- update_encrypt_key_256( o_key, &rc );
- add_round_key( s1, o_key );
- }
- }
-#else
- { uint_8t s2[N_BLOCK];
- mix_sub_columns( s2, s1 );
- if( r & 1 )
- copy_and_key( s1, s2, o_key + 16 );
- else
- {
- update_encrypt_key_256( o_key, &rc );
- copy_and_key( s1, s2, o_key );
- }
- }
-#endif
-
- shift_sub_rows( s1 );
- update_encrypt_key_256( o_key, &rc );
- copy_and_key( out, s1, o_key );
-}
-
-#endif
-
-#if defined( AES_DEC_256_OTFK )
-
-/* The 'on the fly' encryption key update for for 256 bit keys */
-
-static void update_decrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc )
-{ uint_8t cc;
-
- for(cc = 28; cc > 16; cc -= 4)
- {
- k[cc + 0] ^= k[cc - 4];
- k[cc + 1] ^= k[cc - 3];
- k[cc + 2] ^= k[cc - 2];
- k[cc + 3] ^= k[cc - 1];
- }
-
- k[16] ^= s_box[k[12]];
- k[17] ^= s_box[k[13]];
- k[18] ^= s_box[k[14]];
- k[19] ^= s_box[k[15]];
-
- for(cc = 12; cc > 0; cc -= 4)
- {
- k[cc + 0] ^= k[cc - 4];
- k[cc + 1] ^= k[cc - 3];
- k[cc + 2] ^= k[cc - 2];
- k[cc + 3] ^= k[cc - 1];
- }
-
- *rc = d2(*rc);
- k[0] ^= s_box[k[29]] ^ *rc;
- k[1] ^= s_box[k[30]];
- k[2] ^= s_box[k[31]];
- k[3] ^= s_box[k[28]];
-}
-
-/* Decrypt a single block of 16 bytes with 'on the fly'
- 256 bit keying
-*/
-void aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK],
- const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] )
-{
- uint_8t s1[N_BLOCK], r, rc = 0x80;
-
- if(o_key != key)
- {
- block16_copy( o_key, key );
- block16_copy( o_key + 16, key + 16 );
- }
-
- copy_and_key( s1, in, o_key );
- inv_shift_sub_rows( s1 );
-
- for( r = 14 ; --r ; )
-#if defined( VERSION_1 )
- {
- if( ( r & 1 ) )
- {
- update_decrypt_key_256( o_key, &rc );
- add_round_key( s1, o_key + 16 );
- }
- else
- add_round_key( s1, o_key );
- inv_mix_sub_columns( s1 );
- }
-#else
- { uint_8t s2[N_BLOCK];
- if( ( r & 1 ) )
- {
- update_decrypt_key_256( o_key, &rc );
- copy_and_key( s2, s1, o_key + 16 );
- }
- else
- copy_and_key( s2, s1, o_key );
- inv_mix_sub_columns( s1, s2 );
- }
-#endif
- copy_and_key( out, s1, o_key );
-}
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue 09/09/2006 + + This is an AES implementation that uses only 8-bit byte operations on the + cipher state (there are options to use 32-bit types if available). + + The combination of mix columns and byte substitution used here is based on + that developed by Karl Malbrain. His contribution is acknowledged. + */ + +/* Adapted for TrueCrypt: + - Macro-generated tables were replaced with static data to enable compiling + with MSVC++ 1.5 which runs out of resources when expanding large macros. +*/ + +#pragma optimize ("t", on) + +/* define if you have a fast memcpy function on your system */ +#if 1 +# define HAVE_MEMCPY +# include <string.h> +# if defined( _MSC_VER ) +# ifndef DEBUG +# pragma intrinsic( memcpy ) +# endif +# endif +#endif + +/* define if you have fast 32-bit types on your system */ +#if 1 +# define HAVE_UINT_32T +#endif + +/* alternative versions (test for performance on your system) */ +#if 0 +# define VERSION_1 +#endif + +#include "AesSmall.h" + +#define WPOLY 0x011b +#define DPOLY 0x008d +#define f1(x) (x) +#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY)) +#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY)) +#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \ + ^ (((x>>5) & 4) * WPOLY)) +#define d2(x) (((x) >> 1) ^ ((x) & 1 ? DPOLY : 0)) + +#define f3(x) (f2(x) ^ x) +#define f9(x) (f8(x) ^ x) +#define fb(x) (f8(x) ^ f2(x) ^ x) +#define fd(x) (f8(x) ^ f4(x) ^ x) +#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +static const uint_8t s_box[256] = { + 0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5, + 0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76, + 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0, + 0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0, + 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc, + 0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15, + 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a, + 0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75, + 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0, + 0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84, + 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b, + 0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf, + 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85, + 0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8, + 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5, + 0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2, + 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17, + 0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73, + 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88, + 0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb, + 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c, + 0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79, + 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9, + 0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08, + 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6, + 0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a, + 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e, + 0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e, + 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94, + 0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf, + 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68, + 0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16 +}; + +static const uint_8t inv_s_box[256] = { + 0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38, + 0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb, + 0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87, + 0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb, + 0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d, + 0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e, + 0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2, + 0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25, + 0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16, + 0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92, + 0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda, + 0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84, + 0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a, + 0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06, + 0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02, + 0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b, + 0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea, + 0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73, + 0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85, + 0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e, + 0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89, + 0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b, + 0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20, + 0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4, + 0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31, + 0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f, + 0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d, + 0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef, + 0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0, + 0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61, + 0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26, + 0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d +}; + +static const uint_8t gfm2_s_box[256] = { + 0xc6,0xf8,0xee,0xf6,0xff,0xd6,0xde,0x91, + 0x60,0x02,0xce,0x56,0xe7,0xb5,0x4d,0xec, + 0x8f,0x1f,0x89,0xfa,0xef,0xb2,0x8e,0xfb, + 0x41,0xb3,0x5f,0x45,0x23,0x53,0xe4,0x9b, + 0x75,0xe1,0x3d,0x4c,0x6c,0x7e,0xf5,0x83, + 0x68,0x51,0xd1,0xf9,0xe2,0xab,0x62,0x2a, + 0x08,0x95,0x46,0x9d,0x30,0x37,0x0a,0x2f, + 0x0e,0x24,0x1b,0xdf,0xcd,0x4e,0x7f,0xea, + 0x12,0x1d,0x58,0x34,0x36,0xdc,0xb4,0x5b, + 0xa4,0x76,0xb7,0x7d,0x52,0xdd,0x5e,0x13, + 0xa6,0xb9,0x00,0xc1,0x40,0xe3,0x79,0xb6, + 0xd4,0x8d,0x67,0x72,0x94,0x98,0xb0,0x85, + 0xbb,0xc5,0x4f,0xed,0x86,0x9a,0x66,0x11, + 0x8a,0xe9,0x04,0xfe,0xa0,0x78,0x25,0x4b, + 0xa2,0x5d,0x80,0x05,0x3f,0x21,0x70,0xf1, + 0x63,0x77,0xaf,0x42,0x20,0xe5,0xfd,0xbf, + 0x81,0x18,0x26,0xc3,0xbe,0x35,0x88,0x2e, + 0x93,0x55,0xfc,0x7a,0xc8,0xba,0x32,0xe6, + 0xc0,0x19,0x9e,0xa3,0x44,0x54,0x3b,0x0b, + 0x8c,0xc7,0x6b,0x28,0xa7,0xbc,0x16,0xad, + 0xdb,0x64,0x74,0x14,0x92,0x0c,0x48,0xb8, + 0x9f,0xbd,0x43,0xc4,0x39,0x31,0xd3,0xf2, + 0xd5,0x8b,0x6e,0xda,0x01,0xb1,0x9c,0x49, + 0xd8,0xac,0xf3,0xcf,0xca,0xf4,0x47,0x10, + 0x6f,0xf0,0x4a,0x5c,0x38,0x57,0x73,0x97, + 0xcb,0xa1,0xe8,0x3e,0x96,0x61,0x0d,0x0f, + 0xe0,0x7c,0x71,0xcc,0x90,0x06,0xf7,0x1c, + 0xc2,0x6a,0xae,0x69,0x17,0x99,0x3a,0x27, + 0xd9,0xeb,0x2b,0x22,0xd2,0xa9,0x07,0x33, + 0x2d,0x3c,0x15,0xc9,0x87,0xaa,0x50,0xa5, + 0x03,0x59,0x09,0x1a,0x65,0xd7,0x84,0xd0, + 0x82,0x29,0x5a,0x1e,0x7b,0xa8,0x6d,0x2c +}; + +static const uint_8t gfm3_s_box[256] = { + 0xa5,0x84,0x99,0x8d,0x0d,0xbd,0xb1,0x54, + 0x50,0x03,0xa9,0x7d,0x19,0x62,0xe6,0x9a, + 0x45,0x9d,0x40,0x87,0x15,0xeb,0xc9,0x0b, + 0xec,0x67,0xfd,0xea,0xbf,0xf7,0x96,0x5b, + 0xc2,0x1c,0xae,0x6a,0x5a,0x41,0x02,0x4f, + 0x5c,0xf4,0x34,0x08,0x93,0x73,0x53,0x3f, + 0x0c,0x52,0x65,0x5e,0x28,0xa1,0x0f,0xb5, + 0x09,0x36,0x9b,0x3d,0x26,0x69,0xcd,0x9f, + 0x1b,0x9e,0x74,0x2e,0x2d,0xb2,0xee,0xfb, + 0xf6,0x4d,0x61,0xce,0x7b,0x3e,0x71,0x97, + 0xf5,0x68,0x00,0x2c,0x60,0x1f,0xc8,0xed, + 0xbe,0x46,0xd9,0x4b,0xde,0xd4,0xe8,0x4a, + 0x6b,0x2a,0xe5,0x16,0xc5,0xd7,0x55,0x94, + 0xcf,0x10,0x06,0x81,0xf0,0x44,0xba,0xe3, + 0xf3,0xfe,0xc0,0x8a,0xad,0xbc,0x48,0x04, + 0xdf,0xc1,0x75,0x63,0x30,0x1a,0x0e,0x6d, + 0x4c,0x14,0x35,0x2f,0xe1,0xa2,0xcc,0x39, + 0x57,0xf2,0x82,0x47,0xac,0xe7,0x2b,0x95, + 0xa0,0x98,0xd1,0x7f,0x66,0x7e,0xab,0x83, + 0xca,0x29,0xd3,0x3c,0x79,0xe2,0x1d,0x76, + 0x3b,0x56,0x4e,0x1e,0xdb,0x0a,0x6c,0xe4, + 0x5d,0x6e,0xef,0xa6,0xa8,0xa4,0x37,0x8b, + 0x32,0x43,0x59,0xb7,0x8c,0x64,0xd2,0xe0, + 0xb4,0xfa,0x07,0x25,0xaf,0x8e,0xe9,0x18, + 0xd5,0x88,0x6f,0x72,0x24,0xf1,0xc7,0x51, + 0x23,0x7c,0x9c,0x21,0xdd,0xdc,0x86,0x85, + 0x90,0x42,0xc4,0xaa,0xd8,0x05,0x01,0x12, + 0xa3,0x5f,0xf9,0xd0,0x91,0x58,0x27,0xb9, + 0x38,0x13,0xb3,0x33,0xbb,0x70,0x89,0xa7, + 0xb6,0x22,0x92,0x20,0x49,0xff,0x78,0x7a, + 0x8f,0xf8,0x80,0x17,0xda,0x31,0xc6,0xb8, + 0xc3,0xb0,0x77,0x11,0xcb,0xfc,0xd6,0x3a +}; + +static const uint_8t gfmul_9[256] = { + 0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f, + 0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77, + 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf, + 0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7, + 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04, + 0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c, + 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94, + 0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc, + 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49, + 0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01, + 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9, + 0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91, + 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72, + 0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a, + 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2, + 0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa, + 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3, + 0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b, + 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43, + 0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b, + 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8, + 0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0, + 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78, + 0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30, + 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5, + 0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed, + 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35, + 0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d, + 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e, + 0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6, + 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e, + 0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46 +}; + +static const uint_8t gfmul_b[256] = { + 0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31, + 0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69, + 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81, + 0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9, + 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a, + 0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12, + 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa, + 0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2, + 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7, + 0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f, + 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77, + 0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f, + 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc, + 0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4, + 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c, + 0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54, + 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6, + 0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e, + 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76, + 0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e, + 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd, + 0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5, + 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d, + 0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55, + 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30, + 0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68, + 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80, + 0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8, + 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b, + 0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13, + 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb, + 0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3 +}; + +static const uint_8t gfmul_d[256] = { + 0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23, + 0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b, + 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3, + 0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b, + 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98, + 0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0, + 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48, + 0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20, + 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e, + 0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26, + 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e, + 0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6, + 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5, + 0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d, + 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25, + 0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d, + 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9, + 0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91, + 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29, + 0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41, + 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42, + 0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a, + 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92, + 0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa, + 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94, + 0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc, + 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44, + 0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c, + 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f, + 0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47, + 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff, + 0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97 +}; + +static const uint_8t gfmul_e[256] = { + 0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a, + 0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a, + 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca, + 0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba, + 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1, + 0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81, + 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11, + 0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61, + 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87, + 0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7, + 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67, + 0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17, + 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c, + 0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c, + 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc, + 0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc, + 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b, + 0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b, + 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b, + 0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb, + 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0, + 0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0, + 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50, + 0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20, + 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6, + 0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6, + 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26, + 0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56, + 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d, + 0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d, + 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd, + 0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d +}; + +#if defined( HAVE_UINT_32T ) + typedef unsigned long uint_32t; +#endif + +#if defined( HAVE_MEMCPY ) +# define block_copy(d, s, l) memcpy(d, s, l) +# define block16_copy(d, s) memcpy(d, s, N_BLOCK) +#else +# define block_copy(d, s, l) copy_block(d, s, l) +# define block16_copy(d, s) copy_block16(d, s) +#endif + +/* block size 'nn' must be a multiple of four */ + +static void copy_block16( void *d, const void *s ) +{ +#if defined( HAVE_UINT_32T ) + ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0]; + ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1]; + ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2]; + ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3]; +#else + ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0]; + ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1]; + ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2]; + ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3]; + ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4]; + ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5]; + ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6]; + ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7]; + ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8]; + ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9]; + ((uint_8t*)d)[10] = ((uint_8t*)s)[10]; + ((uint_8t*)d)[11] = ((uint_8t*)s)[11]; + ((uint_8t*)d)[12] = ((uint_8t*)s)[12]; + ((uint_8t*)d)[13] = ((uint_8t*)s)[13]; + ((uint_8t*)d)[14] = ((uint_8t*)s)[14]; + ((uint_8t*)d)[15] = ((uint_8t*)s)[15]; +#endif +} + +static void copy_block( void * d, void *s, uint_8t nn ) +{ + while( nn-- ) + *((uint_8t*)d)++ = *((uint_8t*)s)++; +} + +static void xor_block( void *d, const void *s ) +{ +#if defined( HAVE_UINT_32T ) + ((uint_32t*)d)[ 0] ^= ((uint_32t*)s)[ 0]; + ((uint_32t*)d)[ 1] ^= ((uint_32t*)s)[ 1]; + ((uint_32t*)d)[ 2] ^= ((uint_32t*)s)[ 2]; + ((uint_32t*)d)[ 3] ^= ((uint_32t*)s)[ 3]; +#else + ((uint_8t*)d)[ 0] ^= ((uint_8t*)s)[ 0]; + ((uint_8t*)d)[ 1] ^= ((uint_8t*)s)[ 1]; + ((uint_8t*)d)[ 2] ^= ((uint_8t*)s)[ 2]; + ((uint_8t*)d)[ 3] ^= ((uint_8t*)s)[ 3]; + ((uint_8t*)d)[ 4] ^= ((uint_8t*)s)[ 4]; + ((uint_8t*)d)[ 5] ^= ((uint_8t*)s)[ 5]; + ((uint_8t*)d)[ 6] ^= ((uint_8t*)s)[ 6]; + ((uint_8t*)d)[ 7] ^= ((uint_8t*)s)[ 7]; + ((uint_8t*)d)[ 8] ^= ((uint_8t*)s)[ 8]; + ((uint_8t*)d)[ 9] ^= ((uint_8t*)s)[ 9]; + ((uint_8t*)d)[10] ^= ((uint_8t*)s)[10]; + ((uint_8t*)d)[11] ^= ((uint_8t*)s)[11]; + ((uint_8t*)d)[12] ^= ((uint_8t*)s)[12]; + ((uint_8t*)d)[13] ^= ((uint_8t*)s)[13]; + ((uint_8t*)d)[14] ^= ((uint_8t*)s)[14]; + ((uint_8t*)d)[15] ^= ((uint_8t*)s)[15]; +#endif +} + +static void copy_and_key( void *d, const void *s, const void *k ) +{ +#if defined( HAVE_UINT_32T ) + ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0] ^ ((uint_32t*)k)[ 0]; + ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1] ^ ((uint_32t*)k)[ 1]; + ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2] ^ ((uint_32t*)k)[ 2]; + ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3] ^ ((uint_32t*)k)[ 3]; +#elif 1 + ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0] ^ ((uint_8t*)k)[ 0]; + ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1] ^ ((uint_8t*)k)[ 1]; + ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2] ^ ((uint_8t*)k)[ 2]; + ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3] ^ ((uint_8t*)k)[ 3]; + ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4] ^ ((uint_8t*)k)[ 4]; + ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5] ^ ((uint_8t*)k)[ 5]; + ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6] ^ ((uint_8t*)k)[ 6]; + ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7] ^ ((uint_8t*)k)[ 7]; + ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8] ^ ((uint_8t*)k)[ 8]; + ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9] ^ ((uint_8t*)k)[ 9]; + ((uint_8t*)d)[10] = ((uint_8t*)s)[10] ^ ((uint_8t*)k)[10]; + ((uint_8t*)d)[11] = ((uint_8t*)s)[11] ^ ((uint_8t*)k)[11]; + ((uint_8t*)d)[12] = ((uint_8t*)s)[12] ^ ((uint_8t*)k)[12]; + ((uint_8t*)d)[13] = ((uint_8t*)s)[13] ^ ((uint_8t*)k)[13]; + ((uint_8t*)d)[14] = ((uint_8t*)s)[14] ^ ((uint_8t*)k)[14]; + ((uint_8t*)d)[15] = ((uint_8t*)s)[15] ^ ((uint_8t*)k)[15]; +#else + block16_copy(d, s); + xor_block(d, k); +#endif +} + +static void add_round_key( uint_8t d[N_BLOCK], const uint_8t k[N_BLOCK] ) +{ + xor_block(d, k); +} + +static void shift_sub_rows( uint_8t st[N_BLOCK] ) +{ uint_8t tt; + + st[ 0] = s_box[st[ 0]]; st[ 4] = s_box[st[ 4]]; + st[ 8] = s_box[st[ 8]]; st[12] = s_box[st[12]]; + + tt = st[1]; st[ 1] = s_box[st[ 5]]; st[ 5] = s_box[st[ 9]]; + st[ 9] = s_box[st[13]]; st[13] = s_box[ tt ]; + + tt = st[2]; st[ 2] = s_box[st[10]]; st[10] = s_box[ tt ]; + tt = st[6]; st[ 6] = s_box[st[14]]; st[14] = s_box[ tt ]; + + tt = st[15]; st[15] = s_box[st[11]]; st[11] = s_box[st[ 7]]; + st[ 7] = s_box[st[ 3]]; st[ 3] = s_box[ tt ]; +} + +static void inv_shift_sub_rows( uint_8t st[N_BLOCK] ) +{ uint_8t tt; + + st[ 0] = inv_s_box[st[ 0]]; st[ 4] = inv_s_box[st[ 4]]; + st[ 8] = inv_s_box[st[ 8]]; st[12] = inv_s_box[st[12]]; + + tt = st[13]; st[13] = inv_s_box[st[9]]; st[ 9] = inv_s_box[st[5]]; + st[ 5] = inv_s_box[st[1]]; st[ 1] = inv_s_box[ tt ]; + + tt = st[2]; st[ 2] = inv_s_box[st[10]]; st[10] = inv_s_box[ tt ]; + tt = st[6]; st[ 6] = inv_s_box[st[14]]; st[14] = inv_s_box[ tt ]; + + tt = st[3]; st[ 3] = inv_s_box[st[ 7]]; st[ 7] = inv_s_box[st[11]]; + st[11] = inv_s_box[st[15]]; st[15] = inv_s_box[ tt ]; +} + +#if defined( VERSION_1 ) + static void mix_sub_columns( uint_8t dt[N_BLOCK] ) + { uint_8t st[N_BLOCK]; + block16_copy(st, dt); +#else + static void mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] ) + { +#endif + dt[ 0] = gfm2_s_box[st[0]] ^ gfm3_s_box[st[5]] ^ s_box[st[10]] ^ s_box[st[15]]; + dt[ 1] = s_box[st[0]] ^ gfm2_s_box[st[5]] ^ gfm3_s_box[st[10]] ^ s_box[st[15]]; + dt[ 2] = s_box[st[0]] ^ s_box[st[5]] ^ gfm2_s_box[st[10]] ^ gfm3_s_box[st[15]]; + dt[ 3] = gfm3_s_box[st[0]] ^ s_box[st[5]] ^ s_box[st[10]] ^ gfm2_s_box[st[15]]; + + dt[ 4] = gfm2_s_box[st[4]] ^ gfm3_s_box[st[9]] ^ s_box[st[14]] ^ s_box[st[3]]; + dt[ 5] = s_box[st[4]] ^ gfm2_s_box[st[9]] ^ gfm3_s_box[st[14]] ^ s_box[st[3]]; + dt[ 6] = s_box[st[4]] ^ s_box[st[9]] ^ gfm2_s_box[st[14]] ^ gfm3_s_box[st[3]]; + dt[ 7] = gfm3_s_box[st[4]] ^ s_box[st[9]] ^ s_box[st[14]] ^ gfm2_s_box[st[3]]; + + dt[ 8] = gfm2_s_box[st[8]] ^ gfm3_s_box[st[13]] ^ s_box[st[2]] ^ s_box[st[7]]; + dt[ 9] = s_box[st[8]] ^ gfm2_s_box[st[13]] ^ gfm3_s_box[st[2]] ^ s_box[st[7]]; + dt[10] = s_box[st[8]] ^ s_box[st[13]] ^ gfm2_s_box[st[2]] ^ gfm3_s_box[st[7]]; + dt[11] = gfm3_s_box[st[8]] ^ s_box[st[13]] ^ s_box[st[2]] ^ gfm2_s_box[st[7]]; + + dt[12] = gfm2_s_box[st[12]] ^ gfm3_s_box[st[1]] ^ s_box[st[6]] ^ s_box[st[11]]; + dt[13] = s_box[st[12]] ^ gfm2_s_box[st[1]] ^ gfm3_s_box[st[6]] ^ s_box[st[11]]; + dt[14] = s_box[st[12]] ^ s_box[st[1]] ^ gfm2_s_box[st[6]] ^ gfm3_s_box[st[11]]; + dt[15] = gfm3_s_box[st[12]] ^ s_box[st[1]] ^ s_box[st[6]] ^ gfm2_s_box[st[11]]; + } + +#if defined( VERSION_1 ) + static void inv_mix_sub_columns( uint_8t dt[N_BLOCK] ) + { uint_8t st[N_BLOCK]; + block16_copy(st, dt); +#else + static void inv_mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] ) + { +#endif + dt[ 0] = inv_s_box[gfmul_e[st[ 0]] ^ gfmul_b[st[ 1]] ^ gfmul_d[st[ 2]] ^ gfmul_9[st[ 3]]]; + dt[ 5] = inv_s_box[gfmul_9[st[ 0]] ^ gfmul_e[st[ 1]] ^ gfmul_b[st[ 2]] ^ gfmul_d[st[ 3]]]; + dt[10] = inv_s_box[gfmul_d[st[ 0]] ^ gfmul_9[st[ 1]] ^ gfmul_e[st[ 2]] ^ gfmul_b[st[ 3]]]; + dt[15] = inv_s_box[gfmul_b[st[ 0]] ^ gfmul_d[st[ 1]] ^ gfmul_9[st[ 2]] ^ gfmul_e[st[ 3]]]; + + dt[ 4] = inv_s_box[gfmul_e[st[ 4]] ^ gfmul_b[st[ 5]] ^ gfmul_d[st[ 6]] ^ gfmul_9[st[ 7]]]; + dt[ 9] = inv_s_box[gfmul_9[st[ 4]] ^ gfmul_e[st[ 5]] ^ gfmul_b[st[ 6]] ^ gfmul_d[st[ 7]]]; + dt[14] = inv_s_box[gfmul_d[st[ 4]] ^ gfmul_9[st[ 5]] ^ gfmul_e[st[ 6]] ^ gfmul_b[st[ 7]]]; + dt[ 3] = inv_s_box[gfmul_b[st[ 4]] ^ gfmul_d[st[ 5]] ^ gfmul_9[st[ 6]] ^ gfmul_e[st[ 7]]]; + + dt[ 8] = inv_s_box[gfmul_e[st[ 8]] ^ gfmul_b[st[ 9]] ^ gfmul_d[st[10]] ^ gfmul_9[st[11]]]; + dt[13] = inv_s_box[gfmul_9[st[ 8]] ^ gfmul_e[st[ 9]] ^ gfmul_b[st[10]] ^ gfmul_d[st[11]]]; + dt[ 2] = inv_s_box[gfmul_d[st[ 8]] ^ gfmul_9[st[ 9]] ^ gfmul_e[st[10]] ^ gfmul_b[st[11]]]; + dt[ 7] = inv_s_box[gfmul_b[st[ 8]] ^ gfmul_d[st[ 9]] ^ gfmul_9[st[10]] ^ gfmul_e[st[11]]]; + + dt[12] = inv_s_box[gfmul_e[st[12]] ^ gfmul_b[st[13]] ^ gfmul_d[st[14]] ^ gfmul_9[st[15]]]; + dt[ 1] = inv_s_box[gfmul_9[st[12]] ^ gfmul_e[st[13]] ^ gfmul_b[st[14]] ^ gfmul_d[st[15]]]; + dt[ 6] = inv_s_box[gfmul_d[st[12]] ^ gfmul_9[st[13]] ^ gfmul_e[st[14]] ^ gfmul_b[st[15]]]; + dt[11] = inv_s_box[gfmul_b[st[12]] ^ gfmul_d[st[13]] ^ gfmul_9[st[14]] ^ gfmul_e[st[15]]]; + } + +#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED ) + +/* Set the cipher key for the pre-keyed version */ + +return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] ) +{ + uint_8t cc, rc, hi; + + switch( keylen ) + { + case 16: + case 128: + keylen = 16; + break; + case 24: + case 192: + keylen = 24; + break; + case 32: + case 256: + keylen = 32; + break; + default: + ctx->rnd = 0; + return (return_type) -1; + } + block_copy(ctx->ksch, key, keylen); + hi = (keylen + 28) << 2; + ctx->rnd = (hi >> 4) - 1; + for( cc = keylen, rc = 1; cc < hi; cc += 4 ) + { uint_8t tt, t0, t1, t2, t3; + + t0 = ctx->ksch[cc - 4]; + t1 = ctx->ksch[cc - 3]; + t2 = ctx->ksch[cc - 2]; + t3 = ctx->ksch[cc - 1]; + if( cc % keylen == 0 ) + { + tt = t0; + t0 = s_box[t1] ^ rc; + t1 = s_box[t2]; + t2 = s_box[t3]; + t3 = s_box[tt]; + rc = f2(rc); + } + else if( keylen > 24 && cc % keylen == 16 ) + { + t0 = s_box[t0]; + t1 = s_box[t1]; + t2 = s_box[t2]; + t3 = s_box[t3]; + } + tt = cc - keylen; + ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0; + ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1; + ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2; + ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3; + } + return 0; +} + +#endif + +#if defined( AES_ENC_PREKEYED ) + +/* Encrypt a single block of 16 bytes */ + +return_type aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ) +{ + if( ctx->rnd ) + { + uint_8t s1[N_BLOCK], r; + copy_and_key( s1, in, ctx->ksch ); + + for( r = 1 ; r < ctx->rnd ; ++r ) +#if defined( VERSION_1 ) + { + mix_sub_columns( s1 ); + add_round_key( s1, ctx->ksch + r * N_BLOCK); + } +#else + { uint_8t s2[N_BLOCK]; + mix_sub_columns( s2, s1 ); + copy_and_key( s1, s2, ctx->ksch + r * N_BLOCK); + } +#endif + shift_sub_rows( s1 ); + copy_and_key( out, s1, ctx->ksch + r * N_BLOCK ); + } + else + return (return_type) -1; + return 0; +} + +#endif + +#if defined( AES_DEC_PREKEYED ) + +/* Decrypt a single block of 16 bytes */ + +return_type aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ) +{ + if( ctx->rnd ) + { + uint_8t s1[N_BLOCK], r; + copy_and_key( s1, in, ctx->ksch + ctx->rnd * N_BLOCK ); + inv_shift_sub_rows( s1 ); + + for( r = ctx->rnd ; --r ; ) +#if defined( VERSION_1 ) + { + add_round_key( s1, ctx->ksch + r * N_BLOCK ); + inv_mix_sub_columns( s1 ); + } +#else + { uint_8t s2[N_BLOCK]; + copy_and_key( s2, s1, ctx->ksch + r * N_BLOCK ); + inv_mix_sub_columns( s1, s2 ); + } +#endif + copy_and_key( out, s1, ctx->ksch ); + } + else + return (return_type) -1; + return 0; +} + +#endif + +#if defined( AES_ENC_128_OTFK ) + +/* The 'on the fly' encryption key update for for 128 bit keys */ + +static void update_encrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc ) +{ uint_8t cc; + + k[0] ^= s_box[k[13]] ^ *rc; + k[1] ^= s_box[k[14]]; + k[2] ^= s_box[k[15]]; + k[3] ^= s_box[k[12]]; + *rc = f2( *rc ); + + for(cc = 4; cc < 16; cc += 4 ) + { + k[cc + 0] ^= k[cc - 4]; + k[cc + 1] ^= k[cc - 3]; + k[cc + 2] ^= k[cc - 2]; + k[cc + 3] ^= k[cc - 1]; + } +} + +/* Encrypt a single block of 16 bytes with 'on the fly' 128 bit keying */ + +void aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], + const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ) +{ uint_8t s1[N_BLOCK], r, rc = 1; + + if(o_key != key) + block16_copy( o_key, key ); + copy_and_key( s1, in, o_key ); + + for( r = 1 ; r < 10 ; ++r ) +#if defined( VERSION_1 ) + { + mix_sub_columns( s1 ); + update_encrypt_key_128( o_key, &rc ); + add_round_key( s1, o_key ); + } +#else + { uint_8t s2[N_BLOCK]; + mix_sub_columns( s2, s1 ); + update_encrypt_key_128( o_key, &rc ); + copy_and_key( s1, s2, o_key ); + } +#endif + + shift_sub_rows( s1 ); + update_encrypt_key_128( o_key, &rc ); + copy_and_key( out, s1, o_key ); +} + +#endif + +#if defined( AES_DEC_128_OTFK ) + +/* The 'on the fly' decryption key update for for 128 bit keys */ + +static void update_decrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc ) +{ uint_8t cc; + + for( cc = 12; cc > 0; cc -= 4 ) + { + k[cc + 0] ^= k[cc - 4]; + k[cc + 1] ^= k[cc - 3]; + k[cc + 2] ^= k[cc - 2]; + k[cc + 3] ^= k[cc - 1]; + } + *rc = d2(*rc); + k[0] ^= s_box[k[13]] ^ *rc; + k[1] ^= s_box[k[14]]; + k[2] ^= s_box[k[15]]; + k[3] ^= s_box[k[12]]; +} + +/* Decrypt a single block of 16 bytes with 'on the fly' 128 bit keying */ + +void aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], + const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ) +{ + uint_8t s1[N_BLOCK], r, rc = 0x6c; + if(o_key != key) + block16_copy( o_key, key ); + + copy_and_key( s1, in, o_key ); + inv_shift_sub_rows( s1 ); + + for( r = 10 ; --r ; ) +#if defined( VERSION_1 ) + { + update_decrypt_key_128( o_key, &rc ); + add_round_key( s1, o_key ); + inv_mix_sub_columns( s1 ); + } +#else + { uint_8t s2[N_BLOCK]; + update_decrypt_key_128( o_key, &rc ); + copy_and_key( s2, s1, o_key ); + inv_mix_sub_columns( s1, s2 ); + } +#endif + update_decrypt_key_128( o_key, &rc ); + copy_and_key( out, s1, o_key ); +} + +#endif + +#if defined( AES_ENC_256_OTFK ) + +/* The 'on the fly' encryption key update for for 256 bit keys */ + +static void update_encrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc ) +{ uint_8t cc; + + k[0] ^= s_box[k[29]] ^ *rc; + k[1] ^= s_box[k[30]]; + k[2] ^= s_box[k[31]]; + k[3] ^= s_box[k[28]]; + *rc = f2( *rc ); + + for(cc = 4; cc < 16; cc += 4) + { + k[cc + 0] ^= k[cc - 4]; + k[cc + 1] ^= k[cc - 3]; + k[cc + 2] ^= k[cc - 2]; + k[cc + 3] ^= k[cc - 1]; + } + + k[16] ^= s_box[k[12]]; + k[17] ^= s_box[k[13]]; + k[18] ^= s_box[k[14]]; + k[19] ^= s_box[k[15]]; + + for( cc = 20; cc < 32; cc += 4 ) + { + k[cc + 0] ^= k[cc - 4]; + k[cc + 1] ^= k[cc - 3]; + k[cc + 2] ^= k[cc - 2]; + k[cc + 3] ^= k[cc - 1]; + } +} + +/* Encrypt a single block of 16 bytes with 'on the fly' 256 bit keying */ + +void aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], + const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ) +{ + uint_8t s1[N_BLOCK], r, rc = 1; + if(o_key != key) + { + block16_copy( o_key, key ); + block16_copy( o_key + 16, key + 16 ); + } + copy_and_key( s1, in, o_key ); + + for( r = 1 ; r < 14 ; ++r ) +#if defined( VERSION_1 ) + { + mix_sub_columns(s1); + if( r & 1 ) + add_round_key( s1, o_key + 16 ); + else + { + update_encrypt_key_256( o_key, &rc ); + add_round_key( s1, o_key ); + } + } +#else + { uint_8t s2[N_BLOCK]; + mix_sub_columns( s2, s1 ); + if( r & 1 ) + copy_and_key( s1, s2, o_key + 16 ); + else + { + update_encrypt_key_256( o_key, &rc ); + copy_and_key( s1, s2, o_key ); + } + } +#endif + + shift_sub_rows( s1 ); + update_encrypt_key_256( o_key, &rc ); + copy_and_key( out, s1, o_key ); +} + +#endif + +#if defined( AES_DEC_256_OTFK ) + +/* The 'on the fly' encryption key update for for 256 bit keys */ + +static void update_decrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc ) +{ uint_8t cc; + + for(cc = 28; cc > 16; cc -= 4) + { + k[cc + 0] ^= k[cc - 4]; + k[cc + 1] ^= k[cc - 3]; + k[cc + 2] ^= k[cc - 2]; + k[cc + 3] ^= k[cc - 1]; + } + + k[16] ^= s_box[k[12]]; + k[17] ^= s_box[k[13]]; + k[18] ^= s_box[k[14]]; + k[19] ^= s_box[k[15]]; + + for(cc = 12; cc > 0; cc -= 4) + { + k[cc + 0] ^= k[cc - 4]; + k[cc + 1] ^= k[cc - 3]; + k[cc + 2] ^= k[cc - 2]; + k[cc + 3] ^= k[cc - 1]; + } + + *rc = d2(*rc); + k[0] ^= s_box[k[29]] ^ *rc; + k[1] ^= s_box[k[30]]; + k[2] ^= s_box[k[31]]; + k[3] ^= s_box[k[28]]; +} + +/* Decrypt a single block of 16 bytes with 'on the fly' + 256 bit keying +*/ +void aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], + const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ) +{ + uint_8t s1[N_BLOCK], r, rc = 0x80; + + if(o_key != key) + { + block16_copy( o_key, key ); + block16_copy( o_key + 16, key + 16 ); + } + + copy_and_key( s1, in, o_key ); + inv_shift_sub_rows( s1 ); + + for( r = 14 ; --r ; ) +#if defined( VERSION_1 ) + { + if( ( r & 1 ) ) + { + update_decrypt_key_256( o_key, &rc ); + add_round_key( s1, o_key + 16 ); + } + else + add_round_key( s1, o_key ); + inv_mix_sub_columns( s1 ); + } +#else + { uint_8t s2[N_BLOCK]; + if( ( r & 1 ) ) + { + update_decrypt_key_256( o_key, &rc ); + copy_and_key( s2, s1, o_key + 16 ); + } + else + copy_and_key( s2, s1, o_key ); + inv_mix_sub_columns( s1, s2 ); + } +#endif + copy_and_key( out, s1, o_key ); +} + +#endif diff --git a/src/Crypto/AesSmall.h b/src/Crypto/AesSmall.h index 516c6964..ebeb24ef 100644 --- a/src/Crypto/AesSmall.h +++ b/src/Crypto/AesSmall.h @@ -1,169 +1,169 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software in both source and binary
- form is allowed (with or without changes) provided that:
-
- 1. distributions of this source code include the above copyright
- notice, this list of conditions and the following disclaimer;
-
- 2. distributions in binary form include the above copyright
- notice, this list of conditions and the following disclaimer
- in the documentation and/or other associated materials;
-
- 3. the copyright holder's name is not used to endorse products
- built using this software without specific written permission.
-
- ALTERNATIVELY, provided that this notice is retained in full, this product
- may be distributed under the terms of the GNU General Public License (GPL),
- in which case the provisions of the GPL apply INSTEAD OF those given above.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue 09/09/2006
-
- This is an AES implementation that uses only 8-bit byte operations on the
- cipher state.
- */
-
-#ifndef AES_H
-#define AES_H
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/* This provides speed optimisation opportunities if 32-bit word
- operations are available
-*/
-#if 1
-# define HAVE_UINT_32T
-#endif
-
-#if 1
-# define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */
-#endif
-#if 1
-# define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */
-#endif
-#if 0
-# define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */
-#endif
-#if 0
-# define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */
-#endif
-#if 0
-# define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */
-#endif
-#if 0
-# define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */
-#endif
-
-#define N_ROW 4
-#define N_COL 4
-#define N_BLOCK (N_ROW * N_COL)
-#define N_MAX_ROUNDS 14
-
-typedef unsigned char uint_8t;
-
-typedef uint_8t return_type;
-typedef uint_8t length_type;
-typedef uint_8t uint_type;
-
-typedef unsigned char uint_8t;
-
-typedef struct
-{ uint_8t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK];
- uint_8t rnd;
-} aes_context;
-
-/* The following calls are for a precomputed key schedule
-
- NOTE: If the length_type used for the key length is an
- unsigned 8-bit character, a key length of 256 bits must
- be entered as a length in bytes (valid inputs are hence
- 128, 192, 16, 24 and 32).
-*/
-
-#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED )
-
-return_type aes_set_key( const unsigned char key[],
- length_type keylen,
- aes_context ctx[1] );
-#endif
-
-#if defined( AES_ENC_PREKEYED )
-
-return_type aes_encrypt( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const aes_context ctx[1] );
-#endif
-
-#if defined( AES_DEC_PREKEYED )
-
-return_type aes_decrypt( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const aes_context ctx[1] );
-#endif
-
-/* The following calls are for 'on the fly' keying. In this case the
- encryption and decryption keys are different.
-
- The encryption subroutines take a key in an array of bytes in
- key[L] where L is 16, 24 or 32 bytes for key lengths of 128,
- 192, and 256 bits respectively. They then encrypts the input
- data, in[] with this key and put the reult in the output array
- out[]. In addition, the second key array, o_key[L], is used
- to output the key that is needed by the decryption subroutine
- to reverse the encryption operation. The two key arrays can
- be the same array but in this case the original key will be
- overwritten.
-
- In the same way, the decryption subroutines output keys that
- can be used to reverse their effect when used for encryption.
-
- Only 128 and 256 bit keys are supported in these 'on the fly'
- modes.
-*/
-
-#if defined( AES_ENC_128_OTFK )
-void aes_encrypt_128( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[N_BLOCK],
- uint_8t o_key[N_BLOCK] );
-#endif
-
-#if defined( AES_DEC_128_OTFK )
-void aes_decrypt_128( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[N_BLOCK],
- unsigned char o_key[N_BLOCK] );
-#endif
-
-#if defined( AES_ENC_256_OTFK )
-void aes_encrypt_256( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[2 * N_BLOCK],
- unsigned char o_key[2 * N_BLOCK] );
-#endif
-
-#if defined( AES_DEC_256_OTFK )
-void aes_decrypt_256( const unsigned char in[N_BLOCK],
- unsigned char out[N_BLOCK],
- const unsigned char key[2 * N_BLOCK],
- unsigned char o_key[2 * N_BLOCK] );
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2006, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software in both source and binary + form is allowed (with or without changes) provided that: + + 1. distributions of this source code include the above copyright + notice, this list of conditions and the following disclaimer; + + 2. distributions in binary form include the above copyright + notice, this list of conditions and the following disclaimer + in the documentation and/or other associated materials; + + 3. the copyright holder's name is not used to endorse products + built using this software without specific written permission. + + ALTERNATIVELY, provided that this notice is retained in full, this product + may be distributed under the terms of the GNU General Public License (GPL), + in which case the provisions of the GPL apply INSTEAD OF those given above. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue 09/09/2006 + + This is an AES implementation that uses only 8-bit byte operations on the + cipher state. + */ + +#ifndef AES_H +#define AES_H + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* This provides speed optimisation opportunities if 32-bit word + operations are available +*/ +#if 1 +# define HAVE_UINT_32T +#endif + +#if 1 +# define AES_ENC_PREKEYED /* AES encryption with a precomputed key schedule */ +#endif +#if 1 +# define AES_DEC_PREKEYED /* AES decryption with a precomputed key schedule */ +#endif +#if 0 +# define AES_ENC_128_OTFK /* AES encryption with 'on the fly' 128 bit keying */ +#endif +#if 0 +# define AES_DEC_128_OTFK /* AES decryption with 'on the fly' 128 bit keying */ +#endif +#if 0 +# define AES_ENC_256_OTFK /* AES encryption with 'on the fly' 256 bit keying */ +#endif +#if 0 +# define AES_DEC_256_OTFK /* AES decryption with 'on the fly' 256 bit keying */ +#endif + +#define N_ROW 4 +#define N_COL 4 +#define N_BLOCK (N_ROW * N_COL) +#define N_MAX_ROUNDS 14 + +typedef unsigned char uint_8t; + +typedef uint_8t return_type; +typedef uint_8t length_type; +typedef uint_8t uint_type; + +typedef unsigned char uint_8t; + +typedef struct +{ uint_8t ksch[(N_MAX_ROUNDS + 1) * N_BLOCK]; + uint_8t rnd; +} aes_context; + +/* The following calls are for a precomputed key schedule + + NOTE: If the length_type used for the key length is an + unsigned 8-bit character, a key length of 256 bits must + be entered as a length in bytes (valid inputs are hence + 128, 192, 16, 24 and 32). +*/ + +#if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED ) + +return_type aes_set_key( const unsigned char key[], + length_type keylen, + aes_context ctx[1] ); +#endif + +#if defined( AES_ENC_PREKEYED ) + +return_type aes_encrypt( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const aes_context ctx[1] ); +#endif + +#if defined( AES_DEC_PREKEYED ) + +return_type aes_decrypt( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const aes_context ctx[1] ); +#endif + +/* The following calls are for 'on the fly' keying. In this case the + encryption and decryption keys are different. + + The encryption subroutines take a key in an array of bytes in + key[L] where L is 16, 24 or 32 bytes for key lengths of 128, + 192, and 256 bits respectively. They then encrypts the input + data, in[] with this key and put the reult in the output array + out[]. In addition, the second key array, o_key[L], is used + to output the key that is needed by the decryption subroutine + to reverse the encryption operation. The two key arrays can + be the same array but in this case the original key will be + overwritten. + + In the same way, the decryption subroutines output keys that + can be used to reverse their effect when used for encryption. + + Only 128 and 256 bit keys are supported in these 'on the fly' + modes. +*/ + +#if defined( AES_ENC_128_OTFK ) +void aes_encrypt_128( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[N_BLOCK], + uint_8t o_key[N_BLOCK] ); +#endif + +#if defined( AES_DEC_128_OTFK ) +void aes_decrypt_128( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[N_BLOCK], + unsigned char o_key[N_BLOCK] ); +#endif + +#if defined( AES_ENC_256_OTFK ) +void aes_encrypt_256( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[2 * N_BLOCK], + unsigned char o_key[2 * N_BLOCK] ); +#endif + +#if defined( AES_DEC_256_OTFK ) +void aes_decrypt_256( const unsigned char in[N_BLOCK], + unsigned char out[N_BLOCK], + const unsigned char key[2 * N_BLOCK], + unsigned char o_key[2 * N_BLOCK] ); +#endif + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/Crypto/AesSmall_x86.asm b/src/Crypto/AesSmall_x86.asm index fe7dc47b..de32fc66 100644 --- a/src/Crypto/AesSmall_x86.asm +++ b/src/Crypto/AesSmall_x86.asm @@ -1,1444 +1,1444 @@ -
-; ---------------------------------------------------------------------------
-; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-;
-; LICENSE TERMS
-;
-; The free distribution and use of this software is allowed (with or without
-; changes) provided that:
-;
-; 1. source code distributions include the above copyright notice, this
-; list of conditions and the following disclaimer;
-;
-; 2. binary distributions include the above copyright notice, this list
-; of conditions and the following disclaimer in their documentation;
-;
-; 3. the name of the copyright holder is not used to endorse products
-; built using this software without specific written permission.
-;
-; DISCLAIMER
-;
-; This software is provided 'as is' with no explicit or implied warranties
-; in respect of its properties, including, but not limited to, correctness
-; and/or fitness for purpose.
-; ---------------------------------------------------------------------------
-; Issue 20/12/2007
-;
-; This code requires either ASM_X86_V2 or ASM_X86_V2C to be set in aesopt.h
-; and the same define to be set here as well. If AES_V2C is set this file
-; requires the C files aeskey.c and aestab.c for support.
-
-; An AES implementation for x86 processors using the YASM (or NASM) assembler.
-; This is a full assembler implementation covering encryption, decryption and
-; key scheduling. It uses 2k bytes of tables but its encryption and decryption
-; performance is very close to that obtained using large tables. Key schedule
-; expansion is slower for both encryption and decryption but this is likely to
-; be offset by the much smaller load that this version places on the processor
-; cache. I acknowledge the contribution made by Daniel Bernstein to aspects of
-; the design of the AES round function used here.
-;
-; This code provides the standard AES block size (128 bits, 16 bytes) and the
-; three standard AES key sizes (128, 192 and 256 bits). It has the same call
-; interface as my C implementation. The ebx, esi, edi and ebp registers are
-; preserved across calls but eax, ecx and edx and the artihmetic status flags
-; are not. Although this is a full assembler implementation, it can be used
-; in conjunction with my C code which provides faster key scheduling using
-; large tables. In this case aeskey.c should be compiled with ASM_X86_V2C
-; defined. It is also important that the defines below match those used in the
-; C code. This code uses the VC++ register saving conentions; if it is used
-; with another compiler, conventions for using and saving registers may need
-; to be checked (and calling conventions). The YASM command line for the VC++
-; custom build step is:
-;
-; yasm -Xvc -f win32 -D <Z> -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
-;
-; For the cryptlib build this is (pcg):
-;
-; yasm -Xvc -f win32 -D ASM_X86_V2C -o aescrypt2.obj aes_x86_v2.asm
-;
-; where <Z> is ASM_X86_V2 or ASM_X86_V2C. The calling intefaces are:
-;
-; AES_RETURN aes_encrypt(const unsigned char in_blk[],
-; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt(const unsigned char in_blk[],
-; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
-; const aes_encrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
-; const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_encrypt_key(const unsigned char key[],
-; unsigned int len, const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt_key(const unsigned char key[],
-; unsigned int len, const aes_decrypt_ctx cx[1]);
-;
-; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
-; either bits or bytes.
-
-; The DLL interface must use the _stdcall convention in which the number
-; of bytes of parameter space is added after an @ to the sutine's name.
-; We must also remove our parameters from the stack before return (see
-; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
-
-;
-; Adapted for TrueCrypt:
-; - All tables generated at run-time
-; - Adapted for 16-bit environment
-;
-
-CPU 386
-USE16
-SEGMENT _TEXT PUBLIC CLASS=CODE USE16
-SEGMENT _DATA PUBLIC CLASS=DATA USE16
-
-GROUP DGROUP _TEXT _DATA
-
-extern _aes_dec_tab ; Aestab.c
-extern _aes_enc_tab
-
-; %define DLL_EXPORT
-
-; The size of the code can be reduced by using functions for the encryption
-; and decryption rounds in place of macro expansion
-
-%define REDUCE_CODE_SIZE
-
-; Comment in/out the following lines to obtain the desired subroutines. These
-; selections MUST match those in the C header file aes.h
-
-; %define AES_128 ; define if AES with 128 bit keys is needed
-; %define AES_192 ; define if AES with 192 bit keys is needed
-%define AES_256 ; define if AES with 256 bit keys is needed
-; %define AES_VAR ; define if a variable key size is needed
-%define ENCRYPTION ; define if encryption is needed
-%define DECRYPTION ; define if decryption is needed
-; %define AES_REV_DKS ; define if key decryption schedule is reversed
-
-%ifndef ASM_X86_V2C
-%define ENCRYPTION_KEY_SCHEDULE ; define if encryption key expansion is needed
-%define DECRYPTION_KEY_SCHEDULE ; define if decryption key expansion is needed
-%endif
-
-; The encryption key schedule has the following in memory layout where N is the
-; number of rounds (10, 12 or 14):
-;
-; lo: | input key (round 0) | ; each round is four 32-bit words
-; | encryption round 1 |
-; | encryption round 2 |
-; ....
-; | encryption round N-1 |
-; hi: | encryption round N |
-;
-; The decryption key schedule is normally set up so that it has the same
-; layout as above by actually reversing the order of the encryption key
-; schedule in memory (this happens when AES_REV_DKS is set):
-;
-; lo: | decryption round 0 | = | encryption round N |
-; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
-; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
-; .... ....
-; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
-; hi: | decryption round N | = | input key (round 0) |
-;
-; with rounds except the first and last modified using inv_mix_column()
-; But if AES_REV_DKS is NOT set the order of keys is left as it is for
-; encryption so that it has to be accessed in reverse when used for
-; decryption (although the inverse mix column modifications are done)
-;
-; lo: | decryption round 0 | = | input key (round 0) |
-; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
-; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
-; .... ....
-; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
-; hi: | decryption round N | = | encryption round N |
-;
-; This layout is faster when the assembler key scheduling provided here
-; is used.
-;
-; End of user defines
-
-%ifdef AES_VAR
-%ifndef AES_128
-%define AES_128
-%endif
-%ifndef AES_192
-%define AES_192
-%endif
-%ifndef AES_256
-%define AES_256
-%endif
-%endif
-
-%ifdef AES_VAR
-%define KS_LENGTH 60
-%elifdef AES_256
-%define KS_LENGTH 60
-%elifdef AES_192
-%define KS_LENGTH 52
-%else
-%define KS_LENGTH 44
-%endif
-
-; These macros implement stack based local variables
-
-%macro save 2
- mov [esp+4*%1],%2
-%endmacro
-
-%macro restore 2
- mov %1,[esp+4*%2]
-%endmacro
-
-%ifdef REDUCE_CODE_SIZE
- %macro mf_call 1
- call %1
- %endmacro
-%else
- %macro mf_call 1
- %1
- %endmacro
-%endif
-
-; the DLL has to implement the _stdcall calling interface on return
-; In this case we have to take our parameters (3 4-byte pointers)
-; off the stack
-
-%define parms 12
-
-%macro do_name 1-2 parms
-%ifndef DLL_EXPORT
- global %1
-%1:
-%else
- global %1@%2
- export %1@%2
-%1@%2:
-%endif
-%endmacro
-
-%macro do_call 1-2 parms
-%ifndef DLL_EXPORT
- call %1
- add esp,%2
-%else
- call %1@%2
-%endif
-%endmacro
-
-%macro do_exit 0-1 parms
-%ifdef DLL_EXPORT
- ret %1
-%else
- ret
-%endif
-%endmacro
-
-; finite field multiplies by {02}, {04} and {08}
-
-%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b))
-%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
-%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))
-
-; finite field multiplies required in table generation
-
-%define f3(x) (f2(x) ^ x)
-%define f9(x) (f8(x) ^ x)
-%define fb(x) (f8(x) ^ f2(x) ^ x)
-%define fd(x) (f8(x) ^ f4(x) ^ x)
-%define fe(x) (f8(x) ^ f4(x) ^ f2(x))
-
-%define etab_0(x) [_aes_enc_tab+4+8*x]
-%define etab_1(x) [_aes_enc_tab+3+8*x]
-%define etab_2(x) [_aes_enc_tab+2+8*x]
-%define etab_3(x) [_aes_enc_tab+1+8*x]
-%define etab_b(x) byte [_aes_enc_tab+1+8*x] ; used with movzx for 0x000000xx
-%define etab_w(x) word [_aes_enc_tab+8*x] ; used with movzx for 0x0000xx00
-
-%define btab_0(x) [_aes_enc_tab+6+8*x]
-%define btab_1(x) [_aes_enc_tab+5+8*x]
-%define btab_2(x) [_aes_enc_tab+4+8*x]
-%define btab_3(x) [_aes_enc_tab+3+8*x]
-
-; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
-; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
-;
-; Input:
-;
-; EAX column[0]
-; EBX column[1]
-; ECX column[2]
-; EDX column[3]
-; ESI column key[round][2]
-; EDI column key[round][3]
-; EBP scratch
-;
-; Output:
-;
-; EBP column[0] unkeyed
-; EBX column[1] unkeyed
-; ESI column[2] keyed
-; EDI column[3] keyed
-; EAX scratch
-; ECX scratch
-; EDX scratch
-
-%macro rnd_fun 2
-
- rol ebx,16
- %1 esi, cl, 0, ebp
- %1 esi, dh, 1, ebp
- %1 esi, bh, 3, ebp
- %1 edi, dl, 0, ebp
- %1 edi, ah, 1, ebp
- %1 edi, bl, 2, ebp
- %2 ebp, al, 0, ebp
- shr ebx,16
- and eax,0xffff0000
- or eax,ebx
- shr edx,16
- %1 ebp, ah, 1, ebx
- %1 ebp, dh, 3, ebx
- %2 ebx, dl, 2, ebx
- %1 ebx, ch, 1, edx
- %1 ebx, al, 0, edx
- shr eax,16
- shr ecx,16
- %1 ebp, cl, 2, edx
- %1 edi, ch, 3, edx
- %1 esi, al, 2, edx
- %1 ebx, ah, 3, edx
-
-%endmacro
-
-; Basic MOV and XOR Operations for normal rounds
-
-%macro nr_xor 4
- movzx %4,%2
- xor %1,etab_%3(%4)
-%endmacro
-
-%macro nr_mov 4
- movzx %4,%2
- mov %1,etab_%3(%4)
-%endmacro
-
-; Basic MOV and XOR Operations for last round
-
-%if 1
-
- %macro lr_xor 4
- movzx %4,%2
- movzx %4,etab_b(%4)
- %if %3 != 0
- shl %4,8*%3
- %endif
- xor %1,%4
- %endmacro
-
- %macro lr_mov 4
- movzx %4,%2
- movzx %1,etab_b(%4)
- %if %3 != 0
- shl %1,8*%3
- %endif
- %endmacro
-
-%else ; less effective but worth leaving as an option
-
- %macro lr_xor 4
- movzx %4,%2
- mov %4,btab_%3(%4)
- and %4,0x000000ff << 8 * %3
- xor %1,%4
- %endmacro
-
- %macro lr_mov 4
- movzx %4,%2
- mov %1,btab_%3(%4)
- and %1,0x000000ff << 8 * %3
- %endmacro
-
-%endif
-
-; Apply S-Box to the 4 bytes in a 32-bit word and rotate byte positions
-
-%ifdef REDUCE_CODE_SIZE
-
-l3s_col:
- movzx ecx,al ; in eax
- movzx ecx, etab_b(ecx) ; out eax
- xor edx,ecx ; scratch ecx,edx
- movzx ecx,ah
- movzx ecx, etab_b(ecx)
- shl ecx,8
- xor edx,ecx
- shr eax,16
- movzx ecx,al
- movzx ecx, etab_b(ecx)
- shl ecx,16
- xor edx,ecx
- movzx ecx,ah
- movzx ecx, etab_b(ecx)
- shl ecx,24
- xor edx,ecx
- mov eax,edx
- ret
-
-%else
-
-%macro l3s_col 0
-
- movzx ecx,al ; in eax
- movzx ecx, etab_b(ecx) ; out eax
- xor edx,ecx ; scratch ecx,edx
- movzx ecx,ah
- movzx ecx, etab_b(ecx)
- shl ecx,8
- xor edx,ecx
- shr eax,16
- movzx ecx,al
- movzx ecx, etab_b(ecx)
- shl ecx,16
- xor edx,ecx
- movzx ecx,ah
- movzx ecx, etab_b(ecx)
- shl ecx,24
- xor edx,ecx
- mov eax,edx
-
-%endmacro
-
-%endif
-
-; offsets to parameters
-
-in_blk equ 2 ; input byte array address parameter
-out_blk equ 4 ; output byte array address parameter
-ctx equ 6 ; AES context structure
-stk_spc equ 20 ; stack space
-
-%ifdef ENCRYPTION
-
-; %define ENCRYPTION_TABLE
-
-%ifdef REDUCE_CODE_SIZE
-
-enc_round:
- sub sp, 2
- add ebp,16
- save 1,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- rnd_fun nr_xor, nr_mov
-
- mov eax,ebp
- mov ecx,esi
- mov edx,edi
- restore ebp,1
- xor eax,[ebp]
- xor ebx,[ebp+4]
- add sp, 2
- ret
-
-%else
-
-%macro enc_round 0
-
- add ebp,16
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- rnd_fun nr_xor, nr_mov
-
- mov eax,ebp
- mov ecx,esi
- mov edx,edi
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
-%endif
-
-%macro enc_last_round 0
-
- add ebp,16
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- rnd_fun lr_xor, lr_mov
-
- mov eax,ebp
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
- section _TEXT
-
-; AES Encryption Subroutine
-
- do_name _aes_encrypt,12
-
- mov ax, sp
- movzx esp, ax
-
- sub esp,stk_spc
- mov [esp+16],ebp
- mov [esp+12],ebx
- mov [esp+ 8],esi
- mov [esp+ 4],edi
-
- movzx esi,word [esp+in_blk+stk_spc] ; input pointer
- mov eax,[esi ]
- mov ebx,[esi+ 4]
- mov ecx,[esi+ 8]
- mov edx,[esi+12]
-
- movzx ebp,word [esp+ctx+stk_spc] ; key pointer
- movzx edi,byte [ebp+4*KS_LENGTH]
- xor eax,[ebp ]
- xor ebx,[ebp+ 4]
- xor ecx,[ebp+ 8]
- xor edx,[ebp+12]
-
-; determine the number of rounds
-
-%ifndef AES_256
- cmp edi,10*16
- je .3
- cmp edi,12*16
- je .2
- cmp edi,14*16
- je .1
- mov eax,-1
- jmp .5
-%endif
-
-.1: mf_call enc_round
- mf_call enc_round
-.2: mf_call enc_round
- mf_call enc_round
-.3: mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- mf_call enc_round
- enc_last_round
-
- movzx edx,word [esp+out_blk+stk_spc]
- mov [edx],eax
- mov [edx+4],ebx
- mov [edx+8],esi
- mov [edx+12],edi
- xor eax,eax
-
-.5: mov ebp,[esp+16]
- mov ebx,[esp+12]
- mov esi,[esp+ 8]
- mov edi,[esp+ 4]
- add esp,stk_spc
- do_exit 12
-
-%endif
-
-%macro f_key 2
-
- push ecx
- push edx
- mov edx,esi
- ror eax,8
- mf_call l3s_col
- mov esi,eax
- pop edx
- pop ecx
- xor esi,rc_val
-
- mov [ebp+%1*%2],esi
- xor edi,esi
- mov [ebp+%1*%2+4],edi
- xor ecx,edi
- mov [ebp+%1*%2+8],ecx
- xor edx,ecx
- mov [ebp+%1*%2+12],edx
- mov eax,edx
-
-%if %2 == 24
-
-%if %1 < 7
- xor eax,[ebp+%1*%2+16-%2]
- mov [ebp+%1*%2+16],eax
- xor eax,[ebp+%1*%2+20-%2]
- mov [ebp+%1*%2+20],eax
-%endif
-
-%elif %2 == 32
-
-%if %1 < 6
- push ecx
- push edx
- mov edx,[ebp+%1*%2+16-%2]
- mf_call l3s_col
- pop edx
- pop ecx
- mov [ebp+%1*%2+16],eax
- xor eax,[ebp+%1*%2+20-%2]
- mov [ebp+%1*%2+20],eax
- xor eax,[ebp+%1*%2+24-%2]
- mov [ebp+%1*%2+24],eax
- xor eax,[ebp+%1*%2+28-%2]
- mov [ebp+%1*%2+28],eax
-%endif
-
-%endif
-
-%assign rc_val f2(rc_val)
-
-%endmacro
-
-%ifdef ENCRYPTION_KEY_SCHEDULE
-
-%ifdef AES_128
-
-%ifndef ENCRYPTION_TABLE
-; %define ENCRYPTION_TABLE
-%endif
-
-%assign rc_val 1
-
- do_name _aes_encrypt_key128,8
-
- push ebp
- push ebx
- push esi
- push edi
-
- mov ebp,[esp+24]
- mov [ebp+4*KS_LENGTH],dword 10*16
- mov ebx,[esp+20]
-
- mov esi,[ebx]
- mov [ebp],esi
- mov edi,[ebx+4]
- mov [ebp+4],edi
- mov ecx,[ebx+8]
- mov [ebp+8],ecx
- mov edx,[ebx+12]
- mov [ebp+12],edx
- add ebp,16
- mov eax,edx
-
- f_key 0,16 ; 11 * 4 = 44 unsigned longs
- f_key 1,16 ; 4 + 4 * 10 generated = 44
- f_key 2,16
- f_key 3,16
- f_key 4,16
- f_key 5,16
- f_key 6,16
- f_key 7,16
- f_key 8,16
- f_key 9,16
-
- pop edi
- pop esi
- pop ebx
- pop ebp
- xor eax,eax
- do_exit 8
-
-%endif
-
-%ifdef AES_192
-
-%ifndef ENCRYPTION_TABLE
-; %define ENCRYPTION_TABLE
-%endif
-
-%assign rc_val 1
-
- do_name _aes_encrypt_key192,8
-
- push ebp
- push ebx
- push esi
- push edi
-
- mov ebp,[esp+24]
- mov [ebp+4*KS_LENGTH],dword 12 * 16
- mov ebx,[esp+20]
-
- mov esi,[ebx]
- mov [ebp],esi
- mov edi,[ebx+4]
- mov [ebp+4],edi
- mov ecx,[ebx+8]
- mov [ebp+8],ecx
- mov edx,[ebx+12]
- mov [ebp+12],edx
- mov eax,[ebx+16]
- mov [ebp+16],eax
- mov eax,[ebx+20]
- mov [ebp+20],eax
- add ebp,24
-
- f_key 0,24 ; 13 * 4 = 52 unsigned longs
- f_key 1,24 ; 6 + 6 * 8 generated = 54
- f_key 2,24
- f_key 3,24
- f_key 4,24
- f_key 5,24
- f_key 6,24
- f_key 7,24
-
- pop edi
- pop esi
- pop ebx
- pop ebp
- xor eax,eax
- do_exit 8
-
-%endif
-
-%ifdef AES_256
-
-%ifndef ENCRYPTION_TABLE
-; %define ENCRYPTION_TABLE
-%endif
-
-%assign rc_val 1
-
- do_name _aes_encrypt_key256,8
-
- mov ax, sp
- movzx esp, ax
-
- push ebp
- push ebx
- push esi
- push edi
-
- movzx ebp, word [esp+20] ; ks
- mov [ebp+4*KS_LENGTH],dword 14 * 16
- movzx ebx, word [esp+18] ; key
-
- mov esi,[ebx]
- mov [ebp],esi
- mov edi,[ebx+4]
- mov [ebp+4],edi
- mov ecx,[ebx+8]
- mov [ebp+8],ecx
- mov edx,[ebx+12]
- mov [ebp+12],edx
- mov eax,[ebx+16]
- mov [ebp+16],eax
- mov eax,[ebx+20]
- mov [ebp+20],eax
- mov eax,[ebx+24]
- mov [ebp+24],eax
- mov eax,[ebx+28]
- mov [ebp+28],eax
- add ebp,32
-
- f_key 0,32 ; 15 * 4 = 60 unsigned longs
- f_key 1,32 ; 8 + 8 * 7 generated = 64
- f_key 2,32
- f_key 3,32
- f_key 4,32
- f_key 5,32
- f_key 6,32
-
- pop edi
- pop esi
- pop ebx
- pop ebp
- xor eax,eax
- do_exit 8
-
-%endif
-
-%ifdef AES_VAR
-
-%ifndef ENCRYPTION_TABLE
-; %define ENCRYPTION_TABLE
-%endif
-
- do_name _aes_encrypt_key,12
-
- mov ecx,[esp+4]
- mov eax,[esp+8]
- mov edx,[esp+12]
- push edx
- push ecx
-
- cmp eax,16
- je .1
- cmp eax,128
- je .1
-
- cmp eax,24
- je .2
- cmp eax,192
- je .2
-
- cmp eax,32
- je .3
- cmp eax,256
- je .3
- mov eax,-1
- add esp,8
- do_exit 12
-
-.1: do_call _aes_encrypt_key128,8
- do_exit 12
-.2: do_call _aes_encrypt_key192,8
- do_exit 12
-.3: do_call _aes_encrypt_key256,8
- do_exit 12
-
-%endif
-
-%endif
-
-%ifdef ENCRYPTION_TABLE
-
-; S-box data - 256 entries
-
- section _DATA
-
-%define u8(x) 0, x, x, f3(x), f2(x), x, x, f3(x)
-
-_aes_enc_tab:
- db u8(0x63),u8(0x7c),u8(0x77),u8(0x7b),u8(0xf2),u8(0x6b),u8(0x6f),u8(0xc5)
- db u8(0x30),u8(0x01),u8(0x67),u8(0x2b),u8(0xfe),u8(0xd7),u8(0xab),u8(0x76)
- db u8(0xca),u8(0x82),u8(0xc9),u8(0x7d),u8(0xfa),u8(0x59),u8(0x47),u8(0xf0)
- db u8(0xad),u8(0xd4),u8(0xa2),u8(0xaf),u8(0x9c),u8(0xa4),u8(0x72),u8(0xc0)
- db u8(0xb7),u8(0xfd),u8(0x93),u8(0x26),u8(0x36),u8(0x3f),u8(0xf7),u8(0xcc)
- db u8(0x34),u8(0xa5),u8(0xe5),u8(0xf1),u8(0x71),u8(0xd8),u8(0x31),u8(0x15)
- db u8(0x04),u8(0xc7),u8(0x23),u8(0xc3),u8(0x18),u8(0x96),u8(0x05),u8(0x9a)
- db u8(0x07),u8(0x12),u8(0x80),u8(0xe2),u8(0xeb),u8(0x27),u8(0xb2),u8(0x75)
- db u8(0x09),u8(0x83),u8(0x2c),u8(0x1a),u8(0x1b),u8(0x6e),u8(0x5a),u8(0xa0)
- db u8(0x52),u8(0x3b),u8(0xd6),u8(0xb3),u8(0x29),u8(0xe3),u8(0x2f),u8(0x84)
- db u8(0x53),u8(0xd1),u8(0x00),u8(0xed),u8(0x20),u8(0xfc),u8(0xb1),u8(0x5b)
- db u8(0x6a),u8(0xcb),u8(0xbe),u8(0x39),u8(0x4a),u8(0x4c),u8(0x58),u8(0xcf)
- db u8(0xd0),u8(0xef),u8(0xaa),u8(0xfb),u8(0x43),u8(0x4d),u8(0x33),u8(0x85)
- db u8(0x45),u8(0xf9),u8(0x02),u8(0x7f),u8(0x50),u8(0x3c),u8(0x9f),u8(0xa8)
- db u8(0x51),u8(0xa3),u8(0x40),u8(0x8f),u8(0x92),u8(0x9d),u8(0x38),u8(0xf5)
- db u8(0xbc),u8(0xb6),u8(0xda),u8(0x21),u8(0x10),u8(0xff),u8(0xf3),u8(0xd2)
- db u8(0xcd),u8(0x0c),u8(0x13),u8(0xec),u8(0x5f),u8(0x97),u8(0x44),u8(0x17)
- db u8(0xc4),u8(0xa7),u8(0x7e),u8(0x3d),u8(0x64),u8(0x5d),u8(0x19),u8(0x73)
- db u8(0x60),u8(0x81),u8(0x4f),u8(0xdc),u8(0x22),u8(0x2a),u8(0x90),u8(0x88)
- db u8(0x46),u8(0xee),u8(0xb8),u8(0x14),u8(0xde),u8(0x5e),u8(0x0b),u8(0xdb)
- db u8(0xe0),u8(0x32),u8(0x3a),u8(0x0a),u8(0x49),u8(0x06),u8(0x24),u8(0x5c)
- db u8(0xc2),u8(0xd3),u8(0xac),u8(0x62),u8(0x91),u8(0x95),u8(0xe4),u8(0x79)
- db u8(0xe7),u8(0xc8),u8(0x37),u8(0x6d),u8(0x8d),u8(0xd5),u8(0x4e),u8(0xa9)
- db u8(0x6c),u8(0x56),u8(0xf4),u8(0xea),u8(0x65),u8(0x7a),u8(0xae),u8(0x08)
- db u8(0xba),u8(0x78),u8(0x25),u8(0x2e),u8(0x1c),u8(0xa6),u8(0xb4),u8(0xc6)
- db u8(0xe8),u8(0xdd),u8(0x74),u8(0x1f),u8(0x4b),u8(0xbd),u8(0x8b),u8(0x8a)
- db u8(0x70),u8(0x3e),u8(0xb5),u8(0x66),u8(0x48),u8(0x03),u8(0xf6),u8(0x0e)
- db u8(0x61),u8(0x35),u8(0x57),u8(0xb9),u8(0x86),u8(0xc1),u8(0x1d),u8(0x9e)
- db u8(0xe1),u8(0xf8),u8(0x98),u8(0x11),u8(0x69),u8(0xd9),u8(0x8e),u8(0x94)
- db u8(0x9b),u8(0x1e),u8(0x87),u8(0xe9),u8(0xce),u8(0x55),u8(0x28),u8(0xdf)
- db u8(0x8c),u8(0xa1),u8(0x89),u8(0x0d),u8(0xbf),u8(0xe6),u8(0x42),u8(0x68)
- db u8(0x41),u8(0x99),u8(0x2d),u8(0x0f),u8(0xb0),u8(0x54),u8(0xbb),u8(0x16)
-
-%endif
-
-%ifdef DECRYPTION
-
-; %define DECRYPTION_TABLE
-
-%define dtab_0(x) [_aes_dec_tab+ 8*x]
-%define dtab_1(x) [_aes_dec_tab+3+8*x]
-%define dtab_2(x) [_aes_dec_tab+2+8*x]
-%define dtab_3(x) [_aes_dec_tab+1+8*x]
-%define dtab_x(x) byte [_aes_dec_tab+7+8*x]
-
-%macro irn_fun 2
-
- rol eax,16
- %1 esi, cl, 0, ebp
- %1 esi, bh, 1, ebp
- %1 esi, al, 2, ebp
- %1 edi, dl, 0, ebp
- %1 edi, ch, 1, ebp
- %1 edi, ah, 3, ebp
- %2 ebp, bl, 0, ebp
- shr eax,16
- and ebx,0xffff0000
- or ebx,eax
- shr ecx,16
- %1 ebp, bh, 1, eax
- %1 ebp, ch, 3, eax
- %2 eax, cl, 2, ecx
- %1 eax, bl, 0, ecx
- %1 eax, dh, 1, ecx
- shr ebx,16
- shr edx,16
- %1 esi, dh, 3, ecx
- %1 ebp, dl, 2, ecx
- %1 eax, bh, 3, ecx
- %1 edi, bl, 2, ecx
-
-%endmacro
-
-; Basic MOV and XOR Operations for normal rounds
-
-%macro ni_xor 4
- movzx %4,%2
- xor %1,dtab_%3(%4)
-%endmacro
-
-%macro ni_mov 4
- movzx %4,%2
- mov %1,dtab_%3(%4)
-%endmacro
-
-; Basic MOV and XOR Operations for last round
-
-%macro li_xor 4
- movzx %4,%2
- movzx %4,dtab_x(%4)
-%if %3 != 0
- shl %4,8*%3
-%endif
- xor %1,%4
-%endmacro
-
-%macro li_mov 4
- movzx %4,%2
- movzx %1,dtab_x(%4)
-%if %3 != 0
- shl %1,8*%3
-%endif
-%endmacro
-
-%ifdef REDUCE_CODE_SIZE
-
-dec_round:
- sub sp, 2
-%ifdef AES_REV_DKS
- add ebp,16
-%else
- sub ebp,16
-%endif
- save 1,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- irn_fun ni_xor, ni_mov
-
- mov ebx,ebp
- mov ecx,esi
- mov edx,edi
- restore ebp,1
- xor eax,[ebp]
- xor ebx,[ebp+4]
- add sp, 2
- ret
-
-%else
-
-%macro dec_round 0
-
-%ifdef AES_REV_DKS
- add ebp,16
-%else
- sub ebp,16
-%endif
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- irn_fun ni_xor, ni_mov
-
- mov ebx,ebp
- mov ecx,esi
- mov edx,edi
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
-%endif
-
-%macro dec_last_round 0
-
-%ifdef AES_REV_DKS
- add ebp,16
-%else
- sub ebp,16
-%endif
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- irn_fun li_xor, li_mov
-
- mov ebx,ebp
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
- section _TEXT
-
-; AES Decryption Subroutine
-
- do_name _aes_decrypt,12
-
- mov ax, sp
- movzx esp, ax
-
- sub esp,stk_spc
- mov [esp+16],ebp
- mov [esp+12],ebx
- mov [esp+ 8],esi
- mov [esp+ 4],edi
-
-; input four columns and xor in first round key
-
- movzx esi,word [esp+in_blk+stk_spc] ; input pointer
- mov eax,[esi ]
- mov ebx,[esi+ 4]
- mov ecx,[esi+ 8]
- mov edx,[esi+12]
- lea esi,[esi+16]
-
- movzx ebp, word [esp+ctx+stk_spc] ; key pointer
- movzx edi,byte[ebp+4*KS_LENGTH]
-%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
- lea ebp,[ebp+edi] ; we have to access it from the top down
-%endif
- xor eax,[ebp ] ; key schedule
- xor ebx,[ebp+ 4]
- xor ecx,[ebp+ 8]
- xor edx,[ebp+12]
-
-; determine the number of rounds
-
-%ifndef AES_256
- cmp edi,10*16
- je .3
- cmp edi,12*16
- je .2
- cmp edi,14*16
- je .1
- mov eax,-1
- jmp .5
-%endif
-
-.1: mf_call dec_round
- mf_call dec_round
-.2: mf_call dec_round
- mf_call dec_round
-.3: mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- mf_call dec_round
- dec_last_round
-
-; move final values to the output array.
-
- movzx ebp,word [esp+out_blk+stk_spc]
- mov [ebp],eax
- mov [ebp+4],ebx
- mov [ebp+8],esi
- mov [ebp+12],edi
- xor eax,eax
-
-.5: mov ebp,[esp+16]
- mov ebx,[esp+12]
- mov esi,[esp+ 8]
- mov edi,[esp+ 4]
- add esp,stk_spc
- do_exit 12
-
-%endif
-
-%ifdef REDUCE_CODE_SIZE
-
-inv_mix_col:
- movzx ecx,dl ; input eax, edx
- movzx ecx,etab_b(ecx) ; output eax
- mov eax,dtab_0(ecx) ; used ecx
- movzx ecx,dh
- shr edx,16
- movzx ecx,etab_b(ecx)
- xor eax,dtab_1(ecx)
- movzx ecx,dl
- movzx ecx,etab_b(ecx)
- xor eax,dtab_2(ecx)
- movzx ecx,dh
- movzx ecx,etab_b(ecx)
- xor eax,dtab_3(ecx)
- ret
-
-%else
-
-%macro inv_mix_col 0
-
- movzx ecx,dl ; input eax, edx
- movzx ecx,etab_b(ecx) ; output eax
- mov eax,dtab_0(ecx) ; used ecx
- movzx ecx,dh
- shr edx,16
- movzx ecx,etab_b(ecx)
- xor eax,dtab_1(ecx)
- movzx ecx,dl
- movzx ecx,etab_b(ecx)
- xor eax,dtab_2(ecx)
- movzx ecx,dh
- movzx ecx,etab_b(ecx)
- xor eax,dtab_3(ecx)
-
-%endmacro
-
-%endif
-
-%ifdef DECRYPTION_KEY_SCHEDULE
-
-%ifdef AES_128
-
-%ifndef DECRYPTION_TABLE
-; %define DECRYPTION_TABLE
-%endif
-
- do_name _aes_decrypt_key128,8
-
- push ebp
- push ebx
- push esi
- push edi
- mov eax,[esp+24] ; context
- mov edx,[esp+20] ; key
- push eax
- push edx
- do_call _aes_encrypt_key128,8 ; generate expanded encryption key
- mov eax,10*16
- mov esi,[esp+24] ; pointer to first round key
- lea edi,[esi+eax] ; pointer to last round key
- add esi,32
- ; the inverse mix column transformation
- mov edx,[esi-16] ; needs to be applied to all round keys
- mf_call inv_mix_col ; except first and last. Hence start by
- mov [esi-16],eax ; transforming the four sub-keys in the
- mov edx,[esi-12] ; second round key
- mf_call inv_mix_col
- mov [esi-12],eax ; transformations for subsequent rounds
- mov edx,[esi-8] ; can then be made more efficient by
- mf_call inv_mix_col ; noting that for three of the four sub-keys
- mov [esi-8],eax ; in the encryption round key ek[r]:
- mov edx,[esi-4] ;
- mf_call inv_mix_col ; ek[r][n] = ek[r][n-1] ^ ek[r-1][n]
- mov [esi-4],eax ;
- ; where n is 1..3. Hence the corresponding
-.0: mov edx,[esi] ; subkeys in the decryption round key dk[r]
- mf_call inv_mix_col ; also obey since inv_mix_col is linear in
- mov [esi],eax ; GF(256):
- xor eax,[esi-12] ;
- mov [esi+4],eax ; dk[r][n] = dk[r][n-1] ^ dk[r-1][n]
- xor eax,[esi-8] ;
- mov [esi+8],eax ; So we only need one inverse mix column
- xor eax,[esi-4] ; operation (n = 0) for each four word cycle
- mov [esi+12],eax ; in the expanded key.
- add esi,16
- cmp edi,esi
- jg .0
- jmp dec_end
-
-%endif
-
-%ifdef AES_192
-
-%ifndef DECRYPTION_TABLE
-; %define DECRYPTION_TABLE
-%endif
-
- do_name _aes_decrypt_key192,8
-
- push ebp
- push ebx
- push esi
- push edi
- mov eax,[esp+24] ; context
- mov edx,[esp+20] ; key
- push eax
- push edx
- do_call _aes_encrypt_key192,8 ; generate expanded encryption key
- mov eax,12*16
- mov esi,[esp+24] ; first round key
- lea edi,[esi+eax] ; last round key
- add esi,48 ; the first 6 words are the key, of
- ; which the top 2 words are part of
- mov edx,[esi-32] ; the second round key and hence
- mf_call inv_mix_col ; need to be modified. After this we
- mov [esi-32],eax ; need to do a further six values prior
- mov edx,[esi-28] ; to using a more efficient technique
- mf_call inv_mix_col ; based on:
- mov [esi-28],eax ;
- ; dk[r][n] = dk[r][n-1] ^ dk[r-1][n]
- mov edx,[esi-24] ;
- mf_call inv_mix_col ; for n = 1 .. 5 where the key expansion
- mov [esi-24],eax ; cycle is now 6 words long
- mov edx,[esi-20]
- mf_call inv_mix_col
- mov [esi-20],eax
- mov edx,[esi-16]
- mf_call inv_mix_col
- mov [esi-16],eax
- mov edx,[esi-12]
- mf_call inv_mix_col
- mov [esi-12],eax
- mov edx,[esi-8]
- mf_call inv_mix_col
- mov [esi-8],eax
- mov edx,[esi-4]
- mf_call inv_mix_col
- mov [esi-4],eax
-
-.0: mov edx,[esi] ; the expanded key is 13 * 4 = 44 32-bit words
- mf_call inv_mix_col ; of which 11 * 4 = 44 have to be modified
- mov [esi],eax ; using inv_mix_col. We have already done 8
- xor eax,[esi-20] ; of these so 36 are left - hence we need
- mov [esi+4],eax ; exactly 6 loops of six here
- xor eax,[esi-16]
- mov [esi+8],eax
- xor eax,[esi-12]
- mov [esi+12],eax
- xor eax,[esi-8]
- mov [esi+16],eax
- xor eax,[esi-4]
- mov [esi+20],eax
- add esi,24
- cmp edi,esi
- jg .0
- jmp dec_end
-
-%endif
-
-%ifdef AES_256
-
-%ifndef DECRYPTION_TABLE
-; %define DECRYPTION_TABLE
-%endif
-
- do_name _aes_decrypt_key256,8
-
- mov ax, sp
- movzx esp, ax
- push ebp
- push ebx
- push esi
- push edi
-
- movzx eax, word [esp+20] ; ks
- movzx edx, word [esp+18] ; key
- push ax
- push dx
- do_call _aes_encrypt_key256,4 ; generate expanded encryption key
- mov eax,14*16
- movzx esi, word [esp+20] ; ks
- lea edi,[esi+eax]
- add esi,64
-
- mov edx,[esi-48] ; the primary key is 8 words, of which
- mf_call inv_mix_col ; the top four require modification
- mov [esi-48],eax
- mov edx,[esi-44]
- mf_call inv_mix_col
- mov [esi-44],eax
- mov edx,[esi-40]
- mf_call inv_mix_col
- mov [esi-40],eax
- mov edx,[esi-36]
- mf_call inv_mix_col
- mov [esi-36],eax
-
- mov edx,[esi-32] ; the encryption key expansion cycle is
- mf_call inv_mix_col ; now eight words long so we need to
- mov [esi-32],eax ; start by doing one complete block
- mov edx,[esi-28]
- mf_call inv_mix_col
- mov [esi-28],eax
- mov edx,[esi-24]
- mf_call inv_mix_col
- mov [esi-24],eax
- mov edx,[esi-20]
- mf_call inv_mix_col
- mov [esi-20],eax
- mov edx,[esi-16]
- mf_call inv_mix_col
- mov [esi-16],eax
- mov edx,[esi-12]
- mf_call inv_mix_col
- mov [esi-12],eax
- mov edx,[esi-8]
- mf_call inv_mix_col
- mov [esi-8],eax
- mov edx,[esi-4]
- mf_call inv_mix_col
- mov [esi-4],eax
-
-.0: mov edx,[esi] ; we can now speed up the remaining
- mf_call inv_mix_col ; rounds by using the technique
- mov [esi],eax ; outlined earlier. But note that
- xor eax,[esi-28] ; there is one extra inverse mix
- mov [esi+4],eax ; column operation as the 256 bit
- xor eax,[esi-24] ; key has an extra non-linear step
- mov [esi+8],eax ; for the midway element.
- xor eax,[esi-20]
- mov [esi+12],eax ; the expanded key is 15 * 4 = 60
- mov edx,[esi+16] ; 32-bit words of which 52 need to
- mf_call inv_mix_col ; be modified. We have already done
- mov [esi+16],eax ; 12 so 40 are left - which means
- xor eax,[esi-12] ; that we need exactly 5 loops of 8
- mov [esi+20],eax
- xor eax,[esi-8]
- mov [esi+24],eax
- xor eax,[esi-4]
- mov [esi+28],eax
- add esi,32
- cmp edi,esi
- jg .0
-
-%endif
-
-dec_end:
-
-%ifdef AES_REV_DKS
-
- movzx esi,word [esp+20] ; this reverses the order of the
-.1: mov eax,[esi] ; round keys if required
- mov ebx,[esi+4]
- mov ebp,[edi]
- mov edx,[edi+4]
- mov [esi],ebp
- mov [esi+4],edx
- mov [edi],eax
- mov [edi+4],ebx
-
- mov eax,[esi+8]
- mov ebx,[esi+12]
- mov ebp,[edi+8]
- mov edx,[edi+12]
- mov [esi+8],ebp
- mov [esi+12],edx
- mov [edi+8],eax
- mov [edi+12],ebx
-
- add esi,16
- sub edi,16
- cmp edi,esi
- jg .1
-
-%endif
-
- pop edi
- pop esi
- pop ebx
- pop ebp
- xor eax,eax
- do_exit 8
-
-%ifdef AES_VAR
-
- do_name _aes_decrypt_key,12
-
- mov ecx,[esp+4]
- mov eax,[esp+8]
- mov edx,[esp+12]
- push edx
- push ecx
-
- cmp eax,16
- je .1
- cmp eax,128
- je .1
-
- cmp eax,24
- je .2
- cmp eax,192
- je .2
-
- cmp eax,32
- je .3
- cmp eax,256
- je .3
- mov eax,-1
- add esp,8
- do_exit 12
-
-.1: do_call _aes_decrypt_key128,8
- do_exit 12
-.2: do_call _aes_decrypt_key192,8
- do_exit 12
-.3: do_call _aes_decrypt_key256,8
- do_exit 12
-
-%endif
-
-%endif
-
-%ifdef DECRYPTION_TABLE
-
-; Inverse S-box data - 256 entries
-
- section _DATA
-
-%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x
-
-_aes_dec_tab:
- db v8(0x52),v8(0x09),v8(0x6a),v8(0xd5),v8(0x30),v8(0x36),v8(0xa5),v8(0x38)
- db v8(0xbf),v8(0x40),v8(0xa3),v8(0x9e),v8(0x81),v8(0xf3),v8(0xd7),v8(0xfb)
- db v8(0x7c),v8(0xe3),v8(0x39),v8(0x82),v8(0x9b),v8(0x2f),v8(0xff),v8(0x87)
- db v8(0x34),v8(0x8e),v8(0x43),v8(0x44),v8(0xc4),v8(0xde),v8(0xe9),v8(0xcb)
- db v8(0x54),v8(0x7b),v8(0x94),v8(0x32),v8(0xa6),v8(0xc2),v8(0x23),v8(0x3d)
- db v8(0xee),v8(0x4c),v8(0x95),v8(0x0b),v8(0x42),v8(0xfa),v8(0xc3),v8(0x4e)
- db v8(0x08),v8(0x2e),v8(0xa1),v8(0x66),v8(0x28),v8(0xd9),v8(0x24),v8(0xb2)
- db v8(0x76),v8(0x5b),v8(0xa2),v8(0x49),v8(0x6d),v8(0x8b),v8(0xd1),v8(0x25)
- db v8(0x72),v8(0xf8),v8(0xf6),v8(0x64),v8(0x86),v8(0x68),v8(0x98),v8(0x16)
- db v8(0xd4),v8(0xa4),v8(0x5c),v8(0xcc),v8(0x5d),v8(0x65),v8(0xb6),v8(0x92)
- db v8(0x6c),v8(0x70),v8(0x48),v8(0x50),v8(0xfd),v8(0xed),v8(0xb9),v8(0xda)
- db v8(0x5e),v8(0x15),v8(0x46),v8(0x57),v8(0xa7),v8(0x8d),v8(0x9d),v8(0x84)
- db v8(0x90),v8(0xd8),v8(0xab),v8(0x00),v8(0x8c),v8(0xbc),v8(0xd3),v8(0x0a)
- db v8(0xf7),v8(0xe4),v8(0x58),v8(0x05),v8(0xb8),v8(0xb3),v8(0x45),v8(0x06)
- db v8(0xd0),v8(0x2c),v8(0x1e),v8(0x8f),v8(0xca),v8(0x3f),v8(0x0f),v8(0x02)
- db v8(0xc1),v8(0xaf),v8(0xbd),v8(0x03),v8(0x01),v8(0x13),v8(0x8a),v8(0x6b)
- db v8(0x3a),v8(0x91),v8(0x11),v8(0x41),v8(0x4f),v8(0x67),v8(0xdc),v8(0xea)
- db v8(0x97),v8(0xf2),v8(0xcf),v8(0xce),v8(0xf0),v8(0xb4),v8(0xe6),v8(0x73)
- db v8(0x96),v8(0xac),v8(0x74),v8(0x22),v8(0xe7),v8(0xad),v8(0x35),v8(0x85)
- db v8(0xe2),v8(0xf9),v8(0x37),v8(0xe8),v8(0x1c),v8(0x75),v8(0xdf),v8(0x6e)
- db v8(0x47),v8(0xf1),v8(0x1a),v8(0x71),v8(0x1d),v8(0x29),v8(0xc5),v8(0x89)
- db v8(0x6f),v8(0xb7),v8(0x62),v8(0x0e),v8(0xaa),v8(0x18),v8(0xbe),v8(0x1b)
- db v8(0xfc),v8(0x56),v8(0x3e),v8(0x4b),v8(0xc6),v8(0xd2),v8(0x79),v8(0x20)
- db v8(0x9a),v8(0xdb),v8(0xc0),v8(0xfe),v8(0x78),v8(0xcd),v8(0x5a),v8(0xf4)
- db v8(0x1f),v8(0xdd),v8(0xa8),v8(0x33),v8(0x88),v8(0x07),v8(0xc7),v8(0x31)
- db v8(0xb1),v8(0x12),v8(0x10),v8(0x59),v8(0x27),v8(0x80),v8(0xec),v8(0x5f)
- db v8(0x60),v8(0x51),v8(0x7f),v8(0xa9),v8(0x19),v8(0xb5),v8(0x4a),v8(0x0d)
- db v8(0x2d),v8(0xe5),v8(0x7a),v8(0x9f),v8(0x93),v8(0xc9),v8(0x9c),v8(0xef)
- db v8(0xa0),v8(0xe0),v8(0x3b),v8(0x4d),v8(0xae),v8(0x2a),v8(0xf5),v8(0xb0)
- db v8(0xc8),v8(0xeb),v8(0xbb),v8(0x3c),v8(0x83),v8(0x53),v8(0x99),v8(0x61)
- db v8(0x17),v8(0x2b),v8(0x04),v8(0x7e),v8(0xba),v8(0x77),v8(0xd6),v8(0x26)
- db v8(0xe1),v8(0x69),v8(0x14),v8(0x63),v8(0x55),v8(0x21),v8(0x0c),v8(0x7d)
-
-%endif
+ +; --------------------------------------------------------------------------- +; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. +; +; LICENSE TERMS +; +; The free distribution and use of this software is allowed (with or without +; changes) provided that: +; +; 1. source code distributions include the above copyright notice, this +; list of conditions and the following disclaimer; +; +; 2. binary distributions include the above copyright notice, this list +; of conditions and the following disclaimer in their documentation; +; +; 3. the name of the copyright holder is not used to endorse products +; built using this software without specific written permission. +; +; DISCLAIMER +; +; This software is provided 'as is' with no explicit or implied warranties +; in respect of its properties, including, but not limited to, correctness +; and/or fitness for purpose. +; --------------------------------------------------------------------------- +; Issue 20/12/2007 +; +; This code requires either ASM_X86_V2 or ASM_X86_V2C to be set in aesopt.h +; and the same define to be set here as well. If AES_V2C is set this file +; requires the C files aeskey.c and aestab.c for support. + +; An AES implementation for x86 processors using the YASM (or NASM) assembler. +; This is a full assembler implementation covering encryption, decryption and +; key scheduling. It uses 2k bytes of tables but its encryption and decryption +; performance is very close to that obtained using large tables. Key schedule +; expansion is slower for both encryption and decryption but this is likely to +; be offset by the much smaller load that this version places on the processor +; cache. I acknowledge the contribution made by Daniel Bernstein to aspects of +; the design of the AES round function used here. +; +; This code provides the standard AES block size (128 bits, 16 bytes) and the +; three standard AES key sizes (128, 192 and 256 bits). It has the same call +; interface as my C implementation. The ebx, esi, edi and ebp registers are +; preserved across calls but eax, ecx and edx and the artihmetic status flags +; are not. Although this is a full assembler implementation, it can be used +; in conjunction with my C code which provides faster key scheduling using +; large tables. In this case aeskey.c should be compiled with ASM_X86_V2C +; defined. It is also important that the defines below match those used in the +; C code. This code uses the VC++ register saving conentions; if it is used +; with another compiler, conventions for using and saving registers may need +; to be checked (and calling conventions). The YASM command line for the VC++ +; custom build step is: +; +; yasm -Xvc -f win32 -D <Z> -o "$(TargetDir)\$(InputName).obj" "$(InputPath)" +; +; For the cryptlib build this is (pcg): +; +; yasm -Xvc -f win32 -D ASM_X86_V2C -o aescrypt2.obj aes_x86_v2.asm +; +; where <Z> is ASM_X86_V2 or ASM_X86_V2C. The calling intefaces are: +; +; AES_RETURN aes_encrypt(const unsigned char in_blk[], +; unsigned char out_blk[], const aes_encrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt(const unsigned char in_blk[], +; unsigned char out_blk[], const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[], +; const aes_encrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[], +; const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_encrypt_key(const unsigned char key[], +; unsigned int len, const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt_key(const unsigned char key[], +; unsigned int len, const aes_decrypt_ctx cx[1]); +; +; where <NNN> is 128, 102 or 256. In the last two calls the length can be in +; either bits or bytes. + +; The DLL interface must use the _stdcall convention in which the number +; of bytes of parameter space is added after an @ to the sutine's name. +; We must also remove our parameters from the stack before return (see +; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version. + +; +; Adapted for TrueCrypt: +; - All tables generated at run-time +; - Adapted for 16-bit environment +; + +CPU 386 +USE16 +SEGMENT _TEXT PUBLIC CLASS=CODE USE16 +SEGMENT _DATA PUBLIC CLASS=DATA USE16 + +GROUP DGROUP _TEXT _DATA + +extern _aes_dec_tab ; Aestab.c +extern _aes_enc_tab + +; %define DLL_EXPORT + +; The size of the code can be reduced by using functions for the encryption +; and decryption rounds in place of macro expansion + +%define REDUCE_CODE_SIZE + +; Comment in/out the following lines to obtain the desired subroutines. These +; selections MUST match those in the C header file aes.h + +; %define AES_128 ; define if AES with 128 bit keys is needed +; %define AES_192 ; define if AES with 192 bit keys is needed +%define AES_256 ; define if AES with 256 bit keys is needed +; %define AES_VAR ; define if a variable key size is needed +%define ENCRYPTION ; define if encryption is needed +%define DECRYPTION ; define if decryption is needed +; %define AES_REV_DKS ; define if key decryption schedule is reversed + +%ifndef ASM_X86_V2C +%define ENCRYPTION_KEY_SCHEDULE ; define if encryption key expansion is needed +%define DECRYPTION_KEY_SCHEDULE ; define if decryption key expansion is needed +%endif + +; The encryption key schedule has the following in memory layout where N is the +; number of rounds (10, 12 or 14): +; +; lo: | input key (round 0) | ; each round is four 32-bit words +; | encryption round 1 | +; | encryption round 2 | +; .... +; | encryption round N-1 | +; hi: | encryption round N | +; +; The decryption key schedule is normally set up so that it has the same +; layout as above by actually reversing the order of the encryption key +; schedule in memory (this happens when AES_REV_DKS is set): +; +; lo: | decryption round 0 | = | encryption round N | +; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ] +; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ] +; .... .... +; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ] +; hi: | decryption round N | = | input key (round 0) | +; +; with rounds except the first and last modified using inv_mix_column() +; But if AES_REV_DKS is NOT set the order of keys is left as it is for +; encryption so that it has to be accessed in reverse when used for +; decryption (although the inverse mix column modifications are done) +; +; lo: | decryption round 0 | = | input key (round 0) | +; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ] +; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ] +; .... .... +; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ] +; hi: | decryption round N | = | encryption round N | +; +; This layout is faster when the assembler key scheduling provided here +; is used. +; +; End of user defines + +%ifdef AES_VAR +%ifndef AES_128 +%define AES_128 +%endif +%ifndef AES_192 +%define AES_192 +%endif +%ifndef AES_256 +%define AES_256 +%endif +%endif + +%ifdef AES_VAR +%define KS_LENGTH 60 +%elifdef AES_256 +%define KS_LENGTH 60 +%elifdef AES_192 +%define KS_LENGTH 52 +%else +%define KS_LENGTH 44 +%endif + +; These macros implement stack based local variables + +%macro save 2 + mov [esp+4*%1],%2 +%endmacro + +%macro restore 2 + mov %1,[esp+4*%2] +%endmacro + +%ifdef REDUCE_CODE_SIZE + %macro mf_call 1 + call %1 + %endmacro +%else + %macro mf_call 1 + %1 + %endmacro +%endif + +; the DLL has to implement the _stdcall calling interface on return +; In this case we have to take our parameters (3 4-byte pointers) +; off the stack + +%define parms 12 + +%macro do_name 1-2 parms +%ifndef DLL_EXPORT + global %1 +%1: +%else + global %1@%2 + export %1@%2 +%1@%2: +%endif +%endmacro + +%macro do_call 1-2 parms +%ifndef DLL_EXPORT + call %1 + add esp,%2 +%else + call %1@%2 +%endif +%endmacro + +%macro do_exit 0-1 parms +%ifdef DLL_EXPORT + ret %1 +%else + ret +%endif +%endmacro + +; finite field multiplies by {02}, {04} and {08} + +%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b)) +%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b)) +%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b)) + +; finite field multiplies required in table generation + +%define f3(x) (f2(x) ^ x) +%define f9(x) (f8(x) ^ x) +%define fb(x) (f8(x) ^ f2(x) ^ x) +%define fd(x) (f8(x) ^ f4(x) ^ x) +%define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +%define etab_0(x) [_aes_enc_tab+4+8*x] +%define etab_1(x) [_aes_enc_tab+3+8*x] +%define etab_2(x) [_aes_enc_tab+2+8*x] +%define etab_3(x) [_aes_enc_tab+1+8*x] +%define etab_b(x) byte [_aes_enc_tab+1+8*x] ; used with movzx for 0x000000xx +%define etab_w(x) word [_aes_enc_tab+8*x] ; used with movzx for 0x0000xx00 + +%define btab_0(x) [_aes_enc_tab+6+8*x] +%define btab_1(x) [_aes_enc_tab+5+8*x] +%define btab_2(x) [_aes_enc_tab+4+8*x] +%define btab_3(x) [_aes_enc_tab+3+8*x] + +; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the +; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX. +; +; Input: +; +; EAX column[0] +; EBX column[1] +; ECX column[2] +; EDX column[3] +; ESI column key[round][2] +; EDI column key[round][3] +; EBP scratch +; +; Output: +; +; EBP column[0] unkeyed +; EBX column[1] unkeyed +; ESI column[2] keyed +; EDI column[3] keyed +; EAX scratch +; ECX scratch +; EDX scratch + +%macro rnd_fun 2 + + rol ebx,16 + %1 esi, cl, 0, ebp + %1 esi, dh, 1, ebp + %1 esi, bh, 3, ebp + %1 edi, dl, 0, ebp + %1 edi, ah, 1, ebp + %1 edi, bl, 2, ebp + %2 ebp, al, 0, ebp + shr ebx,16 + and eax,0xffff0000 + or eax,ebx + shr edx,16 + %1 ebp, ah, 1, ebx + %1 ebp, dh, 3, ebx + %2 ebx, dl, 2, ebx + %1 ebx, ch, 1, edx + %1 ebx, al, 0, edx + shr eax,16 + shr ecx,16 + %1 ebp, cl, 2, edx + %1 edi, ch, 3, edx + %1 esi, al, 2, edx + %1 ebx, ah, 3, edx + +%endmacro + +; Basic MOV and XOR Operations for normal rounds + +%macro nr_xor 4 + movzx %4,%2 + xor %1,etab_%3(%4) +%endmacro + +%macro nr_mov 4 + movzx %4,%2 + mov %1,etab_%3(%4) +%endmacro + +; Basic MOV and XOR Operations for last round + +%if 1 + + %macro lr_xor 4 + movzx %4,%2 + movzx %4,etab_b(%4) + %if %3 != 0 + shl %4,8*%3 + %endif + xor %1,%4 + %endmacro + + %macro lr_mov 4 + movzx %4,%2 + movzx %1,etab_b(%4) + %if %3 != 0 + shl %1,8*%3 + %endif + %endmacro + +%else ; less effective but worth leaving as an option + + %macro lr_xor 4 + movzx %4,%2 + mov %4,btab_%3(%4) + and %4,0x000000ff << 8 * %3 + xor %1,%4 + %endmacro + + %macro lr_mov 4 + movzx %4,%2 + mov %1,btab_%3(%4) + and %1,0x000000ff << 8 * %3 + %endmacro + +%endif + +; Apply S-Box to the 4 bytes in a 32-bit word and rotate byte positions + +%ifdef REDUCE_CODE_SIZE + +l3s_col: + movzx ecx,al ; in eax + movzx ecx, etab_b(ecx) ; out eax + xor edx,ecx ; scratch ecx,edx + movzx ecx,ah + movzx ecx, etab_b(ecx) + shl ecx,8 + xor edx,ecx + shr eax,16 + movzx ecx,al + movzx ecx, etab_b(ecx) + shl ecx,16 + xor edx,ecx + movzx ecx,ah + movzx ecx, etab_b(ecx) + shl ecx,24 + xor edx,ecx + mov eax,edx + ret + +%else + +%macro l3s_col 0 + + movzx ecx,al ; in eax + movzx ecx, etab_b(ecx) ; out eax + xor edx,ecx ; scratch ecx,edx + movzx ecx,ah + movzx ecx, etab_b(ecx) + shl ecx,8 + xor edx,ecx + shr eax,16 + movzx ecx,al + movzx ecx, etab_b(ecx) + shl ecx,16 + xor edx,ecx + movzx ecx,ah + movzx ecx, etab_b(ecx) + shl ecx,24 + xor edx,ecx + mov eax,edx + +%endmacro + +%endif + +; offsets to parameters + +in_blk equ 2 ; input byte array address parameter +out_blk equ 4 ; output byte array address parameter +ctx equ 6 ; AES context structure +stk_spc equ 20 ; stack space + +%ifdef ENCRYPTION + +; %define ENCRYPTION_TABLE + +%ifdef REDUCE_CODE_SIZE + +enc_round: + sub sp, 2 + add ebp,16 + save 1,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + rnd_fun nr_xor, nr_mov + + mov eax,ebp + mov ecx,esi + mov edx,edi + restore ebp,1 + xor eax,[ebp] + xor ebx,[ebp+4] + add sp, 2 + ret + +%else + +%macro enc_round 0 + + add ebp,16 + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + rnd_fun nr_xor, nr_mov + + mov eax,ebp + mov ecx,esi + mov edx,edi + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + +%endif + +%macro enc_last_round 0 + + add ebp,16 + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + rnd_fun lr_xor, lr_mov + + mov eax,ebp + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + + section _TEXT + +; AES Encryption Subroutine + + do_name _aes_encrypt,12 + + mov ax, sp + movzx esp, ax + + sub esp,stk_spc + mov [esp+16],ebp + mov [esp+12],ebx + mov [esp+ 8],esi + mov [esp+ 4],edi + + movzx esi,word [esp+in_blk+stk_spc] ; input pointer + mov eax,[esi ] + mov ebx,[esi+ 4] + mov ecx,[esi+ 8] + mov edx,[esi+12] + + movzx ebp,word [esp+ctx+stk_spc] ; key pointer + movzx edi,byte [ebp+4*KS_LENGTH] + xor eax,[ebp ] + xor ebx,[ebp+ 4] + xor ecx,[ebp+ 8] + xor edx,[ebp+12] + +; determine the number of rounds + +%ifndef AES_256 + cmp edi,10*16 + je .3 + cmp edi,12*16 + je .2 + cmp edi,14*16 + je .1 + mov eax,-1 + jmp .5 +%endif + +.1: mf_call enc_round + mf_call enc_round +.2: mf_call enc_round + mf_call enc_round +.3: mf_call enc_round + mf_call enc_round + mf_call enc_round + mf_call enc_round + mf_call enc_round + mf_call enc_round + mf_call enc_round + mf_call enc_round + mf_call enc_round + enc_last_round + + movzx edx,word [esp+out_blk+stk_spc] + mov [edx],eax + mov [edx+4],ebx + mov [edx+8],esi + mov [edx+12],edi + xor eax,eax + +.5: mov ebp,[esp+16] + mov ebx,[esp+12] + mov esi,[esp+ 8] + mov edi,[esp+ 4] + add esp,stk_spc + do_exit 12 + +%endif + +%macro f_key 2 + + push ecx + push edx + mov edx,esi + ror eax,8 + mf_call l3s_col + mov esi,eax + pop edx + pop ecx + xor esi,rc_val + + mov [ebp+%1*%2],esi + xor edi,esi + mov [ebp+%1*%2+4],edi + xor ecx,edi + mov [ebp+%1*%2+8],ecx + xor edx,ecx + mov [ebp+%1*%2+12],edx + mov eax,edx + +%if %2 == 24 + +%if %1 < 7 + xor eax,[ebp+%1*%2+16-%2] + mov [ebp+%1*%2+16],eax + xor eax,[ebp+%1*%2+20-%2] + mov [ebp+%1*%2+20],eax +%endif + +%elif %2 == 32 + +%if %1 < 6 + push ecx + push edx + mov edx,[ebp+%1*%2+16-%2] + mf_call l3s_col + pop edx + pop ecx + mov [ebp+%1*%2+16],eax + xor eax,[ebp+%1*%2+20-%2] + mov [ebp+%1*%2+20],eax + xor eax,[ebp+%1*%2+24-%2] + mov [ebp+%1*%2+24],eax + xor eax,[ebp+%1*%2+28-%2] + mov [ebp+%1*%2+28],eax +%endif + +%endif + +%assign rc_val f2(rc_val) + +%endmacro + +%ifdef ENCRYPTION_KEY_SCHEDULE + +%ifdef AES_128 + +%ifndef ENCRYPTION_TABLE +; %define ENCRYPTION_TABLE +%endif + +%assign rc_val 1 + + do_name _aes_encrypt_key128,8 + + push ebp + push ebx + push esi + push edi + + mov ebp,[esp+24] + mov [ebp+4*KS_LENGTH],dword 10*16 + mov ebx,[esp+20] + + mov esi,[ebx] + mov [ebp],esi + mov edi,[ebx+4] + mov [ebp+4],edi + mov ecx,[ebx+8] + mov [ebp+8],ecx + mov edx,[ebx+12] + mov [ebp+12],edx + add ebp,16 + mov eax,edx + + f_key 0,16 ; 11 * 4 = 44 unsigned longs + f_key 1,16 ; 4 + 4 * 10 generated = 44 + f_key 2,16 + f_key 3,16 + f_key 4,16 + f_key 5,16 + f_key 6,16 + f_key 7,16 + f_key 8,16 + f_key 9,16 + + pop edi + pop esi + pop ebx + pop ebp + xor eax,eax + do_exit 8 + +%endif + +%ifdef AES_192 + +%ifndef ENCRYPTION_TABLE +; %define ENCRYPTION_TABLE +%endif + +%assign rc_val 1 + + do_name _aes_encrypt_key192,8 + + push ebp + push ebx + push esi + push edi + + mov ebp,[esp+24] + mov [ebp+4*KS_LENGTH],dword 12 * 16 + mov ebx,[esp+20] + + mov esi,[ebx] + mov [ebp],esi + mov edi,[ebx+4] + mov [ebp+4],edi + mov ecx,[ebx+8] + mov [ebp+8],ecx + mov edx,[ebx+12] + mov [ebp+12],edx + mov eax,[ebx+16] + mov [ebp+16],eax + mov eax,[ebx+20] + mov [ebp+20],eax + add ebp,24 + + f_key 0,24 ; 13 * 4 = 52 unsigned longs + f_key 1,24 ; 6 + 6 * 8 generated = 54 + f_key 2,24 + f_key 3,24 + f_key 4,24 + f_key 5,24 + f_key 6,24 + f_key 7,24 + + pop edi + pop esi + pop ebx + pop ebp + xor eax,eax + do_exit 8 + +%endif + +%ifdef AES_256 + +%ifndef ENCRYPTION_TABLE +; %define ENCRYPTION_TABLE +%endif + +%assign rc_val 1 + + do_name _aes_encrypt_key256,8 + + mov ax, sp + movzx esp, ax + + push ebp + push ebx + push esi + push edi + + movzx ebp, word [esp+20] ; ks + mov [ebp+4*KS_LENGTH],dword 14 * 16 + movzx ebx, word [esp+18] ; key + + mov esi,[ebx] + mov [ebp],esi + mov edi,[ebx+4] + mov [ebp+4],edi + mov ecx,[ebx+8] + mov [ebp+8],ecx + mov edx,[ebx+12] + mov [ebp+12],edx + mov eax,[ebx+16] + mov [ebp+16],eax + mov eax,[ebx+20] + mov [ebp+20],eax + mov eax,[ebx+24] + mov [ebp+24],eax + mov eax,[ebx+28] + mov [ebp+28],eax + add ebp,32 + + f_key 0,32 ; 15 * 4 = 60 unsigned longs + f_key 1,32 ; 8 + 8 * 7 generated = 64 + f_key 2,32 + f_key 3,32 + f_key 4,32 + f_key 5,32 + f_key 6,32 + + pop edi + pop esi + pop ebx + pop ebp + xor eax,eax + do_exit 8 + +%endif + +%ifdef AES_VAR + +%ifndef ENCRYPTION_TABLE +; %define ENCRYPTION_TABLE +%endif + + do_name _aes_encrypt_key,12 + + mov ecx,[esp+4] + mov eax,[esp+8] + mov edx,[esp+12] + push edx + push ecx + + cmp eax,16 + je .1 + cmp eax,128 + je .1 + + cmp eax,24 + je .2 + cmp eax,192 + je .2 + + cmp eax,32 + je .3 + cmp eax,256 + je .3 + mov eax,-1 + add esp,8 + do_exit 12 + +.1: do_call _aes_encrypt_key128,8 + do_exit 12 +.2: do_call _aes_encrypt_key192,8 + do_exit 12 +.3: do_call _aes_encrypt_key256,8 + do_exit 12 + +%endif + +%endif + +%ifdef ENCRYPTION_TABLE + +; S-box data - 256 entries + + section _DATA + +%define u8(x) 0, x, x, f3(x), f2(x), x, x, f3(x) + +_aes_enc_tab: + db u8(0x63),u8(0x7c),u8(0x77),u8(0x7b),u8(0xf2),u8(0x6b),u8(0x6f),u8(0xc5) + db u8(0x30),u8(0x01),u8(0x67),u8(0x2b),u8(0xfe),u8(0xd7),u8(0xab),u8(0x76) + db u8(0xca),u8(0x82),u8(0xc9),u8(0x7d),u8(0xfa),u8(0x59),u8(0x47),u8(0xf0) + db u8(0xad),u8(0xd4),u8(0xa2),u8(0xaf),u8(0x9c),u8(0xa4),u8(0x72),u8(0xc0) + db u8(0xb7),u8(0xfd),u8(0x93),u8(0x26),u8(0x36),u8(0x3f),u8(0xf7),u8(0xcc) + db u8(0x34),u8(0xa5),u8(0xe5),u8(0xf1),u8(0x71),u8(0xd8),u8(0x31),u8(0x15) + db u8(0x04),u8(0xc7),u8(0x23),u8(0xc3),u8(0x18),u8(0x96),u8(0x05),u8(0x9a) + db u8(0x07),u8(0x12),u8(0x80),u8(0xe2),u8(0xeb),u8(0x27),u8(0xb2),u8(0x75) + db u8(0x09),u8(0x83),u8(0x2c),u8(0x1a),u8(0x1b),u8(0x6e),u8(0x5a),u8(0xa0) + db u8(0x52),u8(0x3b),u8(0xd6),u8(0xb3),u8(0x29),u8(0xe3),u8(0x2f),u8(0x84) + db u8(0x53),u8(0xd1),u8(0x00),u8(0xed),u8(0x20),u8(0xfc),u8(0xb1),u8(0x5b) + db u8(0x6a),u8(0xcb),u8(0xbe),u8(0x39),u8(0x4a),u8(0x4c),u8(0x58),u8(0xcf) + db u8(0xd0),u8(0xef),u8(0xaa),u8(0xfb),u8(0x43),u8(0x4d),u8(0x33),u8(0x85) + db u8(0x45),u8(0xf9),u8(0x02),u8(0x7f),u8(0x50),u8(0x3c),u8(0x9f),u8(0xa8) + db u8(0x51),u8(0xa3),u8(0x40),u8(0x8f),u8(0x92),u8(0x9d),u8(0x38),u8(0xf5) + db u8(0xbc),u8(0xb6),u8(0xda),u8(0x21),u8(0x10),u8(0xff),u8(0xf3),u8(0xd2) + db u8(0xcd),u8(0x0c),u8(0x13),u8(0xec),u8(0x5f),u8(0x97),u8(0x44),u8(0x17) + db u8(0xc4),u8(0xa7),u8(0x7e),u8(0x3d),u8(0x64),u8(0x5d),u8(0x19),u8(0x73) + db u8(0x60),u8(0x81),u8(0x4f),u8(0xdc),u8(0x22),u8(0x2a),u8(0x90),u8(0x88) + db u8(0x46),u8(0xee),u8(0xb8),u8(0x14),u8(0xde),u8(0x5e),u8(0x0b),u8(0xdb) + db u8(0xe0),u8(0x32),u8(0x3a),u8(0x0a),u8(0x49),u8(0x06),u8(0x24),u8(0x5c) + db u8(0xc2),u8(0xd3),u8(0xac),u8(0x62),u8(0x91),u8(0x95),u8(0xe4),u8(0x79) + db u8(0xe7),u8(0xc8),u8(0x37),u8(0x6d),u8(0x8d),u8(0xd5),u8(0x4e),u8(0xa9) + db u8(0x6c),u8(0x56),u8(0xf4),u8(0xea),u8(0x65),u8(0x7a),u8(0xae),u8(0x08) + db u8(0xba),u8(0x78),u8(0x25),u8(0x2e),u8(0x1c),u8(0xa6),u8(0xb4),u8(0xc6) + db u8(0xe8),u8(0xdd),u8(0x74),u8(0x1f),u8(0x4b),u8(0xbd),u8(0x8b),u8(0x8a) + db u8(0x70),u8(0x3e),u8(0xb5),u8(0x66),u8(0x48),u8(0x03),u8(0xf6),u8(0x0e) + db u8(0x61),u8(0x35),u8(0x57),u8(0xb9),u8(0x86),u8(0xc1),u8(0x1d),u8(0x9e) + db u8(0xe1),u8(0xf8),u8(0x98),u8(0x11),u8(0x69),u8(0xd9),u8(0x8e),u8(0x94) + db u8(0x9b),u8(0x1e),u8(0x87),u8(0xe9),u8(0xce),u8(0x55),u8(0x28),u8(0xdf) + db u8(0x8c),u8(0xa1),u8(0x89),u8(0x0d),u8(0xbf),u8(0xe6),u8(0x42),u8(0x68) + db u8(0x41),u8(0x99),u8(0x2d),u8(0x0f),u8(0xb0),u8(0x54),u8(0xbb),u8(0x16) + +%endif + +%ifdef DECRYPTION + +; %define DECRYPTION_TABLE + +%define dtab_0(x) [_aes_dec_tab+ 8*x] +%define dtab_1(x) [_aes_dec_tab+3+8*x] +%define dtab_2(x) [_aes_dec_tab+2+8*x] +%define dtab_3(x) [_aes_dec_tab+1+8*x] +%define dtab_x(x) byte [_aes_dec_tab+7+8*x] + +%macro irn_fun 2 + + rol eax,16 + %1 esi, cl, 0, ebp + %1 esi, bh, 1, ebp + %1 esi, al, 2, ebp + %1 edi, dl, 0, ebp + %1 edi, ch, 1, ebp + %1 edi, ah, 3, ebp + %2 ebp, bl, 0, ebp + shr eax,16 + and ebx,0xffff0000 + or ebx,eax + shr ecx,16 + %1 ebp, bh, 1, eax + %1 ebp, ch, 3, eax + %2 eax, cl, 2, ecx + %1 eax, bl, 0, ecx + %1 eax, dh, 1, ecx + shr ebx,16 + shr edx,16 + %1 esi, dh, 3, ecx + %1 ebp, dl, 2, ecx + %1 eax, bh, 3, ecx + %1 edi, bl, 2, ecx + +%endmacro + +; Basic MOV and XOR Operations for normal rounds + +%macro ni_xor 4 + movzx %4,%2 + xor %1,dtab_%3(%4) +%endmacro + +%macro ni_mov 4 + movzx %4,%2 + mov %1,dtab_%3(%4) +%endmacro + +; Basic MOV and XOR Operations for last round + +%macro li_xor 4 + movzx %4,%2 + movzx %4,dtab_x(%4) +%if %3 != 0 + shl %4,8*%3 +%endif + xor %1,%4 +%endmacro + +%macro li_mov 4 + movzx %4,%2 + movzx %1,dtab_x(%4) +%if %3 != 0 + shl %1,8*%3 +%endif +%endmacro + +%ifdef REDUCE_CODE_SIZE + +dec_round: + sub sp, 2 +%ifdef AES_REV_DKS + add ebp,16 +%else + sub ebp,16 +%endif + save 1,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + irn_fun ni_xor, ni_mov + + mov ebx,ebp + mov ecx,esi + mov edx,edi + restore ebp,1 + xor eax,[ebp] + xor ebx,[ebp+4] + add sp, 2 + ret + +%else + +%macro dec_round 0 + +%ifdef AES_REV_DKS + add ebp,16 +%else + sub ebp,16 +%endif + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + irn_fun ni_xor, ni_mov + + mov ebx,ebp + mov ecx,esi + mov edx,edi + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + +%endif + +%macro dec_last_round 0 + +%ifdef AES_REV_DKS + add ebp,16 +%else + sub ebp,16 +%endif + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + irn_fun li_xor, li_mov + + mov ebx,ebp + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + + section _TEXT + +; AES Decryption Subroutine + + do_name _aes_decrypt,12 + + mov ax, sp + movzx esp, ax + + sub esp,stk_spc + mov [esp+16],ebp + mov [esp+12],ebx + mov [esp+ 8],esi + mov [esp+ 4],edi + +; input four columns and xor in first round key + + movzx esi,word [esp+in_blk+stk_spc] ; input pointer + mov eax,[esi ] + mov ebx,[esi+ 4] + mov ecx,[esi+ 8] + mov edx,[esi+12] + lea esi,[esi+16] + + movzx ebp, word [esp+ctx+stk_spc] ; key pointer + movzx edi,byte[ebp+4*KS_LENGTH] +%ifndef AES_REV_DKS ; if decryption key schedule is not reversed + lea ebp,[ebp+edi] ; we have to access it from the top down +%endif + xor eax,[ebp ] ; key schedule + xor ebx,[ebp+ 4] + xor ecx,[ebp+ 8] + xor edx,[ebp+12] + +; determine the number of rounds + +%ifndef AES_256 + cmp edi,10*16 + je .3 + cmp edi,12*16 + je .2 + cmp edi,14*16 + je .1 + mov eax,-1 + jmp .5 +%endif + +.1: mf_call dec_round + mf_call dec_round +.2: mf_call dec_round + mf_call dec_round +.3: mf_call dec_round + mf_call dec_round + mf_call dec_round + mf_call dec_round + mf_call dec_round + mf_call dec_round + mf_call dec_round + mf_call dec_round + mf_call dec_round + dec_last_round + +; move final values to the output array. + + movzx ebp,word [esp+out_blk+stk_spc] + mov [ebp],eax + mov [ebp+4],ebx + mov [ebp+8],esi + mov [ebp+12],edi + xor eax,eax + +.5: mov ebp,[esp+16] + mov ebx,[esp+12] + mov esi,[esp+ 8] + mov edi,[esp+ 4] + add esp,stk_spc + do_exit 12 + +%endif + +%ifdef REDUCE_CODE_SIZE + +inv_mix_col: + movzx ecx,dl ; input eax, edx + movzx ecx,etab_b(ecx) ; output eax + mov eax,dtab_0(ecx) ; used ecx + movzx ecx,dh + shr edx,16 + movzx ecx,etab_b(ecx) + xor eax,dtab_1(ecx) + movzx ecx,dl + movzx ecx,etab_b(ecx) + xor eax,dtab_2(ecx) + movzx ecx,dh + movzx ecx,etab_b(ecx) + xor eax,dtab_3(ecx) + ret + +%else + +%macro inv_mix_col 0 + + movzx ecx,dl ; input eax, edx + movzx ecx,etab_b(ecx) ; output eax + mov eax,dtab_0(ecx) ; used ecx + movzx ecx,dh + shr edx,16 + movzx ecx,etab_b(ecx) + xor eax,dtab_1(ecx) + movzx ecx,dl + movzx ecx,etab_b(ecx) + xor eax,dtab_2(ecx) + movzx ecx,dh + movzx ecx,etab_b(ecx) + xor eax,dtab_3(ecx) + +%endmacro + +%endif + +%ifdef DECRYPTION_KEY_SCHEDULE + +%ifdef AES_128 + +%ifndef DECRYPTION_TABLE +; %define DECRYPTION_TABLE +%endif + + do_name _aes_decrypt_key128,8 + + push ebp + push ebx + push esi + push edi + mov eax,[esp+24] ; context + mov edx,[esp+20] ; key + push eax + push edx + do_call _aes_encrypt_key128,8 ; generate expanded encryption key + mov eax,10*16 + mov esi,[esp+24] ; pointer to first round key + lea edi,[esi+eax] ; pointer to last round key + add esi,32 + ; the inverse mix column transformation + mov edx,[esi-16] ; needs to be applied to all round keys + mf_call inv_mix_col ; except first and last. Hence start by + mov [esi-16],eax ; transforming the four sub-keys in the + mov edx,[esi-12] ; second round key + mf_call inv_mix_col + mov [esi-12],eax ; transformations for subsequent rounds + mov edx,[esi-8] ; can then be made more efficient by + mf_call inv_mix_col ; noting that for three of the four sub-keys + mov [esi-8],eax ; in the encryption round key ek[r]: + mov edx,[esi-4] ; + mf_call inv_mix_col ; ek[r][n] = ek[r][n-1] ^ ek[r-1][n] + mov [esi-4],eax ; + ; where n is 1..3. Hence the corresponding +.0: mov edx,[esi] ; subkeys in the decryption round key dk[r] + mf_call inv_mix_col ; also obey since inv_mix_col is linear in + mov [esi],eax ; GF(256): + xor eax,[esi-12] ; + mov [esi+4],eax ; dk[r][n] = dk[r][n-1] ^ dk[r-1][n] + xor eax,[esi-8] ; + mov [esi+8],eax ; So we only need one inverse mix column + xor eax,[esi-4] ; operation (n = 0) for each four word cycle + mov [esi+12],eax ; in the expanded key. + add esi,16 + cmp edi,esi + jg .0 + jmp dec_end + +%endif + +%ifdef AES_192 + +%ifndef DECRYPTION_TABLE +; %define DECRYPTION_TABLE +%endif + + do_name _aes_decrypt_key192,8 + + push ebp + push ebx + push esi + push edi + mov eax,[esp+24] ; context + mov edx,[esp+20] ; key + push eax + push edx + do_call _aes_encrypt_key192,8 ; generate expanded encryption key + mov eax,12*16 + mov esi,[esp+24] ; first round key + lea edi,[esi+eax] ; last round key + add esi,48 ; the first 6 words are the key, of + ; which the top 2 words are part of + mov edx,[esi-32] ; the second round key and hence + mf_call inv_mix_col ; need to be modified. After this we + mov [esi-32],eax ; need to do a further six values prior + mov edx,[esi-28] ; to using a more efficient technique + mf_call inv_mix_col ; based on: + mov [esi-28],eax ; + ; dk[r][n] = dk[r][n-1] ^ dk[r-1][n] + mov edx,[esi-24] ; + mf_call inv_mix_col ; for n = 1 .. 5 where the key expansion + mov [esi-24],eax ; cycle is now 6 words long + mov edx,[esi-20] + mf_call inv_mix_col + mov [esi-20],eax + mov edx,[esi-16] + mf_call inv_mix_col + mov [esi-16],eax + mov edx,[esi-12] + mf_call inv_mix_col + mov [esi-12],eax + mov edx,[esi-8] + mf_call inv_mix_col + mov [esi-8],eax + mov edx,[esi-4] + mf_call inv_mix_col + mov [esi-4],eax + +.0: mov edx,[esi] ; the expanded key is 13 * 4 = 44 32-bit words + mf_call inv_mix_col ; of which 11 * 4 = 44 have to be modified + mov [esi],eax ; using inv_mix_col. We have already done 8 + xor eax,[esi-20] ; of these so 36 are left - hence we need + mov [esi+4],eax ; exactly 6 loops of six here + xor eax,[esi-16] + mov [esi+8],eax + xor eax,[esi-12] + mov [esi+12],eax + xor eax,[esi-8] + mov [esi+16],eax + xor eax,[esi-4] + mov [esi+20],eax + add esi,24 + cmp edi,esi + jg .0 + jmp dec_end + +%endif + +%ifdef AES_256 + +%ifndef DECRYPTION_TABLE +; %define DECRYPTION_TABLE +%endif + + do_name _aes_decrypt_key256,8 + + mov ax, sp + movzx esp, ax + push ebp + push ebx + push esi + push edi + + movzx eax, word [esp+20] ; ks + movzx edx, word [esp+18] ; key + push ax + push dx + do_call _aes_encrypt_key256,4 ; generate expanded encryption key + mov eax,14*16 + movzx esi, word [esp+20] ; ks + lea edi,[esi+eax] + add esi,64 + + mov edx,[esi-48] ; the primary key is 8 words, of which + mf_call inv_mix_col ; the top four require modification + mov [esi-48],eax + mov edx,[esi-44] + mf_call inv_mix_col + mov [esi-44],eax + mov edx,[esi-40] + mf_call inv_mix_col + mov [esi-40],eax + mov edx,[esi-36] + mf_call inv_mix_col + mov [esi-36],eax + + mov edx,[esi-32] ; the encryption key expansion cycle is + mf_call inv_mix_col ; now eight words long so we need to + mov [esi-32],eax ; start by doing one complete block + mov edx,[esi-28] + mf_call inv_mix_col + mov [esi-28],eax + mov edx,[esi-24] + mf_call inv_mix_col + mov [esi-24],eax + mov edx,[esi-20] + mf_call inv_mix_col + mov [esi-20],eax + mov edx,[esi-16] + mf_call inv_mix_col + mov [esi-16],eax + mov edx,[esi-12] + mf_call inv_mix_col + mov [esi-12],eax + mov edx,[esi-8] + mf_call inv_mix_col + mov [esi-8],eax + mov edx,[esi-4] + mf_call inv_mix_col + mov [esi-4],eax + +.0: mov edx,[esi] ; we can now speed up the remaining + mf_call inv_mix_col ; rounds by using the technique + mov [esi],eax ; outlined earlier. But note that + xor eax,[esi-28] ; there is one extra inverse mix + mov [esi+4],eax ; column operation as the 256 bit + xor eax,[esi-24] ; key has an extra non-linear step + mov [esi+8],eax ; for the midway element. + xor eax,[esi-20] + mov [esi+12],eax ; the expanded key is 15 * 4 = 60 + mov edx,[esi+16] ; 32-bit words of which 52 need to + mf_call inv_mix_col ; be modified. We have already done + mov [esi+16],eax ; 12 so 40 are left - which means + xor eax,[esi-12] ; that we need exactly 5 loops of 8 + mov [esi+20],eax + xor eax,[esi-8] + mov [esi+24],eax + xor eax,[esi-4] + mov [esi+28],eax + add esi,32 + cmp edi,esi + jg .0 + +%endif + +dec_end: + +%ifdef AES_REV_DKS + + movzx esi,word [esp+20] ; this reverses the order of the +.1: mov eax,[esi] ; round keys if required + mov ebx,[esi+4] + mov ebp,[edi] + mov edx,[edi+4] + mov [esi],ebp + mov [esi+4],edx + mov [edi],eax + mov [edi+4],ebx + + mov eax,[esi+8] + mov ebx,[esi+12] + mov ebp,[edi+8] + mov edx,[edi+12] + mov [esi+8],ebp + mov [esi+12],edx + mov [edi+8],eax + mov [edi+12],ebx + + add esi,16 + sub edi,16 + cmp edi,esi + jg .1 + +%endif + + pop edi + pop esi + pop ebx + pop ebp + xor eax,eax + do_exit 8 + +%ifdef AES_VAR + + do_name _aes_decrypt_key,12 + + mov ecx,[esp+4] + mov eax,[esp+8] + mov edx,[esp+12] + push edx + push ecx + + cmp eax,16 + je .1 + cmp eax,128 + je .1 + + cmp eax,24 + je .2 + cmp eax,192 + je .2 + + cmp eax,32 + je .3 + cmp eax,256 + je .3 + mov eax,-1 + add esp,8 + do_exit 12 + +.1: do_call _aes_decrypt_key128,8 + do_exit 12 +.2: do_call _aes_decrypt_key192,8 + do_exit 12 +.3: do_call _aes_decrypt_key256,8 + do_exit 12 + +%endif + +%endif + +%ifdef DECRYPTION_TABLE + +; Inverse S-box data - 256 entries + + section _DATA + +%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x + +_aes_dec_tab: + db v8(0x52),v8(0x09),v8(0x6a),v8(0xd5),v8(0x30),v8(0x36),v8(0xa5),v8(0x38) + db v8(0xbf),v8(0x40),v8(0xa3),v8(0x9e),v8(0x81),v8(0xf3),v8(0xd7),v8(0xfb) + db v8(0x7c),v8(0xe3),v8(0x39),v8(0x82),v8(0x9b),v8(0x2f),v8(0xff),v8(0x87) + db v8(0x34),v8(0x8e),v8(0x43),v8(0x44),v8(0xc4),v8(0xde),v8(0xe9),v8(0xcb) + db v8(0x54),v8(0x7b),v8(0x94),v8(0x32),v8(0xa6),v8(0xc2),v8(0x23),v8(0x3d) + db v8(0xee),v8(0x4c),v8(0x95),v8(0x0b),v8(0x42),v8(0xfa),v8(0xc3),v8(0x4e) + db v8(0x08),v8(0x2e),v8(0xa1),v8(0x66),v8(0x28),v8(0xd9),v8(0x24),v8(0xb2) + db v8(0x76),v8(0x5b),v8(0xa2),v8(0x49),v8(0x6d),v8(0x8b),v8(0xd1),v8(0x25) + db v8(0x72),v8(0xf8),v8(0xf6),v8(0x64),v8(0x86),v8(0x68),v8(0x98),v8(0x16) + db v8(0xd4),v8(0xa4),v8(0x5c),v8(0xcc),v8(0x5d),v8(0x65),v8(0xb6),v8(0x92) + db v8(0x6c),v8(0x70),v8(0x48),v8(0x50),v8(0xfd),v8(0xed),v8(0xb9),v8(0xda) + db v8(0x5e),v8(0x15),v8(0x46),v8(0x57),v8(0xa7),v8(0x8d),v8(0x9d),v8(0x84) + db v8(0x90),v8(0xd8),v8(0xab),v8(0x00),v8(0x8c),v8(0xbc),v8(0xd3),v8(0x0a) + db v8(0xf7),v8(0xe4),v8(0x58),v8(0x05),v8(0xb8),v8(0xb3),v8(0x45),v8(0x06) + db v8(0xd0),v8(0x2c),v8(0x1e),v8(0x8f),v8(0xca),v8(0x3f),v8(0x0f),v8(0x02) + db v8(0xc1),v8(0xaf),v8(0xbd),v8(0x03),v8(0x01),v8(0x13),v8(0x8a),v8(0x6b) + db v8(0x3a),v8(0x91),v8(0x11),v8(0x41),v8(0x4f),v8(0x67),v8(0xdc),v8(0xea) + db v8(0x97),v8(0xf2),v8(0xcf),v8(0xce),v8(0xf0),v8(0xb4),v8(0xe6),v8(0x73) + db v8(0x96),v8(0xac),v8(0x74),v8(0x22),v8(0xe7),v8(0xad),v8(0x35),v8(0x85) + db v8(0xe2),v8(0xf9),v8(0x37),v8(0xe8),v8(0x1c),v8(0x75),v8(0xdf),v8(0x6e) + db v8(0x47),v8(0xf1),v8(0x1a),v8(0x71),v8(0x1d),v8(0x29),v8(0xc5),v8(0x89) + db v8(0x6f),v8(0xb7),v8(0x62),v8(0x0e),v8(0xaa),v8(0x18),v8(0xbe),v8(0x1b) + db v8(0xfc),v8(0x56),v8(0x3e),v8(0x4b),v8(0xc6),v8(0xd2),v8(0x79),v8(0x20) + db v8(0x9a),v8(0xdb),v8(0xc0),v8(0xfe),v8(0x78),v8(0xcd),v8(0x5a),v8(0xf4) + db v8(0x1f),v8(0xdd),v8(0xa8),v8(0x33),v8(0x88),v8(0x07),v8(0xc7),v8(0x31) + db v8(0xb1),v8(0x12),v8(0x10),v8(0x59),v8(0x27),v8(0x80),v8(0xec),v8(0x5f) + db v8(0x60),v8(0x51),v8(0x7f),v8(0xa9),v8(0x19),v8(0xb5),v8(0x4a),v8(0x0d) + db v8(0x2d),v8(0xe5),v8(0x7a),v8(0x9f),v8(0x93),v8(0xc9),v8(0x9c),v8(0xef) + db v8(0xa0),v8(0xe0),v8(0x3b),v8(0x4d),v8(0xae),v8(0x2a),v8(0xf5),v8(0xb0) + db v8(0xc8),v8(0xeb),v8(0xbb),v8(0x3c),v8(0x83),v8(0x53),v8(0x99),v8(0x61) + db v8(0x17),v8(0x2b),v8(0x04),v8(0x7e),v8(0xba),v8(0x77),v8(0xd6),v8(0x26) + db v8(0xe1),v8(0x69),v8(0x14),v8(0x63),v8(0x55),v8(0x21),v8(0x0c),v8(0x7d) + +%endif diff --git a/src/Crypto/Aes_hw_cpu.asm b/src/Crypto/Aes_hw_cpu.asm index 64c3bad8..53852665 100644 --- a/src/Crypto/Aes_hw_cpu.asm +++ b/src/Crypto/Aes_hw_cpu.asm @@ -1,330 +1,330 @@ -;
-; Copyright (c) 2010 TrueCrypt Developers Association. All rights reserved.
-;
-; Governed by the TrueCrypt License 3.0 the full text of which is contained in
-; the file License.txt included in TrueCrypt binary and source code distribution
-; packages.
-;
-
-
-%ifidn __BITS__, 16
- %define R e
-%elifidn __BITS__, 32
- %define R e
-%elifidn __BITS__, 64
- %define R r
-%endif
-
-
-%macro export_function 1-2 0
-
- %ifdef MS_STDCALL
- global %1@%2
- export _%1@%2
- %1@%2:
- %elifidn __BITS__, 16
- global _%1
- _%1:
- %else
- global %1
- %1:
- %endif
-
-%endmacro
-
-
-%macro aes_function_entry 1
-
- ; void (const byte *ks, byte *data);
-
- export_function %1, 8
-
- %ifidn __BITS__, 32
- mov ecx, [esp + 4 + 4 * 0]
- mov edx, [esp + 4 + 4 * 1]
- %elifidn __BITS__, 64
- %ifnidn __OUTPUT_FORMAT__, win64
- mov rcx, rdi
- mov rdx, rsi
- %endif
- %endif
-
- ; ecx/rcx = ks
- ; edx/rdx = data
-
-%endmacro
-
-
-%macro aes_function_exit 0
-
- ; void (const byte *, byte *);
-
- %ifdef MS_STDCALL
- ret 8
- %else
- ret
- %endif
-
-%endmacro
-
-
-%macro push_xmm 2
- sub rsp, 16 * (%2 - %1 + 1)
-
- %assign stackoffset 0
- %assign regnumber %1
-
- %rep (%2 - %1 + 1)
- movdqu [rsp + 16 * stackoffset], xmm%[regnumber]
-
- %assign stackoffset stackoffset+1
- %assign regnumber regnumber+1
- %endrep
-%endmacro
-
-
-%macro pop_xmm 2
- %assign stackoffset 0
- %assign regnumber %1
-
- %rep (%2 - %1 + 1)
- movdqu xmm%[regnumber], [rsp + 16 * stackoffset]
-
- %assign stackoffset stackoffset+1
- %assign regnumber regnumber+1
- %endrep
-
- add rsp, 16 * (%2 - %1 + 1)
-%endmacro
-
-
-%macro aes_hw_cpu 2
- %define OPERATION %1
- %define BLOCK_COUNT %2
-
- ; Load data blocks
- %assign block 1
- %rep BLOCK_COUNT
- movdqu xmm%[block], [%[R]dx + 16 * (block - 1)]
- %assign block block+1
- %endrep
-
- ; Encrypt/decrypt data blocks
- %assign round 0
- %rep 15
- movdqu xmm0, [%[R]cx + 16 * round]
-
- %assign block 1
- %rep BLOCK_COUNT
-
- %if round = 0
- pxor xmm%[block], xmm0
- %else
- %if round < 14
- aes%[OPERATION] xmm%[block], xmm0
- %else
- aes%[OPERATION]last xmm%[block], xmm0
- %endif
- %endif
-
- %assign block block+1
- %endrep
-
- %assign round round+1
- %endrep
-
- ; Store data blocks
- %assign block 1
- %rep BLOCK_COUNT
- movdqu [%[R]dx + 16 * (block - 1)], xmm%[block]
- %assign block block+1
- %endrep
-
- %undef OPERATION
- %undef BLOCK_COUNT
-%endmacro
-
-
-%macro aes_hw_cpu_32_blocks 1
- %define OPERATION_32_BLOCKS %1
-
- %ifidn __BITS__, 64
- %define MAX_REG_BLOCK_COUNT 15
- %else
- %define MAX_REG_BLOCK_COUNT 7
- %endif
-
- %ifidn __OUTPUT_FORMAT__, win64
- %if MAX_REG_BLOCK_COUNT > 5
- push_xmm 6, MAX_REG_BLOCK_COUNT
- %endif
- %endif
-
- mov eax, 32 / MAX_REG_BLOCK_COUNT
- .1:
- aes_hw_cpu %[OPERATION_32_BLOCKS], MAX_REG_BLOCK_COUNT
-
- add %[R]dx, 16 * MAX_REG_BLOCK_COUNT
- dec eax
- jnz .1
-
- %if (32 % MAX_REG_BLOCK_COUNT) != 0
- aes_hw_cpu %[OPERATION_32_BLOCKS], (32 % MAX_REG_BLOCK_COUNT)
- %endif
-
- %ifidn __OUTPUT_FORMAT__, win64
- %if MAX_REG_BLOCK_COUNT > 5
- pop_xmm 6, MAX_REG_BLOCK_COUNT
- %endif
- %endif
-
- %undef OPERATION_32_BLOCKS
- %undef MAX_REG_BLOCK_COUNT
-%endmacro
-
-
-%ifidn __BITS__, 16
-
- USE16
- SEGMENT _TEXT PUBLIC CLASS=CODE USE16
- SEGMENT _DATA PUBLIC CLASS=DATA USE16
- GROUP DGROUP _TEXT _DATA
- SECTION _TEXT
-
-%else
-
- SECTION .text
-
-%endif
-
-
-; void aes_hw_cpu_enable_sse ();
-
- export_function aes_hw_cpu_enable_sse
- mov %[R]ax, cr4
- or ax, 1 << 9
- mov cr4, %[R]ax
- ret
-
-
-%ifidn __BITS__, 16
-
-
-; byte is_aes_hw_cpu_supported ();
-
- export_function is_aes_hw_cpu_supported
- mov eax, 1
- cpuid
- mov eax, ecx
- shr eax, 25
- and al, 1
- ret
-
-
-; void aes_hw_cpu_decrypt (const byte *ks, byte *data);
-
- export_function aes_hw_cpu_decrypt
- mov ax, -16
- jmp aes_hw_cpu_encrypt_decrypt
-
-; void aes_hw_cpu_encrypt (const byte *ks, byte *data);
-
- export_function aes_hw_cpu_encrypt
- mov ax, 16
-
- aes_hw_cpu_encrypt_decrypt:
- push bp
- mov bp, sp
- push di
- push si
-
- mov si, [bp + 4] ; ks
- mov di, [bp + 4 + 2] ; data
-
- movdqu xmm0, [si]
- movdqu xmm1, [di]
-
- pxor xmm1, xmm0
-
- mov cx, 13
-
- .round1_13:
- add si, ax
- movdqu xmm0, [si]
-
- cmp ax, 0
- jl .decrypt
-
- aesenc xmm1, xmm0
- jmp .2
- .decrypt:
- aesdec xmm1, xmm0
- .2:
- loop .round1_13
-
- add si, ax
- movdqu xmm0, [si]
-
- cmp ax, 0
- jl .decrypt_last
-
- aesenclast xmm1, xmm0
- jmp .3
- .decrypt_last:
- aesdeclast xmm1, xmm0
- .3:
- movdqu [di], xmm1
-
- pop si
- pop di
- pop bp
- ret
-
-
-%else ; __BITS__ != 16
-
-
-; byte is_aes_hw_cpu_supported ();
-
- export_function is_aes_hw_cpu_supported
- push %[R]bx
-
- mov eax, 1
- cpuid
- mov eax, ecx
- shr eax, 25
- and eax, 1
-
- pop %[R]bx
- ret
-
-
-; void aes_hw_cpu_decrypt (const byte *ks, byte *data);
-
- aes_function_entry aes_hw_cpu_decrypt
- aes_hw_cpu dec, 1
- aes_function_exit
-
-
-; void aes_hw_cpu_decrypt_32_blocks (const byte *ks, byte *data);
-
- aes_function_entry aes_hw_cpu_decrypt_32_blocks
- aes_hw_cpu_32_blocks dec
- aes_function_exit
-
-
-; void aes_hw_cpu_encrypt (const byte *ks, byte *data);
-
- aes_function_entry aes_hw_cpu_encrypt
- aes_hw_cpu enc, 1
- aes_function_exit
-
-
-; void aes_hw_cpu_encrypt_32_blocks (const byte *ks, byte *data);
-
- aes_function_entry aes_hw_cpu_encrypt_32_blocks
- aes_hw_cpu_32_blocks enc
- aes_function_exit
-
-
-%endif ; __BITS__ != 16
+; +; Copyright (c) 2010 TrueCrypt Developers Association. All rights reserved. +; +; Governed by the TrueCrypt License 3.0 the full text of which is contained in +; the file License.txt included in TrueCrypt binary and source code distribution +; packages. +; + + +%ifidn __BITS__, 16 + %define R e +%elifidn __BITS__, 32 + %define R e +%elifidn __BITS__, 64 + %define R r +%endif + + +%macro export_function 1-2 0 + + %ifdef MS_STDCALL + global %1@%2 + export _%1@%2 + %1@%2: + %elifidn __BITS__, 16 + global _%1 + _%1: + %else + global %1 + %1: + %endif + +%endmacro + + +%macro aes_function_entry 1 + + ; void (const byte *ks, byte *data); + + export_function %1, 8 + + %ifidn __BITS__, 32 + mov ecx, [esp + 4 + 4 * 0] + mov edx, [esp + 4 + 4 * 1] + %elifidn __BITS__, 64 + %ifnidn __OUTPUT_FORMAT__, win64 + mov rcx, rdi + mov rdx, rsi + %endif + %endif + + ; ecx/rcx = ks + ; edx/rdx = data + +%endmacro + + +%macro aes_function_exit 0 + + ; void (const byte *, byte *); + + %ifdef MS_STDCALL + ret 8 + %else + ret + %endif + +%endmacro + + +%macro push_xmm 2 + sub rsp, 16 * (%2 - %1 + 1) + + %assign stackoffset 0 + %assign regnumber %1 + + %rep (%2 - %1 + 1) + movdqu [rsp + 16 * stackoffset], xmm%[regnumber] + + %assign stackoffset stackoffset+1 + %assign regnumber regnumber+1 + %endrep +%endmacro + + +%macro pop_xmm 2 + %assign stackoffset 0 + %assign regnumber %1 + + %rep (%2 - %1 + 1) + movdqu xmm%[regnumber], [rsp + 16 * stackoffset] + + %assign stackoffset stackoffset+1 + %assign regnumber regnumber+1 + %endrep + + add rsp, 16 * (%2 - %1 + 1) +%endmacro + + +%macro aes_hw_cpu 2 + %define OPERATION %1 + %define BLOCK_COUNT %2 + + ; Load data blocks + %assign block 1 + %rep BLOCK_COUNT + movdqu xmm%[block], [%[R]dx + 16 * (block - 1)] + %assign block block+1 + %endrep + + ; Encrypt/decrypt data blocks + %assign round 0 + %rep 15 + movdqu xmm0, [%[R]cx + 16 * round] + + %assign block 1 + %rep BLOCK_COUNT + + %if round = 0 + pxor xmm%[block], xmm0 + %else + %if round < 14 + aes%[OPERATION] xmm%[block], xmm0 + %else + aes%[OPERATION]last xmm%[block], xmm0 + %endif + %endif + + %assign block block+1 + %endrep + + %assign round round+1 + %endrep + + ; Store data blocks + %assign block 1 + %rep BLOCK_COUNT + movdqu [%[R]dx + 16 * (block - 1)], xmm%[block] + %assign block block+1 + %endrep + + %undef OPERATION + %undef BLOCK_COUNT +%endmacro + + +%macro aes_hw_cpu_32_blocks 1 + %define OPERATION_32_BLOCKS %1 + + %ifidn __BITS__, 64 + %define MAX_REG_BLOCK_COUNT 15 + %else + %define MAX_REG_BLOCK_COUNT 7 + %endif + + %ifidn __OUTPUT_FORMAT__, win64 + %if MAX_REG_BLOCK_COUNT > 5 + push_xmm 6, MAX_REG_BLOCK_COUNT + %endif + %endif + + mov eax, 32 / MAX_REG_BLOCK_COUNT + .1: + aes_hw_cpu %[OPERATION_32_BLOCKS], MAX_REG_BLOCK_COUNT + + add %[R]dx, 16 * MAX_REG_BLOCK_COUNT + dec eax + jnz .1 + + %if (32 % MAX_REG_BLOCK_COUNT) != 0 + aes_hw_cpu %[OPERATION_32_BLOCKS], (32 % MAX_REG_BLOCK_COUNT) + %endif + + %ifidn __OUTPUT_FORMAT__, win64 + %if MAX_REG_BLOCK_COUNT > 5 + pop_xmm 6, MAX_REG_BLOCK_COUNT + %endif + %endif + + %undef OPERATION_32_BLOCKS + %undef MAX_REG_BLOCK_COUNT +%endmacro + + +%ifidn __BITS__, 16 + + USE16 + SEGMENT _TEXT PUBLIC CLASS=CODE USE16 + SEGMENT _DATA PUBLIC CLASS=DATA USE16 + GROUP DGROUP _TEXT _DATA + SECTION _TEXT + +%else + + SECTION .text + +%endif + + +; void aes_hw_cpu_enable_sse (); + + export_function aes_hw_cpu_enable_sse + mov %[R]ax, cr4 + or ax, 1 << 9 + mov cr4, %[R]ax + ret + + +%ifidn __BITS__, 16 + + +; byte is_aes_hw_cpu_supported (); + + export_function is_aes_hw_cpu_supported + mov eax, 1 + cpuid + mov eax, ecx + shr eax, 25 + and al, 1 + ret + + +; void aes_hw_cpu_decrypt (const byte *ks, byte *data); + + export_function aes_hw_cpu_decrypt + mov ax, -16 + jmp aes_hw_cpu_encrypt_decrypt + +; void aes_hw_cpu_encrypt (const byte *ks, byte *data); + + export_function aes_hw_cpu_encrypt + mov ax, 16 + + aes_hw_cpu_encrypt_decrypt: + push bp + mov bp, sp + push di + push si + + mov si, [bp + 4] ; ks + mov di, [bp + 4 + 2] ; data + + movdqu xmm0, [si] + movdqu xmm1, [di] + + pxor xmm1, xmm0 + + mov cx, 13 + + .round1_13: + add si, ax + movdqu xmm0, [si] + + cmp ax, 0 + jl .decrypt + + aesenc xmm1, xmm0 + jmp .2 + .decrypt: + aesdec xmm1, xmm0 + .2: + loop .round1_13 + + add si, ax + movdqu xmm0, [si] + + cmp ax, 0 + jl .decrypt_last + + aesenclast xmm1, xmm0 + jmp .3 + .decrypt_last: + aesdeclast xmm1, xmm0 + .3: + movdqu [di], xmm1 + + pop si + pop di + pop bp + ret + + +%else ; __BITS__ != 16 + + +; byte is_aes_hw_cpu_supported (); + + export_function is_aes_hw_cpu_supported + push %[R]bx + + mov eax, 1 + cpuid + mov eax, ecx + shr eax, 25 + and eax, 1 + + pop %[R]bx + ret + + +; void aes_hw_cpu_decrypt (const byte *ks, byte *data); + + aes_function_entry aes_hw_cpu_decrypt + aes_hw_cpu dec, 1 + aes_function_exit + + +; void aes_hw_cpu_decrypt_32_blocks (const byte *ks, byte *data); + + aes_function_entry aes_hw_cpu_decrypt_32_blocks + aes_hw_cpu_32_blocks dec + aes_function_exit + + +; void aes_hw_cpu_encrypt (const byte *ks, byte *data); + + aes_function_entry aes_hw_cpu_encrypt + aes_hw_cpu enc, 1 + aes_function_exit + + +; void aes_hw_cpu_encrypt_32_blocks (const byte *ks, byte *data); + + aes_function_entry aes_hw_cpu_encrypt_32_blocks + aes_hw_cpu_32_blocks enc + aes_function_exit + + +%endif ; __BITS__ != 16 diff --git a/src/Crypto/Aes_hw_cpu.h b/src/Crypto/Aes_hw_cpu.h index 2342b4c5..e2fed1a1 100644 --- a/src/Crypto/Aes_hw_cpu.h +++ b/src/Crypto/Aes_hw_cpu.h @@ -8,27 +8,27 @@ and are governed by the Apache License 2.0 the full text of which is contained in the file License.txt included in VeraCrypt binary and source code distribution packages. -*/
-
-#ifndef TC_HEADER_Crypto_Aes_Hw_Cpu
-#define TC_HEADER_Crypto_Aes_Hw_Cpu
-
-#include "Common/Tcdefs.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-byte is_aes_hw_cpu_supported ();
-void aes_hw_cpu_enable_sse ();
-void aes_hw_cpu_decrypt (const byte *ks, byte *data);
-void aes_hw_cpu_decrypt_32_blocks (const byte *ks, byte *data);
-void aes_hw_cpu_encrypt (const byte *ks, byte *data);
-void aes_hw_cpu_encrypt_32_blocks (const byte *ks, byte *data);
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif // TC_HEADER_Crypto_Aes_Hw_Cpu
+*/ + +#ifndef TC_HEADER_Crypto_Aes_Hw_Cpu +#define TC_HEADER_Crypto_Aes_Hw_Cpu + +#include "Common/Tcdefs.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +byte is_aes_hw_cpu_supported (); +void aes_hw_cpu_enable_sse (); +void aes_hw_cpu_decrypt (const byte *ks, byte *data); +void aes_hw_cpu_decrypt_32_blocks (const byte *ks, byte *data); +void aes_hw_cpu_encrypt (const byte *ks, byte *data); +void aes_hw_cpu_encrypt_32_blocks (const byte *ks, byte *data); + +#if defined(__cplusplus) +} +#endif + +#endif // TC_HEADER_Crypto_Aes_Hw_Cpu diff --git a/src/Crypto/Aes_x64.asm b/src/Crypto/Aes_x64.asm index b29fdcac..06d57ac2 100644 --- a/src/Crypto/Aes_x64.asm +++ b/src/Crypto/Aes_x64.asm @@ -1,907 +1,907 @@ -
-; ---------------------------------------------------------------------------
-; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-;
-; LICENSE TERMS
-;
-; The free distribution and use of this software is allowed (with or without
-; changes) provided that:
-;
-; 1. source code distributions include the above copyright notice, this
-; list of conditions and the following disclaimer;
-;
-; 2. binary distributions include the above copyright notice, this list
-; of conditions and the following disclaimer in their documentation;
-;
-; 3. the name of the copyright holder is not used to endorse products
-; built using this software without specific written permission.
-;
-; DISCLAIMER
-;
-; This software is provided 'as is' with no explicit or implied warranties
-; in respect of its properties, including, but not limited to, correctness
-; and/or fitness for purpose.
-; ---------------------------------------------------------------------------
-; Issue 20/12/2007
-;
-; I am grateful to Dag Arne Osvik for many discussions of the techniques that
-; can be used to optimise AES assembler code on AMD64/EM64T architectures.
-; Some of the techniques used in this implementation are the result of
-; suggestions made by him for which I am most grateful.
-
-;
-; Adapted for TrueCrypt:
-; - Compatibility with NASM
-;
-
-; An AES implementation for AMD64 processors using the YASM assembler. This
-; implemetation provides only encryption, decryption and hence requires key
-; scheduling support in C. It uses 8k bytes of tables but its encryption and
-; decryption performance is very close to that obtained using large tables.
-; It can use either Windows or Gnu/Linux calling conventions, which are as
-; follows:
-; windows gnu/linux
-;
-; in_blk rcx rdi
-; out_blk rdx rsi
-; context (cx) r8 rdx
-;
-; preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15
-; registers rdi - on both
-;
-; destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11
-; registers - rdi on both
-;
-; The default convention is that for windows, the gnu/linux convention being
-; used if __GNUC__ is defined.
-;
-; Define _SEH_ to include support for Win64 structured exception handling
-; (this requires YASM version 0.6 or later).
-;
-; This code provides the standard AES block size (128 bits, 16 bytes) and the
-; three standard AES key sizes (128, 192 and 256 bits). It has the same call
-; interface as my C implementation. It uses the Microsoft C AMD64 calling
-; conventions in which the three parameters are placed in rcx, rdx and r8
-; respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved.
-;
-; AES_RETURN aes_encrypt(const unsigned char in_blk[],
-; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt(const unsigned char in_blk[],
-; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
-; const aes_encrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
-; const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_encrypt_key(const unsigned char key[],
-; unsigned int len, const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt_key(const unsigned char key[],
-; unsigned int len, const aes_decrypt_ctx cx[1]);
-;
-; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
-; either bits or bytes.
-;
-; Comment in/out the following lines to obtain the desired subroutines. These
-; selections MUST match those in the C header file aes.h
-
-; %define AES_128 ; define if AES with 128 bit keys is needed
-; %define AES_192 ; define if AES with 192 bit keys is needed
-%define AES_256 ; define if AES with 256 bit keys is needed
-; %define AES_VAR ; define if a variable key size is needed
-%define ENCRYPTION ; define if encryption is needed
-%define DECRYPTION ; define if decryption is needed
-%define AES_REV_DKS ; define if key decryption schedule is reversed
-%define LAST_ROUND_TABLES ; define for the faster version using extra tables
-
-; The encryption key schedule has the following in memory layout where N is the
-; number of rounds (10, 12 or 14):
-;
-; lo: | input key (round 0) | ; each round is four 32-bit words
-; | encryption round 1 |
-; | encryption round 2 |
-; ....
-; | encryption round N-1 |
-; hi: | encryption round N |
-;
-; The decryption key schedule is normally set up so that it has the same
-; layout as above by actually reversing the order of the encryption key
-; schedule in memory (this happens when AES_REV_DKS is set):
-;
-; lo: | decryption round 0 | = | encryption round N |
-; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
-; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
-; .... ....
-; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
-; hi: | decryption round N | = | input key (round 0) |
-;
-; with rounds except the first and last modified using inv_mix_column()
-; But if AES_REV_DKS is NOT set the order of keys is left as it is for
-; encryption so that it has to be accessed in reverse when used for
-; decryption (although the inverse mix column modifications are done)
-;
-; lo: | decryption round 0 | = | input key (round 0) |
-; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
-; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
-; .... ....
-; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
-; hi: | decryption round N | = | encryption round N |
-;
-; This layout is faster when the assembler key scheduling provided here
-; is used.
-;
-; The DLL interface must use the _stdcall convention in which the number
-; of bytes of parameter space is added after an @ to the sutine's name.
-; We must also remove our parameters from the stack before return (see
-; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
-
-;%define DLL_EXPORT
-
-; End of user defines
-
-%ifdef AES_VAR
-%ifndef AES_128
-%define AES_128
-%endif
-%ifndef AES_192
-%define AES_192
-%endif
-%ifndef AES_256
-%define AES_256
-%endif
-%endif
-
-%ifdef AES_VAR
-%define KS_LENGTH 60
-%elifdef AES_256
-%define KS_LENGTH 60
-%elifdef AES_192
-%define KS_LENGTH 52
-%else
-%define KS_LENGTH 44
-%endif
-
-%define r0 rax
-%define r1 rdx
-%define r2 rcx
-%define r3 rbx
-%define r4 rsi
-%define r5 rdi
-%define r6 rbp
-%define r7 rsp
-
-%define raxd eax
-%define rdxd edx
-%define rcxd ecx
-%define rbxd ebx
-%define rsid esi
-%define rdid edi
-%define rbpd ebp
-%define rspd esp
-
-%define raxb al
-%define rdxb dl
-%define rcxb cl
-%define rbxb bl
-%define rsib sil
-%define rdib dil
-%define rbpb bpl
-%define rspb spl
-
-%define r0h ah
-%define r1h dh
-%define r2h ch
-%define r3h bh
-
-%define r0d eax
-%define r1d edx
-%define r2d ecx
-%define r3d ebx
-
-; finite field multiplies by {02}, {04} and {08}
-
-%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b))
-%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
-%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))
-
-; finite field multiplies required in table generation
-
-%define f3(x) (f2(x) ^ x)
-%define f9(x) (f8(x) ^ x)
-%define fb(x) (f8(x) ^ f2(x) ^ x)
-%define fd(x) (f8(x) ^ f4(x) ^ x)
-%define fe(x) (f8(x) ^ f4(x) ^ f2(x))
-
-; macro for expanding S-box data
-
-%macro enc_vals 1
- db %1(0x63),%1(0x7c),%1(0x77),%1(0x7b),%1(0xf2),%1(0x6b),%1(0x6f),%1(0xc5)
- db %1(0x30),%1(0x01),%1(0x67),%1(0x2b),%1(0xfe),%1(0xd7),%1(0xab),%1(0x76)
- db %1(0xca),%1(0x82),%1(0xc9),%1(0x7d),%1(0xfa),%1(0x59),%1(0x47),%1(0xf0)
- db %1(0xad),%1(0xd4),%1(0xa2),%1(0xaf),%1(0x9c),%1(0xa4),%1(0x72),%1(0xc0)
- db %1(0xb7),%1(0xfd),%1(0x93),%1(0x26),%1(0x36),%1(0x3f),%1(0xf7),%1(0xcc)
- db %1(0x34),%1(0xa5),%1(0xe5),%1(0xf1),%1(0x71),%1(0xd8),%1(0x31),%1(0x15)
- db %1(0x04),%1(0xc7),%1(0x23),%1(0xc3),%1(0x18),%1(0x96),%1(0x05),%1(0x9a)
- db %1(0x07),%1(0x12),%1(0x80),%1(0xe2),%1(0xeb),%1(0x27),%1(0xb2),%1(0x75)
- db %1(0x09),%1(0x83),%1(0x2c),%1(0x1a),%1(0x1b),%1(0x6e),%1(0x5a),%1(0xa0)
- db %1(0x52),%1(0x3b),%1(0xd6),%1(0xb3),%1(0x29),%1(0xe3),%1(0x2f),%1(0x84)
- db %1(0x53),%1(0xd1),%1(0x00),%1(0xed),%1(0x20),%1(0xfc),%1(0xb1),%1(0x5b)
- db %1(0x6a),%1(0xcb),%1(0xbe),%1(0x39),%1(0x4a),%1(0x4c),%1(0x58),%1(0xcf)
- db %1(0xd0),%1(0xef),%1(0xaa),%1(0xfb),%1(0x43),%1(0x4d),%1(0x33),%1(0x85)
- db %1(0x45),%1(0xf9),%1(0x02),%1(0x7f),%1(0x50),%1(0x3c),%1(0x9f),%1(0xa8)
- db %1(0x51),%1(0xa3),%1(0x40),%1(0x8f),%1(0x92),%1(0x9d),%1(0x38),%1(0xf5)
- db %1(0xbc),%1(0xb6),%1(0xda),%1(0x21),%1(0x10),%1(0xff),%1(0xf3),%1(0xd2)
- db %1(0xcd),%1(0x0c),%1(0x13),%1(0xec),%1(0x5f),%1(0x97),%1(0x44),%1(0x17)
- db %1(0xc4),%1(0xa7),%1(0x7e),%1(0x3d),%1(0x64),%1(0x5d),%1(0x19),%1(0x73)
- db %1(0x60),%1(0x81),%1(0x4f),%1(0xdc),%1(0x22),%1(0x2a),%1(0x90),%1(0x88)
- db %1(0x46),%1(0xee),%1(0xb8),%1(0x14),%1(0xde),%1(0x5e),%1(0x0b),%1(0xdb)
- db %1(0xe0),%1(0x32),%1(0x3a),%1(0x0a),%1(0x49),%1(0x06),%1(0x24),%1(0x5c)
- db %1(0xc2),%1(0xd3),%1(0xac),%1(0x62),%1(0x91),%1(0x95),%1(0xe4),%1(0x79)
- db %1(0xe7),%1(0xc8),%1(0x37),%1(0x6d),%1(0x8d),%1(0xd5),%1(0x4e),%1(0xa9)
- db %1(0x6c),%1(0x56),%1(0xf4),%1(0xea),%1(0x65),%1(0x7a),%1(0xae),%1(0x08)
- db %1(0xba),%1(0x78),%1(0x25),%1(0x2e),%1(0x1c),%1(0xa6),%1(0xb4),%1(0xc6)
- db %1(0xe8),%1(0xdd),%1(0x74),%1(0x1f),%1(0x4b),%1(0xbd),%1(0x8b),%1(0x8a)
- db %1(0x70),%1(0x3e),%1(0xb5),%1(0x66),%1(0x48),%1(0x03),%1(0xf6),%1(0x0e)
- db %1(0x61),%1(0x35),%1(0x57),%1(0xb9),%1(0x86),%1(0xc1),%1(0x1d),%1(0x9e)
- db %1(0xe1),%1(0xf8),%1(0x98),%1(0x11),%1(0x69),%1(0xd9),%1(0x8e),%1(0x94)
- db %1(0x9b),%1(0x1e),%1(0x87),%1(0xe9),%1(0xce),%1(0x55),%1(0x28),%1(0xdf)
- db %1(0x8c),%1(0xa1),%1(0x89),%1(0x0d),%1(0xbf),%1(0xe6),%1(0x42),%1(0x68)
- db %1(0x41),%1(0x99),%1(0x2d),%1(0x0f),%1(0xb0),%1(0x54),%1(0xbb),%1(0x16)
-%endmacro
-
-%macro dec_vals 1
- db %1(0x52),%1(0x09),%1(0x6a),%1(0xd5),%1(0x30),%1(0x36),%1(0xa5),%1(0x38)
- db %1(0xbf),%1(0x40),%1(0xa3),%1(0x9e),%1(0x81),%1(0xf3),%1(0xd7),%1(0xfb)
- db %1(0x7c),%1(0xe3),%1(0x39),%1(0x82),%1(0x9b),%1(0x2f),%1(0xff),%1(0x87)
- db %1(0x34),%1(0x8e),%1(0x43),%1(0x44),%1(0xc4),%1(0xde),%1(0xe9),%1(0xcb)
- db %1(0x54),%1(0x7b),%1(0x94),%1(0x32),%1(0xa6),%1(0xc2),%1(0x23),%1(0x3d)
- db %1(0xee),%1(0x4c),%1(0x95),%1(0x0b),%1(0x42),%1(0xfa),%1(0xc3),%1(0x4e)
- db %1(0x08),%1(0x2e),%1(0xa1),%1(0x66),%1(0x28),%1(0xd9),%1(0x24),%1(0xb2)
- db %1(0x76),%1(0x5b),%1(0xa2),%1(0x49),%1(0x6d),%1(0x8b),%1(0xd1),%1(0x25)
- db %1(0x72),%1(0xf8),%1(0xf6),%1(0x64),%1(0x86),%1(0x68),%1(0x98),%1(0x16)
- db %1(0xd4),%1(0xa4),%1(0x5c),%1(0xcc),%1(0x5d),%1(0x65),%1(0xb6),%1(0x92)
- db %1(0x6c),%1(0x70),%1(0x48),%1(0x50),%1(0xfd),%1(0xed),%1(0xb9),%1(0xda)
- db %1(0x5e),%1(0x15),%1(0x46),%1(0x57),%1(0xa7),%1(0x8d),%1(0x9d),%1(0x84)
- db %1(0x90),%1(0xd8),%1(0xab),%1(0x00),%1(0x8c),%1(0xbc),%1(0xd3),%1(0x0a)
- db %1(0xf7),%1(0xe4),%1(0x58),%1(0x05),%1(0xb8),%1(0xb3),%1(0x45),%1(0x06)
- db %1(0xd0),%1(0x2c),%1(0x1e),%1(0x8f),%1(0xca),%1(0x3f),%1(0x0f),%1(0x02)
- db %1(0xc1),%1(0xaf),%1(0xbd),%1(0x03),%1(0x01),%1(0x13),%1(0x8a),%1(0x6b)
- db %1(0x3a),%1(0x91),%1(0x11),%1(0x41),%1(0x4f),%1(0x67),%1(0xdc),%1(0xea)
- db %1(0x97),%1(0xf2),%1(0xcf),%1(0xce),%1(0xf0),%1(0xb4),%1(0xe6),%1(0x73)
- db %1(0x96),%1(0xac),%1(0x74),%1(0x22),%1(0xe7),%1(0xad),%1(0x35),%1(0x85)
- db %1(0xe2),%1(0xf9),%1(0x37),%1(0xe8),%1(0x1c),%1(0x75),%1(0xdf),%1(0x6e)
- db %1(0x47),%1(0xf1),%1(0x1a),%1(0x71),%1(0x1d),%1(0x29),%1(0xc5),%1(0x89)
- db %1(0x6f),%1(0xb7),%1(0x62),%1(0x0e),%1(0xaa),%1(0x18),%1(0xbe),%1(0x1b)
- db %1(0xfc),%1(0x56),%1(0x3e),%1(0x4b),%1(0xc6),%1(0xd2),%1(0x79),%1(0x20)
- db %1(0x9a),%1(0xdb),%1(0xc0),%1(0xfe),%1(0x78),%1(0xcd),%1(0x5a),%1(0xf4)
- db %1(0x1f),%1(0xdd),%1(0xa8),%1(0x33),%1(0x88),%1(0x07),%1(0xc7),%1(0x31)
- db %1(0xb1),%1(0x12),%1(0x10),%1(0x59),%1(0x27),%1(0x80),%1(0xec),%1(0x5f)
- db %1(0x60),%1(0x51),%1(0x7f),%1(0xa9),%1(0x19),%1(0xb5),%1(0x4a),%1(0x0d)
- db %1(0x2d),%1(0xe5),%1(0x7a),%1(0x9f),%1(0x93),%1(0xc9),%1(0x9c),%1(0xef)
- db %1(0xa0),%1(0xe0),%1(0x3b),%1(0x4d),%1(0xae),%1(0x2a),%1(0xf5),%1(0xb0)
- db %1(0xc8),%1(0xeb),%1(0xbb),%1(0x3c),%1(0x83),%1(0x53),%1(0x99),%1(0x61)
- db %1(0x17),%1(0x2b),%1(0x04),%1(0x7e),%1(0xba),%1(0x77),%1(0xd6),%1(0x26)
- db %1(0xe1),%1(0x69),%1(0x14),%1(0x63),%1(0x55),%1(0x21),%1(0x0c),%1(0x7d)
-%endmacro
-
-%define u8(x) f2(x), x, x, f3(x), f2(x), x, x, f3(x)
-%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x
-%define w8(x) x, 0, 0, 0, x, 0, 0, 0
-
-%define tptr rbp ; table pointer
-%define kptr r8 ; key schedule pointer
-%define fofs 128 ; adjust offset in key schedule to keep |disp| < 128
-%define fk_ref(x,y) [kptr-16*x+fofs+4*y]
-%ifdef AES_REV_DKS
-%define rofs 128
-%define ik_ref(x,y) [kptr-16*x+rofs+4*y]
-%else
-%define rofs -128
-%define ik_ref(x,y) [kptr+16*x+rofs+4*y]
-%endif
-
-%define tab_0(x) [tptr+8*x]
-%define tab_1(x) [tptr+8*x+3]
-%define tab_2(x) [tptr+8*x+2]
-%define tab_3(x) [tptr+8*x+1]
-%define tab_f(x) byte [tptr+8*x+1]
-%define tab_i(x) byte [tptr+8*x+7]
-%define t_ref(x,r) tab_ %+ x(r)
-
-%macro ff_rnd 5 ; normal forward round
- mov %1d, fk_ref(%5,0)
- mov %2d, fk_ref(%5,1)
- mov %3d, fk_ref(%5,2)
- mov %4d, fk_ref(%5,3)
-
- movzx esi, al
- movzx edi, ah
- shr eax, 16
- xor %1d, t_ref(0,rsi)
- xor %4d, t_ref(1,rdi)
- movzx esi, al
- movzx edi, ah
- xor %3d, t_ref(2,rsi)
- xor %2d, t_ref(3,rdi)
-
- movzx esi, bl
- movzx edi, bh
- shr ebx, 16
- xor %2d, t_ref(0,rsi)
- xor %1d, t_ref(1,rdi)
- movzx esi, bl
- movzx edi, bh
- xor %4d, t_ref(2,rsi)
- xor %3d, t_ref(3,rdi)
-
- movzx esi, cl
- movzx edi, ch
- shr ecx, 16
- xor %3d, t_ref(0,rsi)
- xor %2d, t_ref(1,rdi)
- movzx esi, cl
- movzx edi, ch
- xor %1d, t_ref(2,rsi)
- xor %4d, t_ref(3,rdi)
-
- movzx esi, dl
- movzx edi, dh
- shr edx, 16
- xor %4d, t_ref(0,rsi)
- xor %3d, t_ref(1,rdi)
- movzx esi, dl
- movzx edi, dh
- xor %2d, t_ref(2,rsi)
- xor %1d, t_ref(3,rdi)
-
- mov eax,%1d
- mov ebx,%2d
- mov ecx,%3d
- mov edx,%4d
-%endmacro
-
-%ifdef LAST_ROUND_TABLES
-
-%macro fl_rnd 5 ; last forward round
- add tptr, 2048
- mov %1d, fk_ref(%5,0)
- mov %2d, fk_ref(%5,1)
- mov %3d, fk_ref(%5,2)
- mov %4d, fk_ref(%5,3)
-
- movzx esi, al
- movzx edi, ah
- shr eax, 16
- xor %1d, t_ref(0,rsi)
- xor %4d, t_ref(1,rdi)
- movzx esi, al
- movzx edi, ah
- xor %3d, t_ref(2,rsi)
- xor %2d, t_ref(3,rdi)
-
- movzx esi, bl
- movzx edi, bh
- shr ebx, 16
- xor %2d, t_ref(0,rsi)
- xor %1d, t_ref(1,rdi)
- movzx esi, bl
- movzx edi, bh
- xor %4d, t_ref(2,rsi)
- xor %3d, t_ref(3,rdi)
-
- movzx esi, cl
- movzx edi, ch
- shr ecx, 16
- xor %3d, t_ref(0,rsi)
- xor %2d, t_ref(1,rdi)
- movzx esi, cl
- movzx edi, ch
- xor %1d, t_ref(2,rsi)
- xor %4d, t_ref(3,rdi)
-
- movzx esi, dl
- movzx edi, dh
- shr edx, 16
- xor %4d, t_ref(0,rsi)
- xor %3d, t_ref(1,rdi)
- movzx esi, dl
- movzx edi, dh
- xor %2d, t_ref(2,rsi)
- xor %1d, t_ref(3,rdi)
-%endmacro
-
-%else
-
-%macro fl_rnd 5 ; last forward round
- mov %1d, fk_ref(%5,0)
- mov %2d, fk_ref(%5,1)
- mov %3d, fk_ref(%5,2)
- mov %4d, fk_ref(%5,3)
-
- movzx esi, al
- movzx edi, ah
- shr eax, 16
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- xor %1d, esi
- rol edi, 8
- xor %4d, edi
- movzx esi, al
- movzx edi, ah
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- rol esi, 16
- rol edi, 24
- xor %3d, esi
- xor %2d, edi
-
- movzx esi, bl
- movzx edi, bh
- shr ebx, 16
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- xor %2d, esi
- rol edi, 8
- xor %1d, edi
- movzx esi, bl
- movzx edi, bh
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- rol esi, 16
- rol edi, 24
- xor %4d, esi
- xor %3d, edi
-
- movzx esi, cl
- movzx edi, ch
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- shr ecx, 16
- xor %3d, esi
- rol edi, 8
- xor %2d, edi
- movzx esi, cl
- movzx edi, ch
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- rol esi, 16
- rol edi, 24
- xor %1d, esi
- xor %4d, edi
-
- movzx esi, dl
- movzx edi, dh
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- shr edx, 16
- xor %4d, esi
- rol edi, 8
- xor %3d, edi
- movzx esi, dl
- movzx edi, dh
- movzx esi, t_ref(f,rsi)
- movzx edi, t_ref(f,rdi)
- rol esi, 16
- rol edi, 24
- xor %2d, esi
- xor %1d, edi
-%endmacro
-
-%endif
-
-%macro ii_rnd 5 ; normal inverse round
- mov %1d, ik_ref(%5,0)
- mov %2d, ik_ref(%5,1)
- mov %3d, ik_ref(%5,2)
- mov %4d, ik_ref(%5,3)
-
- movzx esi, al
- movzx edi, ah
- shr eax, 16
- xor %1d, t_ref(0,rsi)
- xor %2d, t_ref(1,rdi)
- movzx esi, al
- movzx edi, ah
- xor %3d, t_ref(2,rsi)
- xor %4d, t_ref(3,rdi)
-
- movzx esi, bl
- movzx edi, bh
- shr ebx, 16
- xor %2d, t_ref(0,rsi)
- xor %3d, t_ref(1,rdi)
- movzx esi, bl
- movzx edi, bh
- xor %4d, t_ref(2,rsi)
- xor %1d, t_ref(3,rdi)
-
- movzx esi, cl
- movzx edi, ch
- shr ecx, 16
- xor %3d, t_ref(0,rsi)
- xor %4d, t_ref(1,rdi)
- movzx esi, cl
- movzx edi, ch
- xor %1d, t_ref(2,rsi)
- xor %2d, t_ref(3,rdi)
-
- movzx esi, dl
- movzx edi, dh
- shr edx, 16
- xor %4d, t_ref(0,rsi)
- xor %1d, t_ref(1,rdi)
- movzx esi, dl
- movzx edi, dh
- xor %2d, t_ref(2,rsi)
- xor %3d, t_ref(3,rdi)
-
- mov eax,%1d
- mov ebx,%2d
- mov ecx,%3d
- mov edx,%4d
-%endmacro
-
-%ifdef LAST_ROUND_TABLES
-
-%macro il_rnd 5 ; last inverse round
- add tptr, 2048
- mov %1d, ik_ref(%5,0)
- mov %2d, ik_ref(%5,1)
- mov %3d, ik_ref(%5,2)
- mov %4d, ik_ref(%5,3)
-
- movzx esi, al
- movzx edi, ah
- shr eax, 16
- xor %1d, t_ref(0,rsi)
- xor %2d, t_ref(1,rdi)
- movzx esi, al
- movzx edi, ah
- xor %3d, t_ref(2,rsi)
- xor %4d, t_ref(3,rdi)
-
- movzx esi, bl
- movzx edi, bh
- shr ebx, 16
- xor %2d, t_ref(0,rsi)
- xor %3d, t_ref(1,rdi)
- movzx esi, bl
- movzx edi, bh
- xor %4d, t_ref(2,rsi)
- xor %1d, t_ref(3,rdi)
-
- movzx esi, cl
- movzx edi, ch
- shr ecx, 16
- xor %3d, t_ref(0,rsi)
- xor %4d, t_ref(1,rdi)
- movzx esi, cl
- movzx edi, ch
- xor %1d, t_ref(2,rsi)
- xor %2d, t_ref(3,rdi)
-
- movzx esi, dl
- movzx edi, dh
- shr edx, 16
- xor %4d, t_ref(0,rsi)
- xor %1d, t_ref(1,rdi)
- movzx esi, dl
- movzx edi, dh
- xor %2d, t_ref(2,rsi)
- xor %3d, t_ref(3,rdi)
-%endmacro
-
-%else
-
-%macro il_rnd 5 ; last inverse round
- mov %1d, ik_ref(%5,0)
- mov %2d, ik_ref(%5,1)
- mov %3d, ik_ref(%5,2)
- mov %4d, ik_ref(%5,3)
-
- movzx esi, al
- movzx edi, ah
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- shr eax, 16
- xor %1d, esi
- rol edi, 8
- xor %2d, edi
- movzx esi, al
- movzx edi, ah
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- rol esi, 16
- rol edi, 24
- xor %3d, esi
- xor %4d, edi
-
- movzx esi, bl
- movzx edi, bh
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- shr ebx, 16
- xor %2d, esi
- rol edi, 8
- xor %3d, edi
- movzx esi, bl
- movzx edi, bh
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- rol esi, 16
- rol edi, 24
- xor %4d, esi
- xor %1d, edi
-
- movzx esi, cl
- movzx edi, ch
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- shr ecx, 16
- xor %3d, esi
- rol edi, 8
- xor %4d, edi
- movzx esi, cl
- movzx edi, ch
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- rol esi, 16
- rol edi, 24
- xor %1d, esi
- xor %2d, edi
-
- movzx esi, dl
- movzx edi, dh
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- shr edx, 16
- xor %4d, esi
- rol edi, 8
- xor %1d, edi
- movzx esi, dl
- movzx edi, dh
- movzx esi, t_ref(i,rsi)
- movzx edi, t_ref(i,rdi)
- rol esi, 16
- rol edi, 24
- xor %2d, esi
- xor %3d, edi
-%endmacro
-
-%endif
-
-%ifdef ENCRYPTION
-
- global aes_encrypt
-%ifdef DLL_EXPORT
- export aes_encrypt
-%endif
-
- section .data align=64
- align 64
-enc_tab:
- enc_vals u8
-%ifdef LAST_ROUND_TABLES
- enc_vals w8
-%endif
-
- section .text align=16
- align 16
-
-%ifdef _SEH_
-proc_frame aes_encrypt
- alloc_stack 7*8 ; 7 to align stack to 16 bytes
- save_reg rsi,4*8
- save_reg rdi,5*8
- save_reg rbx,1*8
- save_reg rbp,2*8
- save_reg r12,3*8
-end_prologue
- mov rdi, rcx ; input pointer
- mov [rsp+0*8], rdx ; output pointer
-%else
- aes_encrypt:
- %ifdef __GNUC__
- sub rsp, 4*8 ; gnu/linux binary interface
- mov [rsp+0*8], rsi ; output pointer
- mov r8, rdx ; context
- %else
- sub rsp, 6*8 ; windows binary interface
- mov [rsp+4*8], rsi
- mov [rsp+5*8], rdi
- mov rdi, rcx ; input pointer
- mov [rsp+0*8], rdx ; output pointer
- %endif
- mov [rsp+1*8], rbx ; input pointer in rdi
- mov [rsp+2*8], rbp ; output pointer in [rsp]
- mov [rsp+3*8], r12 ; context in r8
-%endif
-
- movzx esi, byte [kptr+4*KS_LENGTH]
- lea tptr, [rel enc_tab]
- sub kptr, fofs
-
- mov eax, [rdi+0*4]
- mov ebx, [rdi+1*4]
- mov ecx, [rdi+2*4]
- mov edx, [rdi+3*4]
-
- xor eax, [kptr+fofs]
- xor ebx, [kptr+fofs+4]
- xor ecx, [kptr+fofs+8]
- xor edx, [kptr+fofs+12]
-
- lea kptr,[kptr+rsi]
- cmp esi, 10*16
- je .3
- cmp esi, 12*16
- je .2
- cmp esi, 14*16
- je .1
- mov rax, -1
- jmp .4
-
-.1: ff_rnd r9, r10, r11, r12, 13
- ff_rnd r9, r10, r11, r12, 12
-.2: ff_rnd r9, r10, r11, r12, 11
- ff_rnd r9, r10, r11, r12, 10
-.3: ff_rnd r9, r10, r11, r12, 9
- ff_rnd r9, r10, r11, r12, 8
- ff_rnd r9, r10, r11, r12, 7
- ff_rnd r9, r10, r11, r12, 6
- ff_rnd r9, r10, r11, r12, 5
- ff_rnd r9, r10, r11, r12, 4
- ff_rnd r9, r10, r11, r12, 3
- ff_rnd r9, r10, r11, r12, 2
- ff_rnd r9, r10, r11, r12, 1
- fl_rnd r9, r10, r11, r12, 0
-
- mov rbx, [rsp]
- mov [rbx], r9d
- mov [rbx+4], r10d
- mov [rbx+8], r11d
- mov [rbx+12], r12d
- xor rax, rax
-.4:
- mov rbx, [rsp+1*8]
- mov rbp, [rsp+2*8]
- mov r12, [rsp+3*8]
-%ifdef __GNUC__
- add rsp, 4*8
- ret
-%else
- mov rsi, [rsp+4*8]
- mov rdi, [rsp+5*8]
- %ifdef _SEH_
- add rsp, 7*8
- ret
- endproc_frame
- %else
- add rsp, 6*8
- ret
- %endif
-%endif
-
-%endif
-
-%ifdef DECRYPTION
-
- global aes_decrypt
-%ifdef DLL_EXPORT
- export aes_decrypt
-%endif
-
- section .data
- align 64
-dec_tab:
- dec_vals v8
-%ifdef LAST_ROUND_TABLES
- dec_vals w8
-%endif
-
- section .text
- align 16
-
-%ifdef _SEH_
-proc_frame aes_decrypt
- alloc_stack 7*8 ; 7 to align stack to 16 bytes
- save_reg rsi,4*8
- save_reg rdi,5*8
- save_reg rbx,1*8
- save_reg rbp,2*8
- save_reg r12,3*8
-end_prologue
- mov rdi, rcx ; input pointer
- mov [rsp+0*8], rdx ; output pointer
-%else
- aes_decrypt:
- %ifdef __GNUC__
- sub rsp, 4*8 ; gnu/linux binary interface
- mov [rsp+0*8], rsi ; output pointer
- mov r8, rdx ; context
- %else
- sub rsp, 6*8 ; windows binary interface
- mov [rsp+4*8], rsi
- mov [rsp+5*8], rdi
- mov rdi, rcx ; input pointer
- mov [rsp+0*8], rdx ; output pointer
- %endif
- mov [rsp+1*8], rbx ; input pointer in rdi
- mov [rsp+2*8], rbp ; output pointer in [rsp]
- mov [rsp+3*8], r12 ; context in r8
-%endif
-
- movzx esi,byte[kptr+4*KS_LENGTH]
- lea tptr, [rel dec_tab]
- sub kptr, rofs
-
- mov eax, [rdi+0*4]
- mov ebx, [rdi+1*4]
- mov ecx, [rdi+2*4]
- mov edx, [rdi+3*4]
-
-%ifdef AES_REV_DKS
- mov rdi, kptr
- lea kptr,[kptr+rsi]
-%else
- lea rdi,[kptr+rsi]
-%endif
-
- xor eax, [rdi+rofs]
- xor ebx, [rdi+rofs+4]
- xor ecx, [rdi+rofs+8]
- xor edx, [rdi+rofs+12]
-
- cmp esi, 10*16
- je .3
- cmp esi, 12*16
- je .2
- cmp esi, 14*16
- je .1
- mov rax, -1
- jmp .4
-
-.1: ii_rnd r9, r10, r11, r12, 13
- ii_rnd r9, r10, r11, r12, 12
-.2: ii_rnd r9, r10, r11, r12, 11
- ii_rnd r9, r10, r11, r12, 10
-.3: ii_rnd r9, r10, r11, r12, 9
- ii_rnd r9, r10, r11, r12, 8
- ii_rnd r9, r10, r11, r12, 7
- ii_rnd r9, r10, r11, r12, 6
- ii_rnd r9, r10, r11, r12, 5
- ii_rnd r9, r10, r11, r12, 4
- ii_rnd r9, r10, r11, r12, 3
- ii_rnd r9, r10, r11, r12, 2
- ii_rnd r9, r10, r11, r12, 1
- il_rnd r9, r10, r11, r12, 0
-
- mov rbx, [rsp]
- mov [rbx], r9d
- mov [rbx+4], r10d
- mov [rbx+8], r11d
- mov [rbx+12], r12d
- xor rax, rax
-.4: mov rbx, [rsp+1*8]
- mov rbp, [rsp+2*8]
- mov r12, [rsp+3*8]
-%ifdef __GNUC__
- add rsp, 4*8
- ret
-%else
- mov rsi, [rsp+4*8]
- mov rdi, [rsp+5*8]
- %ifdef _SEH_
- add rsp, 7*8
- ret
- endproc_frame
- %else
- add rsp, 6*8
- ret
- %endif
-%endif
-
-%endif
+ +; --------------------------------------------------------------------------- +; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. +; +; LICENSE TERMS +; +; The free distribution and use of this software is allowed (with or without +; changes) provided that: +; +; 1. source code distributions include the above copyright notice, this +; list of conditions and the following disclaimer; +; +; 2. binary distributions include the above copyright notice, this list +; of conditions and the following disclaimer in their documentation; +; +; 3. the name of the copyright holder is not used to endorse products +; built using this software without specific written permission. +; +; DISCLAIMER +; +; This software is provided 'as is' with no explicit or implied warranties +; in respect of its properties, including, but not limited to, correctness +; and/or fitness for purpose. +; --------------------------------------------------------------------------- +; Issue 20/12/2007 +; +; I am grateful to Dag Arne Osvik for many discussions of the techniques that +; can be used to optimise AES assembler code on AMD64/EM64T architectures. +; Some of the techniques used in this implementation are the result of +; suggestions made by him for which I am most grateful. + +; +; Adapted for TrueCrypt: +; - Compatibility with NASM +; + +; An AES implementation for AMD64 processors using the YASM assembler. This +; implemetation provides only encryption, decryption and hence requires key +; scheduling support in C. It uses 8k bytes of tables but its encryption and +; decryption performance is very close to that obtained using large tables. +; It can use either Windows or Gnu/Linux calling conventions, which are as +; follows: +; windows gnu/linux +; +; in_blk rcx rdi +; out_blk rdx rsi +; context (cx) r8 rdx +; +; preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15 +; registers rdi - on both +; +; destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11 +; registers - rdi on both +; +; The default convention is that for windows, the gnu/linux convention being +; used if __GNUC__ is defined. +; +; Define _SEH_ to include support for Win64 structured exception handling +; (this requires YASM version 0.6 or later). +; +; This code provides the standard AES block size (128 bits, 16 bytes) and the +; three standard AES key sizes (128, 192 and 256 bits). It has the same call +; interface as my C implementation. It uses the Microsoft C AMD64 calling +; conventions in which the three parameters are placed in rcx, rdx and r8 +; respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved. +; +; AES_RETURN aes_encrypt(const unsigned char in_blk[], +; unsigned char out_blk[], const aes_encrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt(const unsigned char in_blk[], +; unsigned char out_blk[], const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[], +; const aes_encrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[], +; const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_encrypt_key(const unsigned char key[], +; unsigned int len, const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt_key(const unsigned char key[], +; unsigned int len, const aes_decrypt_ctx cx[1]); +; +; where <NNN> is 128, 102 or 256. In the last two calls the length can be in +; either bits or bytes. +; +; Comment in/out the following lines to obtain the desired subroutines. These +; selections MUST match those in the C header file aes.h + +; %define AES_128 ; define if AES with 128 bit keys is needed +; %define AES_192 ; define if AES with 192 bit keys is needed +%define AES_256 ; define if AES with 256 bit keys is needed +; %define AES_VAR ; define if a variable key size is needed +%define ENCRYPTION ; define if encryption is needed +%define DECRYPTION ; define if decryption is needed +%define AES_REV_DKS ; define if key decryption schedule is reversed +%define LAST_ROUND_TABLES ; define for the faster version using extra tables + +; The encryption key schedule has the following in memory layout where N is the +; number of rounds (10, 12 or 14): +; +; lo: | input key (round 0) | ; each round is four 32-bit words +; | encryption round 1 | +; | encryption round 2 | +; .... +; | encryption round N-1 | +; hi: | encryption round N | +; +; The decryption key schedule is normally set up so that it has the same +; layout as above by actually reversing the order of the encryption key +; schedule in memory (this happens when AES_REV_DKS is set): +; +; lo: | decryption round 0 | = | encryption round N | +; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ] +; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ] +; .... .... +; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ] +; hi: | decryption round N | = | input key (round 0) | +; +; with rounds except the first and last modified using inv_mix_column() +; But if AES_REV_DKS is NOT set the order of keys is left as it is for +; encryption so that it has to be accessed in reverse when used for +; decryption (although the inverse mix column modifications are done) +; +; lo: | decryption round 0 | = | input key (round 0) | +; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ] +; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ] +; .... .... +; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ] +; hi: | decryption round N | = | encryption round N | +; +; This layout is faster when the assembler key scheduling provided here +; is used. +; +; The DLL interface must use the _stdcall convention in which the number +; of bytes of parameter space is added after an @ to the sutine's name. +; We must also remove our parameters from the stack before return (see +; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version. + +;%define DLL_EXPORT + +; End of user defines + +%ifdef AES_VAR +%ifndef AES_128 +%define AES_128 +%endif +%ifndef AES_192 +%define AES_192 +%endif +%ifndef AES_256 +%define AES_256 +%endif +%endif + +%ifdef AES_VAR +%define KS_LENGTH 60 +%elifdef AES_256 +%define KS_LENGTH 60 +%elifdef AES_192 +%define KS_LENGTH 52 +%else +%define KS_LENGTH 44 +%endif + +%define r0 rax +%define r1 rdx +%define r2 rcx +%define r3 rbx +%define r4 rsi +%define r5 rdi +%define r6 rbp +%define r7 rsp + +%define raxd eax +%define rdxd edx +%define rcxd ecx +%define rbxd ebx +%define rsid esi +%define rdid edi +%define rbpd ebp +%define rspd esp + +%define raxb al +%define rdxb dl +%define rcxb cl +%define rbxb bl +%define rsib sil +%define rdib dil +%define rbpb bpl +%define rspb spl + +%define r0h ah +%define r1h dh +%define r2h ch +%define r3h bh + +%define r0d eax +%define r1d edx +%define r2d ecx +%define r3d ebx + +; finite field multiplies by {02}, {04} and {08} + +%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b)) +%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b)) +%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b)) + +; finite field multiplies required in table generation + +%define f3(x) (f2(x) ^ x) +%define f9(x) (f8(x) ^ x) +%define fb(x) (f8(x) ^ f2(x) ^ x) +%define fd(x) (f8(x) ^ f4(x) ^ x) +%define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +; macro for expanding S-box data + +%macro enc_vals 1 + db %1(0x63),%1(0x7c),%1(0x77),%1(0x7b),%1(0xf2),%1(0x6b),%1(0x6f),%1(0xc5) + db %1(0x30),%1(0x01),%1(0x67),%1(0x2b),%1(0xfe),%1(0xd7),%1(0xab),%1(0x76) + db %1(0xca),%1(0x82),%1(0xc9),%1(0x7d),%1(0xfa),%1(0x59),%1(0x47),%1(0xf0) + db %1(0xad),%1(0xd4),%1(0xa2),%1(0xaf),%1(0x9c),%1(0xa4),%1(0x72),%1(0xc0) + db %1(0xb7),%1(0xfd),%1(0x93),%1(0x26),%1(0x36),%1(0x3f),%1(0xf7),%1(0xcc) + db %1(0x34),%1(0xa5),%1(0xe5),%1(0xf1),%1(0x71),%1(0xd8),%1(0x31),%1(0x15) + db %1(0x04),%1(0xc7),%1(0x23),%1(0xc3),%1(0x18),%1(0x96),%1(0x05),%1(0x9a) + db %1(0x07),%1(0x12),%1(0x80),%1(0xe2),%1(0xeb),%1(0x27),%1(0xb2),%1(0x75) + db %1(0x09),%1(0x83),%1(0x2c),%1(0x1a),%1(0x1b),%1(0x6e),%1(0x5a),%1(0xa0) + db %1(0x52),%1(0x3b),%1(0xd6),%1(0xb3),%1(0x29),%1(0xe3),%1(0x2f),%1(0x84) + db %1(0x53),%1(0xd1),%1(0x00),%1(0xed),%1(0x20),%1(0xfc),%1(0xb1),%1(0x5b) + db %1(0x6a),%1(0xcb),%1(0xbe),%1(0x39),%1(0x4a),%1(0x4c),%1(0x58),%1(0xcf) + db %1(0xd0),%1(0xef),%1(0xaa),%1(0xfb),%1(0x43),%1(0x4d),%1(0x33),%1(0x85) + db %1(0x45),%1(0xf9),%1(0x02),%1(0x7f),%1(0x50),%1(0x3c),%1(0x9f),%1(0xa8) + db %1(0x51),%1(0xa3),%1(0x40),%1(0x8f),%1(0x92),%1(0x9d),%1(0x38),%1(0xf5) + db %1(0xbc),%1(0xb6),%1(0xda),%1(0x21),%1(0x10),%1(0xff),%1(0xf3),%1(0xd2) + db %1(0xcd),%1(0x0c),%1(0x13),%1(0xec),%1(0x5f),%1(0x97),%1(0x44),%1(0x17) + db %1(0xc4),%1(0xa7),%1(0x7e),%1(0x3d),%1(0x64),%1(0x5d),%1(0x19),%1(0x73) + db %1(0x60),%1(0x81),%1(0x4f),%1(0xdc),%1(0x22),%1(0x2a),%1(0x90),%1(0x88) + db %1(0x46),%1(0xee),%1(0xb8),%1(0x14),%1(0xde),%1(0x5e),%1(0x0b),%1(0xdb) + db %1(0xe0),%1(0x32),%1(0x3a),%1(0x0a),%1(0x49),%1(0x06),%1(0x24),%1(0x5c) + db %1(0xc2),%1(0xd3),%1(0xac),%1(0x62),%1(0x91),%1(0x95),%1(0xe4),%1(0x79) + db %1(0xe7),%1(0xc8),%1(0x37),%1(0x6d),%1(0x8d),%1(0xd5),%1(0x4e),%1(0xa9) + db %1(0x6c),%1(0x56),%1(0xf4),%1(0xea),%1(0x65),%1(0x7a),%1(0xae),%1(0x08) + db %1(0xba),%1(0x78),%1(0x25),%1(0x2e),%1(0x1c),%1(0xa6),%1(0xb4),%1(0xc6) + db %1(0xe8),%1(0xdd),%1(0x74),%1(0x1f),%1(0x4b),%1(0xbd),%1(0x8b),%1(0x8a) + db %1(0x70),%1(0x3e),%1(0xb5),%1(0x66),%1(0x48),%1(0x03),%1(0xf6),%1(0x0e) + db %1(0x61),%1(0x35),%1(0x57),%1(0xb9),%1(0x86),%1(0xc1),%1(0x1d),%1(0x9e) + db %1(0xe1),%1(0xf8),%1(0x98),%1(0x11),%1(0x69),%1(0xd9),%1(0x8e),%1(0x94) + db %1(0x9b),%1(0x1e),%1(0x87),%1(0xe9),%1(0xce),%1(0x55),%1(0x28),%1(0xdf) + db %1(0x8c),%1(0xa1),%1(0x89),%1(0x0d),%1(0xbf),%1(0xe6),%1(0x42),%1(0x68) + db %1(0x41),%1(0x99),%1(0x2d),%1(0x0f),%1(0xb0),%1(0x54),%1(0xbb),%1(0x16) +%endmacro + +%macro dec_vals 1 + db %1(0x52),%1(0x09),%1(0x6a),%1(0xd5),%1(0x30),%1(0x36),%1(0xa5),%1(0x38) + db %1(0xbf),%1(0x40),%1(0xa3),%1(0x9e),%1(0x81),%1(0xf3),%1(0xd7),%1(0xfb) + db %1(0x7c),%1(0xe3),%1(0x39),%1(0x82),%1(0x9b),%1(0x2f),%1(0xff),%1(0x87) + db %1(0x34),%1(0x8e),%1(0x43),%1(0x44),%1(0xc4),%1(0xde),%1(0xe9),%1(0xcb) + db %1(0x54),%1(0x7b),%1(0x94),%1(0x32),%1(0xa6),%1(0xc2),%1(0x23),%1(0x3d) + db %1(0xee),%1(0x4c),%1(0x95),%1(0x0b),%1(0x42),%1(0xfa),%1(0xc3),%1(0x4e) + db %1(0x08),%1(0x2e),%1(0xa1),%1(0x66),%1(0x28),%1(0xd9),%1(0x24),%1(0xb2) + db %1(0x76),%1(0x5b),%1(0xa2),%1(0x49),%1(0x6d),%1(0x8b),%1(0xd1),%1(0x25) + db %1(0x72),%1(0xf8),%1(0xf6),%1(0x64),%1(0x86),%1(0x68),%1(0x98),%1(0x16) + db %1(0xd4),%1(0xa4),%1(0x5c),%1(0xcc),%1(0x5d),%1(0x65),%1(0xb6),%1(0x92) + db %1(0x6c),%1(0x70),%1(0x48),%1(0x50),%1(0xfd),%1(0xed),%1(0xb9),%1(0xda) + db %1(0x5e),%1(0x15),%1(0x46),%1(0x57),%1(0xa7),%1(0x8d),%1(0x9d),%1(0x84) + db %1(0x90),%1(0xd8),%1(0xab),%1(0x00),%1(0x8c),%1(0xbc),%1(0xd3),%1(0x0a) + db %1(0xf7),%1(0xe4),%1(0x58),%1(0x05),%1(0xb8),%1(0xb3),%1(0x45),%1(0x06) + db %1(0xd0),%1(0x2c),%1(0x1e),%1(0x8f),%1(0xca),%1(0x3f),%1(0x0f),%1(0x02) + db %1(0xc1),%1(0xaf),%1(0xbd),%1(0x03),%1(0x01),%1(0x13),%1(0x8a),%1(0x6b) + db %1(0x3a),%1(0x91),%1(0x11),%1(0x41),%1(0x4f),%1(0x67),%1(0xdc),%1(0xea) + db %1(0x97),%1(0xf2),%1(0xcf),%1(0xce),%1(0xf0),%1(0xb4),%1(0xe6),%1(0x73) + db %1(0x96),%1(0xac),%1(0x74),%1(0x22),%1(0xe7),%1(0xad),%1(0x35),%1(0x85) + db %1(0xe2),%1(0xf9),%1(0x37),%1(0xe8),%1(0x1c),%1(0x75),%1(0xdf),%1(0x6e) + db %1(0x47),%1(0xf1),%1(0x1a),%1(0x71),%1(0x1d),%1(0x29),%1(0xc5),%1(0x89) + db %1(0x6f),%1(0xb7),%1(0x62),%1(0x0e),%1(0xaa),%1(0x18),%1(0xbe),%1(0x1b) + db %1(0xfc),%1(0x56),%1(0x3e),%1(0x4b),%1(0xc6),%1(0xd2),%1(0x79),%1(0x20) + db %1(0x9a),%1(0xdb),%1(0xc0),%1(0xfe),%1(0x78),%1(0xcd),%1(0x5a),%1(0xf4) + db %1(0x1f),%1(0xdd),%1(0xa8),%1(0x33),%1(0x88),%1(0x07),%1(0xc7),%1(0x31) + db %1(0xb1),%1(0x12),%1(0x10),%1(0x59),%1(0x27),%1(0x80),%1(0xec),%1(0x5f) + db %1(0x60),%1(0x51),%1(0x7f),%1(0xa9),%1(0x19),%1(0xb5),%1(0x4a),%1(0x0d) + db %1(0x2d),%1(0xe5),%1(0x7a),%1(0x9f),%1(0x93),%1(0xc9),%1(0x9c),%1(0xef) + db %1(0xa0),%1(0xe0),%1(0x3b),%1(0x4d),%1(0xae),%1(0x2a),%1(0xf5),%1(0xb0) + db %1(0xc8),%1(0xeb),%1(0xbb),%1(0x3c),%1(0x83),%1(0x53),%1(0x99),%1(0x61) + db %1(0x17),%1(0x2b),%1(0x04),%1(0x7e),%1(0xba),%1(0x77),%1(0xd6),%1(0x26) + db %1(0xe1),%1(0x69),%1(0x14),%1(0x63),%1(0x55),%1(0x21),%1(0x0c),%1(0x7d) +%endmacro + +%define u8(x) f2(x), x, x, f3(x), f2(x), x, x, f3(x) +%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x +%define w8(x) x, 0, 0, 0, x, 0, 0, 0 + +%define tptr rbp ; table pointer +%define kptr r8 ; key schedule pointer +%define fofs 128 ; adjust offset in key schedule to keep |disp| < 128 +%define fk_ref(x,y) [kptr-16*x+fofs+4*y] +%ifdef AES_REV_DKS +%define rofs 128 +%define ik_ref(x,y) [kptr-16*x+rofs+4*y] +%else +%define rofs -128 +%define ik_ref(x,y) [kptr+16*x+rofs+4*y] +%endif + +%define tab_0(x) [tptr+8*x] +%define tab_1(x) [tptr+8*x+3] +%define tab_2(x) [tptr+8*x+2] +%define tab_3(x) [tptr+8*x+1] +%define tab_f(x) byte [tptr+8*x+1] +%define tab_i(x) byte [tptr+8*x+7] +%define t_ref(x,r) tab_ %+ x(r) + +%macro ff_rnd 5 ; normal forward round + mov %1d, fk_ref(%5,0) + mov %2d, fk_ref(%5,1) + mov %3d, fk_ref(%5,2) + mov %4d, fk_ref(%5,3) + + movzx esi, al + movzx edi, ah + shr eax, 16 + xor %1d, t_ref(0,rsi) + xor %4d, t_ref(1,rdi) + movzx esi, al + movzx edi, ah + xor %3d, t_ref(2,rsi) + xor %2d, t_ref(3,rdi) + + movzx esi, bl + movzx edi, bh + shr ebx, 16 + xor %2d, t_ref(0,rsi) + xor %1d, t_ref(1,rdi) + movzx esi, bl + movzx edi, bh + xor %4d, t_ref(2,rsi) + xor %3d, t_ref(3,rdi) + + movzx esi, cl + movzx edi, ch + shr ecx, 16 + xor %3d, t_ref(0,rsi) + xor %2d, t_ref(1,rdi) + movzx esi, cl + movzx edi, ch + xor %1d, t_ref(2,rsi) + xor %4d, t_ref(3,rdi) + + movzx esi, dl + movzx edi, dh + shr edx, 16 + xor %4d, t_ref(0,rsi) + xor %3d, t_ref(1,rdi) + movzx esi, dl + movzx edi, dh + xor %2d, t_ref(2,rsi) + xor %1d, t_ref(3,rdi) + + mov eax,%1d + mov ebx,%2d + mov ecx,%3d + mov edx,%4d +%endmacro + +%ifdef LAST_ROUND_TABLES + +%macro fl_rnd 5 ; last forward round + add tptr, 2048 + mov %1d, fk_ref(%5,0) + mov %2d, fk_ref(%5,1) + mov %3d, fk_ref(%5,2) + mov %4d, fk_ref(%5,3) + + movzx esi, al + movzx edi, ah + shr eax, 16 + xor %1d, t_ref(0,rsi) + xor %4d, t_ref(1,rdi) + movzx esi, al + movzx edi, ah + xor %3d, t_ref(2,rsi) + xor %2d, t_ref(3,rdi) + + movzx esi, bl + movzx edi, bh + shr ebx, 16 + xor %2d, t_ref(0,rsi) + xor %1d, t_ref(1,rdi) + movzx esi, bl + movzx edi, bh + xor %4d, t_ref(2,rsi) + xor %3d, t_ref(3,rdi) + + movzx esi, cl + movzx edi, ch + shr ecx, 16 + xor %3d, t_ref(0,rsi) + xor %2d, t_ref(1,rdi) + movzx esi, cl + movzx edi, ch + xor %1d, t_ref(2,rsi) + xor %4d, t_ref(3,rdi) + + movzx esi, dl + movzx edi, dh + shr edx, 16 + xor %4d, t_ref(0,rsi) + xor %3d, t_ref(1,rdi) + movzx esi, dl + movzx edi, dh + xor %2d, t_ref(2,rsi) + xor %1d, t_ref(3,rdi) +%endmacro + +%else + +%macro fl_rnd 5 ; last forward round + mov %1d, fk_ref(%5,0) + mov %2d, fk_ref(%5,1) + mov %3d, fk_ref(%5,2) + mov %4d, fk_ref(%5,3) + + movzx esi, al + movzx edi, ah + shr eax, 16 + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + xor %1d, esi + rol edi, 8 + xor %4d, edi + movzx esi, al + movzx edi, ah + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + rol esi, 16 + rol edi, 24 + xor %3d, esi + xor %2d, edi + + movzx esi, bl + movzx edi, bh + shr ebx, 16 + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + xor %2d, esi + rol edi, 8 + xor %1d, edi + movzx esi, bl + movzx edi, bh + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + rol esi, 16 + rol edi, 24 + xor %4d, esi + xor %3d, edi + + movzx esi, cl + movzx edi, ch + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + shr ecx, 16 + xor %3d, esi + rol edi, 8 + xor %2d, edi + movzx esi, cl + movzx edi, ch + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + rol esi, 16 + rol edi, 24 + xor %1d, esi + xor %4d, edi + + movzx esi, dl + movzx edi, dh + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + shr edx, 16 + xor %4d, esi + rol edi, 8 + xor %3d, edi + movzx esi, dl + movzx edi, dh + movzx esi, t_ref(f,rsi) + movzx edi, t_ref(f,rdi) + rol esi, 16 + rol edi, 24 + xor %2d, esi + xor %1d, edi +%endmacro + +%endif + +%macro ii_rnd 5 ; normal inverse round + mov %1d, ik_ref(%5,0) + mov %2d, ik_ref(%5,1) + mov %3d, ik_ref(%5,2) + mov %4d, ik_ref(%5,3) + + movzx esi, al + movzx edi, ah + shr eax, 16 + xor %1d, t_ref(0,rsi) + xor %2d, t_ref(1,rdi) + movzx esi, al + movzx edi, ah + xor %3d, t_ref(2,rsi) + xor %4d, t_ref(3,rdi) + + movzx esi, bl + movzx edi, bh + shr ebx, 16 + xor %2d, t_ref(0,rsi) + xor %3d, t_ref(1,rdi) + movzx esi, bl + movzx edi, bh + xor %4d, t_ref(2,rsi) + xor %1d, t_ref(3,rdi) + + movzx esi, cl + movzx edi, ch + shr ecx, 16 + xor %3d, t_ref(0,rsi) + xor %4d, t_ref(1,rdi) + movzx esi, cl + movzx edi, ch + xor %1d, t_ref(2,rsi) + xor %2d, t_ref(3,rdi) + + movzx esi, dl + movzx edi, dh + shr edx, 16 + xor %4d, t_ref(0,rsi) + xor %1d, t_ref(1,rdi) + movzx esi, dl + movzx edi, dh + xor %2d, t_ref(2,rsi) + xor %3d, t_ref(3,rdi) + + mov eax,%1d + mov ebx,%2d + mov ecx,%3d + mov edx,%4d +%endmacro + +%ifdef LAST_ROUND_TABLES + +%macro il_rnd 5 ; last inverse round + add tptr, 2048 + mov %1d, ik_ref(%5,0) + mov %2d, ik_ref(%5,1) + mov %3d, ik_ref(%5,2) + mov %4d, ik_ref(%5,3) + + movzx esi, al + movzx edi, ah + shr eax, 16 + xor %1d, t_ref(0,rsi) + xor %2d, t_ref(1,rdi) + movzx esi, al + movzx edi, ah + xor %3d, t_ref(2,rsi) + xor %4d, t_ref(3,rdi) + + movzx esi, bl + movzx edi, bh + shr ebx, 16 + xor %2d, t_ref(0,rsi) + xor %3d, t_ref(1,rdi) + movzx esi, bl + movzx edi, bh + xor %4d, t_ref(2,rsi) + xor %1d, t_ref(3,rdi) + + movzx esi, cl + movzx edi, ch + shr ecx, 16 + xor %3d, t_ref(0,rsi) + xor %4d, t_ref(1,rdi) + movzx esi, cl + movzx edi, ch + xor %1d, t_ref(2,rsi) + xor %2d, t_ref(3,rdi) + + movzx esi, dl + movzx edi, dh + shr edx, 16 + xor %4d, t_ref(0,rsi) + xor %1d, t_ref(1,rdi) + movzx esi, dl + movzx edi, dh + xor %2d, t_ref(2,rsi) + xor %3d, t_ref(3,rdi) +%endmacro + +%else + +%macro il_rnd 5 ; last inverse round + mov %1d, ik_ref(%5,0) + mov %2d, ik_ref(%5,1) + mov %3d, ik_ref(%5,2) + mov %4d, ik_ref(%5,3) + + movzx esi, al + movzx edi, ah + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + shr eax, 16 + xor %1d, esi + rol edi, 8 + xor %2d, edi + movzx esi, al + movzx edi, ah + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + rol esi, 16 + rol edi, 24 + xor %3d, esi + xor %4d, edi + + movzx esi, bl + movzx edi, bh + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + shr ebx, 16 + xor %2d, esi + rol edi, 8 + xor %3d, edi + movzx esi, bl + movzx edi, bh + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + rol esi, 16 + rol edi, 24 + xor %4d, esi + xor %1d, edi + + movzx esi, cl + movzx edi, ch + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + shr ecx, 16 + xor %3d, esi + rol edi, 8 + xor %4d, edi + movzx esi, cl + movzx edi, ch + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + rol esi, 16 + rol edi, 24 + xor %1d, esi + xor %2d, edi + + movzx esi, dl + movzx edi, dh + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + shr edx, 16 + xor %4d, esi + rol edi, 8 + xor %1d, edi + movzx esi, dl + movzx edi, dh + movzx esi, t_ref(i,rsi) + movzx edi, t_ref(i,rdi) + rol esi, 16 + rol edi, 24 + xor %2d, esi + xor %3d, edi +%endmacro + +%endif + +%ifdef ENCRYPTION + + global aes_encrypt +%ifdef DLL_EXPORT + export aes_encrypt +%endif + + section .data align=64 + align 64 +enc_tab: + enc_vals u8 +%ifdef LAST_ROUND_TABLES + enc_vals w8 +%endif + + section .text align=16 + align 16 + +%ifdef _SEH_ +proc_frame aes_encrypt + alloc_stack 7*8 ; 7 to align stack to 16 bytes + save_reg rsi,4*8 + save_reg rdi,5*8 + save_reg rbx,1*8 + save_reg rbp,2*8 + save_reg r12,3*8 +end_prologue + mov rdi, rcx ; input pointer + mov [rsp+0*8], rdx ; output pointer +%else + aes_encrypt: + %ifdef __GNUC__ + sub rsp, 4*8 ; gnu/linux binary interface + mov [rsp+0*8], rsi ; output pointer + mov r8, rdx ; context + %else + sub rsp, 6*8 ; windows binary interface + mov [rsp+4*8], rsi + mov [rsp+5*8], rdi + mov rdi, rcx ; input pointer + mov [rsp+0*8], rdx ; output pointer + %endif + mov [rsp+1*8], rbx ; input pointer in rdi + mov [rsp+2*8], rbp ; output pointer in [rsp] + mov [rsp+3*8], r12 ; context in r8 +%endif + + movzx esi, byte [kptr+4*KS_LENGTH] + lea tptr, [rel enc_tab] + sub kptr, fofs + + mov eax, [rdi+0*4] + mov ebx, [rdi+1*4] + mov ecx, [rdi+2*4] + mov edx, [rdi+3*4] + + xor eax, [kptr+fofs] + xor ebx, [kptr+fofs+4] + xor ecx, [kptr+fofs+8] + xor edx, [kptr+fofs+12] + + lea kptr,[kptr+rsi] + cmp esi, 10*16 + je .3 + cmp esi, 12*16 + je .2 + cmp esi, 14*16 + je .1 + mov rax, -1 + jmp .4 + +.1: ff_rnd r9, r10, r11, r12, 13 + ff_rnd r9, r10, r11, r12, 12 +.2: ff_rnd r9, r10, r11, r12, 11 + ff_rnd r9, r10, r11, r12, 10 +.3: ff_rnd r9, r10, r11, r12, 9 + ff_rnd r9, r10, r11, r12, 8 + ff_rnd r9, r10, r11, r12, 7 + ff_rnd r9, r10, r11, r12, 6 + ff_rnd r9, r10, r11, r12, 5 + ff_rnd r9, r10, r11, r12, 4 + ff_rnd r9, r10, r11, r12, 3 + ff_rnd r9, r10, r11, r12, 2 + ff_rnd r9, r10, r11, r12, 1 + fl_rnd r9, r10, r11, r12, 0 + + mov rbx, [rsp] + mov [rbx], r9d + mov [rbx+4], r10d + mov [rbx+8], r11d + mov [rbx+12], r12d + xor rax, rax +.4: + mov rbx, [rsp+1*8] + mov rbp, [rsp+2*8] + mov r12, [rsp+3*8] +%ifdef __GNUC__ + add rsp, 4*8 + ret +%else + mov rsi, [rsp+4*8] + mov rdi, [rsp+5*8] + %ifdef _SEH_ + add rsp, 7*8 + ret + endproc_frame + %else + add rsp, 6*8 + ret + %endif +%endif + +%endif + +%ifdef DECRYPTION + + global aes_decrypt +%ifdef DLL_EXPORT + export aes_decrypt +%endif + + section .data + align 64 +dec_tab: + dec_vals v8 +%ifdef LAST_ROUND_TABLES + dec_vals w8 +%endif + + section .text + align 16 + +%ifdef _SEH_ +proc_frame aes_decrypt + alloc_stack 7*8 ; 7 to align stack to 16 bytes + save_reg rsi,4*8 + save_reg rdi,5*8 + save_reg rbx,1*8 + save_reg rbp,2*8 + save_reg r12,3*8 +end_prologue + mov rdi, rcx ; input pointer + mov [rsp+0*8], rdx ; output pointer +%else + aes_decrypt: + %ifdef __GNUC__ + sub rsp, 4*8 ; gnu/linux binary interface + mov [rsp+0*8], rsi ; output pointer + mov r8, rdx ; context + %else + sub rsp, 6*8 ; windows binary interface + mov [rsp+4*8], rsi + mov [rsp+5*8], rdi + mov rdi, rcx ; input pointer + mov [rsp+0*8], rdx ; output pointer + %endif + mov [rsp+1*8], rbx ; input pointer in rdi + mov [rsp+2*8], rbp ; output pointer in [rsp] + mov [rsp+3*8], r12 ; context in r8 +%endif + + movzx esi,byte[kptr+4*KS_LENGTH] + lea tptr, [rel dec_tab] + sub kptr, rofs + + mov eax, [rdi+0*4] + mov ebx, [rdi+1*4] + mov ecx, [rdi+2*4] + mov edx, [rdi+3*4] + +%ifdef AES_REV_DKS + mov rdi, kptr + lea kptr,[kptr+rsi] +%else + lea rdi,[kptr+rsi] +%endif + + xor eax, [rdi+rofs] + xor ebx, [rdi+rofs+4] + xor ecx, [rdi+rofs+8] + xor edx, [rdi+rofs+12] + + cmp esi, 10*16 + je .3 + cmp esi, 12*16 + je .2 + cmp esi, 14*16 + je .1 + mov rax, -1 + jmp .4 + +.1: ii_rnd r9, r10, r11, r12, 13 + ii_rnd r9, r10, r11, r12, 12 +.2: ii_rnd r9, r10, r11, r12, 11 + ii_rnd r9, r10, r11, r12, 10 +.3: ii_rnd r9, r10, r11, r12, 9 + ii_rnd r9, r10, r11, r12, 8 + ii_rnd r9, r10, r11, r12, 7 + ii_rnd r9, r10, r11, r12, 6 + ii_rnd r9, r10, r11, r12, 5 + ii_rnd r9, r10, r11, r12, 4 + ii_rnd r9, r10, r11, r12, 3 + ii_rnd r9, r10, r11, r12, 2 + ii_rnd r9, r10, r11, r12, 1 + il_rnd r9, r10, r11, r12, 0 + + mov rbx, [rsp] + mov [rbx], r9d + mov [rbx+4], r10d + mov [rbx+8], r11d + mov [rbx+12], r12d + xor rax, rax +.4: mov rbx, [rsp+1*8] + mov rbp, [rsp+2*8] + mov r12, [rsp+3*8] +%ifdef __GNUC__ + add rsp, 4*8 + ret +%else + mov rsi, [rsp+4*8] + mov rdi, [rsp+5*8] + %ifdef _SEH_ + add rsp, 7*8 + ret + endproc_frame + %else + add rsp, 6*8 + ret + %endif +%endif + +%endif diff --git a/src/Crypto/Aes_x86.asm b/src/Crypto/Aes_x86.asm index 239da3e3..3825deee 100644 --- a/src/Crypto/Aes_x86.asm +++ b/src/Crypto/Aes_x86.asm @@ -1,646 +1,646 @@ -
-; ---------------------------------------------------------------------------
-; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-;
-; LICENSE TERMS
-;
-; The free distribution and use of this software is allowed (with or without
-; changes) provided that:
-;
-; 1. source code distributions include the above copyright notice, this
-; list of conditions and the following disclaimer;
-;
-; 2. binary distributions include the above copyright notice, this list
-; of conditions and the following disclaimer in their documentation;
-;
-; 3. the name of the copyright holder is not used to endorse products
-; built using this software without specific written permission.
-;
-; DISCLAIMER
-;
-; This software is provided 'as is' with no explicit or implied warranties
-; in respect of its properties, including, but not limited to, correctness
-; and/or fitness for purpose.
-; ---------------------------------------------------------------------------
-; Issue 20/12/2007
-;
-; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files
-; aeskey.c and aestab.c for support.
-
-;
-; Adapted for TrueCrypt:
-; - Compatibility with NASM and GCC
-;
-
-; An AES implementation for x86 processors using the YASM (or NASM) assembler.
-; This is an assembler implementation that covers encryption and decryption
-; only and is intended as a replacement of the C file aescrypt.c. It hence
-; requires the file aeskey.c for keying and aestab.c for the AES tables. It
-; employs full tables rather than compressed tables.
-
-; This code provides the standard AES block size (128 bits, 16 bytes) and the
-; three standard AES key sizes (128, 192 and 256 bits). It has the same call
-; interface as my C implementation. The ebx, esi, edi and ebp registers are
-; preserved across calls but eax, ecx and edx and the artihmetic status flags
-; are not. It is also important that the defines below match those used in the
-; C code. This code uses the VC++ register saving conentions; if it is used
-; with another compiler, conventions for using and saving registers may need to
-; be checked (and calling conventions). The YASM command line for the VC++
-; custom build step is:
-;
-; yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
-;
-; The calling intefaces are:
-;
-; AES_RETURN aes_encrypt(const unsigned char in_blk[],
-; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt(const unsigned char in_blk[],
-; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
-; const aes_encrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
-; const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_encrypt_key(const unsigned char key[],
-; unsigned int len, const aes_decrypt_ctx cx[1]);
-;
-; AES_RETURN aes_decrypt_key(const unsigned char key[],
-; unsigned int len, const aes_decrypt_ctx cx[1]);
-;
-; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
-; either bits or bytes.
-;
-; Comment in/out the following lines to obtain the desired subroutines. These
-; selections MUST match those in the C header file aes.h
-
-; %define AES_128 ; define if AES with 128 bit keys is needed
-; %define AES_192 ; define if AES with 192 bit keys is needed
-%define AES_256 ; define if AES with 256 bit keys is needed
-; %define AES_VAR ; define if a variable key size is needed
-%define ENCRYPTION ; define if encryption is needed
-%define DECRYPTION ; define if decryption is needed
-%define AES_REV_DKS ; define if key decryption schedule is reversed
-%define LAST_ROUND_TABLES ; define if tables are to be used for last round
-
-; offsets to parameters
-
-in_blk equ 4 ; input byte array address parameter
-out_blk equ 8 ; output byte array address parameter
-ctx equ 12 ; AES context structure
-stk_spc equ 20 ; stack space
-%define parms 12 ; parameter space on stack
-
-; The encryption key schedule has the following in memory layout where N is the
-; number of rounds (10, 12 or 14):
-;
-; lo: | input key (round 0) | ; each round is four 32-bit words
-; | encryption round 1 |
-; | encryption round 2 |
-; ....
-; | encryption round N-1 |
-; hi: | encryption round N |
-;
-; The decryption key schedule is normally set up so that it has the same
-; layout as above by actually reversing the order of the encryption key
-; schedule in memory (this happens when AES_REV_DKS is set):
-;
-; lo: | decryption round 0 | = | encryption round N |
-; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
-; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
-; .... ....
-; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
-; hi: | decryption round N | = | input key (round 0) |
-;
-; with rounds except the first and last modified using inv_mix_column()
-; But if AES_REV_DKS is NOT set the order of keys is left as it is for
-; encryption so that it has to be accessed in reverse when used for
-; decryption (although the inverse mix column modifications are done)
-;
-; lo: | decryption round 0 | = | input key (round 0) |
-; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
-; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
-; .... ....
-; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
-; hi: | decryption round N | = | encryption round N |
-;
-; This layout is faster when the assembler key scheduling provided here
-; is used.
-;
-; The DLL interface must use the _stdcall convention in which the number
-; of bytes of parameter space is added after an @ to the sutine's name.
-; We must also remove our parameters from the stack before return (see
-; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
-
-;%define DLL_EXPORT
-
-; End of user defines
-
-%ifdef AES_VAR
-%ifndef AES_128
-%define AES_128
-%endif
-%ifndef AES_192
-%define AES_192
-%endif
-%ifndef AES_256
-%define AES_256
-%endif
-%endif
-
-%ifdef AES_VAR
-%define KS_LENGTH 60
-%elifdef AES_256
-%define KS_LENGTH 60
-%elifdef AES_192
-%define KS_LENGTH 52
-%else
-%define KS_LENGTH 44
-%endif
-
-; These macros implement stack based local variables
-
-%macro save 2
- mov [esp+4*%1],%2
-%endmacro
-
-%macro restore 2
- mov %1,[esp+4*%2]
-%endmacro
-
-; the DLL has to implement the _stdcall calling interface on return
-; In this case we have to take our parameters (3 4-byte pointers)
-; off the stack
-
-%macro do_name 1-2 parms
-%ifndef DLL_EXPORT
- align 32
- global %1
-%1:
-%else
- align 32
- global %1@%2
- export _%1@%2
-%1@%2:
-%endif
-%endmacro
-
-%macro do_call 1-2 parms
-%ifndef DLL_EXPORT
- call %1
- add esp,%2
-%else
- call %1@%2
-%endif
-%endmacro
-
-%macro do_exit 0-1 parms
-%ifdef DLL_EXPORT
- ret %1
-%else
- ret
-%endif
-%endmacro
-
-%ifdef ENCRYPTION
-
- extern t_fn
-
-%define etab_0(x) [t_fn+4*x]
-%define etab_1(x) [t_fn+1024+4*x]
-%define etab_2(x) [t_fn+2048+4*x]
-%define etab_3(x) [t_fn+3072+4*x]
-
-%ifdef LAST_ROUND_TABLES
-
- extern t_fl
-
-%define eltab_0(x) [t_fl+4*x]
-%define eltab_1(x) [t_fl+1024+4*x]
-%define eltab_2(x) [t_fl+2048+4*x]
-%define eltab_3(x) [t_fl+3072+4*x]
-
-%else
-
-%define etab_b(x) byte [t_fn+3072+4*x]
-
-%endif
-
-; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
-; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
-;
-; Input:
-;
-; EAX column[0]
-; EBX column[1]
-; ECX column[2]
-; EDX column[3]
-; ESI column key[round][2]
-; EDI column key[round][3]
-; EBP scratch
-;
-; Output:
-;
-; EBP column[0] unkeyed
-; EBX column[1] unkeyed
-; ESI column[2] keyed
-; EDI column[3] keyed
-; EAX scratch
-; ECX scratch
-; EDX scratch
-
-%macro rnd_fun 2
-
- rol ebx,16
- %1 esi, cl, 0, ebp
- %1 esi, dh, 1, ebp
- %1 esi, bh, 3, ebp
- %1 edi, dl, 0, ebp
- %1 edi, ah, 1, ebp
- %1 edi, bl, 2, ebp
- %2 ebp, al, 0, ebp
- shr ebx,16
- and eax,0xffff0000
- or eax,ebx
- shr edx,16
- %1 ebp, ah, 1, ebx
- %1 ebp, dh, 3, ebx
- %2 ebx, dl, 2, ebx
- %1 ebx, ch, 1, edx
- %1 ebx, al, 0, edx
- shr eax,16
- shr ecx,16
- %1 ebp, cl, 2, edx
- %1 edi, ch, 3, edx
- %1 esi, al, 2, edx
- %1 ebx, ah, 3, edx
-
-%endmacro
-
-; Basic MOV and XOR Operations for normal rounds
-
-%macro nr_xor 4
- movzx %4,%2
- xor %1,etab_%3(%4)
-%endmacro
-
-%macro nr_mov 4
- movzx %4,%2
- mov %1,etab_%3(%4)
-%endmacro
-
-; Basic MOV and XOR Operations for last round
-
-%ifdef LAST_ROUND_TABLES
-
- %macro lr_xor 4
- movzx %4,%2
- xor %1,eltab_%3(%4)
- %endmacro
-
- %macro lr_mov 4
- movzx %4,%2
- mov %1,eltab_%3(%4)
- %endmacro
-
-%else
-
- %macro lr_xor 4
- movzx %4,%2
- movzx %4,etab_b(%4)
- %if %3 != 0
- shl %4,8*%3
- %endif
- xor %1,%4
- %endmacro
-
- %macro lr_mov 4
- movzx %4,%2
- movzx %1,etab_b(%4)
- %if %3 != 0
- shl %1,8*%3
- %endif
- %endmacro
-
-%endif
-
-%macro enc_round 0
-
- add ebp,16
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- rnd_fun nr_xor, nr_mov
-
- mov eax,ebp
- mov ecx,esi
- mov edx,edi
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
-%macro enc_last_round 0
-
- add ebp,16
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- rnd_fun lr_xor, lr_mov
-
- mov eax,ebp
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
- section .text align=32
-
-; AES Encryption Subroutine
-
- do_name aes_encrypt
-
- sub esp,stk_spc
- mov [esp+16],ebp
- mov [esp+12],ebx
- mov [esp+ 8],esi
- mov [esp+ 4],edi
-
- mov esi,[esp+in_blk+stk_spc] ; input pointer
- mov eax,[esi ]
- mov ebx,[esi+ 4]
- mov ecx,[esi+ 8]
- mov edx,[esi+12]
-
- mov ebp,[esp+ctx+stk_spc] ; key pointer
- movzx edi,byte [ebp+4*KS_LENGTH]
- xor eax,[ebp ]
- xor ebx,[ebp+ 4]
- xor ecx,[ebp+ 8]
- xor edx,[ebp+12]
-
-; determine the number of rounds
-
- cmp edi,10*16
- je .3
- cmp edi,12*16
- je .2
- cmp edi,14*16
- je .1
- mov eax,-1
- jmp .5
-
-.1: enc_round
- enc_round
-.2: enc_round
- enc_round
-.3: enc_round
- enc_round
- enc_round
- enc_round
- enc_round
- enc_round
- enc_round
- enc_round
- enc_round
- enc_last_round
-
- mov edx,[esp+out_blk+stk_spc]
- mov [edx],eax
- mov [edx+4],ebx
- mov [edx+8],esi
- mov [edx+12],edi
- xor eax,eax
-
-.5: mov ebp,[esp+16]
- mov ebx,[esp+12]
- mov esi,[esp+ 8]
- mov edi,[esp+ 4]
- add esp,stk_spc
- do_exit
-
-%endif
-
-%ifdef DECRYPTION
-
- extern t_in
-
-%define dtab_0(x) [t_in+4*x]
-%define dtab_1(x) [t_in+1024+4*x]
-%define dtab_2(x) [t_in+2048+4*x]
-%define dtab_3(x) [t_in+3072+4*x]
-
-%ifdef LAST_ROUND_TABLES
-
- extern t_il
-
-%define dltab_0(x) [t_il+4*x]
-%define dltab_1(x) [t_il+1024+4*x]
-%define dltab_2(x) [t_il+2048+4*x]
-%define dltab_3(x) [t_il+3072+4*x]
-
-%else
-
- extern _t_ibox
-
-%define dtab_x(x) byte [_t_ibox+x]
-
-%endif
-
-%macro irn_fun 2
-
- rol eax,16
- %1 esi, cl, 0, ebp
- %1 esi, bh, 1, ebp
- %1 esi, al, 2, ebp
- %1 edi, dl, 0, ebp
- %1 edi, ch, 1, ebp
- %1 edi, ah, 3, ebp
- %2 ebp, bl, 0, ebp
- shr eax,16
- and ebx,0xffff0000
- or ebx,eax
- shr ecx,16
- %1 ebp, bh, 1, eax
- %1 ebp, ch, 3, eax
- %2 eax, cl, 2, ecx
- %1 eax, bl, 0, ecx
- %1 eax, dh, 1, ecx
- shr ebx,16
- shr edx,16
- %1 esi, dh, 3, ecx
- %1 ebp, dl, 2, ecx
- %1 eax, bh, 3, ecx
- %1 edi, bl, 2, ecx
-
-%endmacro
-
-; Basic MOV and XOR Operations for normal rounds
-
-%macro ni_xor 4
- movzx %4,%2
- xor %1,dtab_%3(%4)
-%endmacro
-
-%macro ni_mov 4
- movzx %4,%2
- mov %1,dtab_%3(%4)
-%endmacro
-
-; Basic MOV and XOR Operations for last round
-
-%ifdef LAST_ROUND_TABLES
-
-%macro li_xor 4
- movzx %4,%2
- xor %1,dltab_%3(%4)
-%endmacro
-
-%macro li_mov 4
- movzx %4,%2
- mov %1,dltab_%3(%4)
-%endmacro
-
-%else
-
- %macro li_xor 4
- movzx %4,%2
- movzx %4,dtab_x(%4)
- %if %3 != 0
- shl %4,8*%3
- %endif
- xor %1,%4
- %endmacro
-
- %macro li_mov 4
- movzx %4,%2
- movzx %1,dtab_x(%4)
- %if %3 != 0
- shl %1,8*%3
- %endif
- %endmacro
-
-%endif
-
-%macro dec_round 0
-
-%ifdef AES_REV_DKS
- add ebp,16
-%else
- sub ebp,16
-%endif
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- irn_fun ni_xor, ni_mov
-
- mov ebx,ebp
- mov ecx,esi
- mov edx,edi
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
-%macro dec_last_round 0
-
-%ifdef AES_REV_DKS
- add ebp,16
-%else
- sub ebp,16
-%endif
- save 0,ebp
- mov esi,[ebp+8]
- mov edi,[ebp+12]
-
- irn_fun li_xor, li_mov
-
- mov ebx,ebp
- restore ebp,0
- xor eax,[ebp]
- xor ebx,[ebp+4]
-
-%endmacro
-
- section .text
-
-; AES Decryption Subroutine
-
- do_name aes_decrypt
-
- sub esp,stk_spc
- mov [esp+16],ebp
- mov [esp+12],ebx
- mov [esp+ 8],esi
- mov [esp+ 4],edi
-
-; input four columns and xor in first round key
-
- mov esi,[esp+in_blk+stk_spc] ; input pointer
- mov eax,[esi ]
- mov ebx,[esi+ 4]
- mov ecx,[esi+ 8]
- mov edx,[esi+12]
- lea esi,[esi+16]
-
- mov ebp,[esp+ctx+stk_spc] ; key pointer
- movzx edi,byte[ebp+4*KS_LENGTH]
-%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
- lea ebp,[ebp+edi] ; we have to access it from the top down
-%endif
- xor eax,[ebp ] ; key schedule
- xor ebx,[ebp+ 4]
- xor ecx,[ebp+ 8]
- xor edx,[ebp+12]
-
-; determine the number of rounds
-
- cmp edi,10*16
- je .3
- cmp edi,12*16
- je .2
- cmp edi,14*16
- je .1
- mov eax,-1
- jmp .5
-
-.1: dec_round
- dec_round
-.2: dec_round
- dec_round
-.3: dec_round
- dec_round
- dec_round
- dec_round
- dec_round
- dec_round
- dec_round
- dec_round
- dec_round
- dec_last_round
-
-; move final values to the output array.
-
- mov ebp,[esp+out_blk+stk_spc]
- mov [ebp],eax
- mov [ebp+4],ebx
- mov [ebp+8],esi
- mov [ebp+12],edi
- xor eax,eax
-
-.5: mov ebp,[esp+16]
- mov ebx,[esp+12]
- mov esi,[esp+ 8]
- mov edi,[esp+ 4]
- add esp,stk_spc
- do_exit
-
-%endif
+ +; --------------------------------------------------------------------------- +; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. +; +; LICENSE TERMS +; +; The free distribution and use of this software is allowed (with or without +; changes) provided that: +; +; 1. source code distributions include the above copyright notice, this +; list of conditions and the following disclaimer; +; +; 2. binary distributions include the above copyright notice, this list +; of conditions and the following disclaimer in their documentation; +; +; 3. the name of the copyright holder is not used to endorse products +; built using this software without specific written permission. +; +; DISCLAIMER +; +; This software is provided 'as is' with no explicit or implied warranties +; in respect of its properties, including, but not limited to, correctness +; and/or fitness for purpose. +; --------------------------------------------------------------------------- +; Issue 20/12/2007 +; +; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files +; aeskey.c and aestab.c for support. + +; +; Adapted for TrueCrypt: +; - Compatibility with NASM and GCC +; + +; An AES implementation for x86 processors using the YASM (or NASM) assembler. +; This is an assembler implementation that covers encryption and decryption +; only and is intended as a replacement of the C file aescrypt.c. It hence +; requires the file aeskey.c for keying and aestab.c for the AES tables. It +; employs full tables rather than compressed tables. + +; This code provides the standard AES block size (128 bits, 16 bytes) and the +; three standard AES key sizes (128, 192 and 256 bits). It has the same call +; interface as my C implementation. The ebx, esi, edi and ebp registers are +; preserved across calls but eax, ecx and edx and the artihmetic status flags +; are not. It is also important that the defines below match those used in the +; C code. This code uses the VC++ register saving conentions; if it is used +; with another compiler, conventions for using and saving registers may need to +; be checked (and calling conventions). The YASM command line for the VC++ +; custom build step is: +; +; yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)" +; +; The calling intefaces are: +; +; AES_RETURN aes_encrypt(const unsigned char in_blk[], +; unsigned char out_blk[], const aes_encrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt(const unsigned char in_blk[], +; unsigned char out_blk[], const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[], +; const aes_encrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[], +; const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_encrypt_key(const unsigned char key[], +; unsigned int len, const aes_decrypt_ctx cx[1]); +; +; AES_RETURN aes_decrypt_key(const unsigned char key[], +; unsigned int len, const aes_decrypt_ctx cx[1]); +; +; where <NNN> is 128, 102 or 256. In the last two calls the length can be in +; either bits or bytes. +; +; Comment in/out the following lines to obtain the desired subroutines. These +; selections MUST match those in the C header file aes.h + +; %define AES_128 ; define if AES with 128 bit keys is needed +; %define AES_192 ; define if AES with 192 bit keys is needed +%define AES_256 ; define if AES with 256 bit keys is needed +; %define AES_VAR ; define if a variable key size is needed +%define ENCRYPTION ; define if encryption is needed +%define DECRYPTION ; define if decryption is needed +%define AES_REV_DKS ; define if key decryption schedule is reversed +%define LAST_ROUND_TABLES ; define if tables are to be used for last round + +; offsets to parameters + +in_blk equ 4 ; input byte array address parameter +out_blk equ 8 ; output byte array address parameter +ctx equ 12 ; AES context structure +stk_spc equ 20 ; stack space +%define parms 12 ; parameter space on stack + +; The encryption key schedule has the following in memory layout where N is the +; number of rounds (10, 12 or 14): +; +; lo: | input key (round 0) | ; each round is four 32-bit words +; | encryption round 1 | +; | encryption round 2 | +; .... +; | encryption round N-1 | +; hi: | encryption round N | +; +; The decryption key schedule is normally set up so that it has the same +; layout as above by actually reversing the order of the encryption key +; schedule in memory (this happens when AES_REV_DKS is set): +; +; lo: | decryption round 0 | = | encryption round N | +; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ] +; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ] +; .... .... +; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ] +; hi: | decryption round N | = | input key (round 0) | +; +; with rounds except the first and last modified using inv_mix_column() +; But if AES_REV_DKS is NOT set the order of keys is left as it is for +; encryption so that it has to be accessed in reverse when used for +; decryption (although the inverse mix column modifications are done) +; +; lo: | decryption round 0 | = | input key (round 0) | +; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ] +; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ] +; .... .... +; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ] +; hi: | decryption round N | = | encryption round N | +; +; This layout is faster when the assembler key scheduling provided here +; is used. +; +; The DLL interface must use the _stdcall convention in which the number +; of bytes of parameter space is added after an @ to the sutine's name. +; We must also remove our parameters from the stack before return (see +; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version. + +;%define DLL_EXPORT + +; End of user defines + +%ifdef AES_VAR +%ifndef AES_128 +%define AES_128 +%endif +%ifndef AES_192 +%define AES_192 +%endif +%ifndef AES_256 +%define AES_256 +%endif +%endif + +%ifdef AES_VAR +%define KS_LENGTH 60 +%elifdef AES_256 +%define KS_LENGTH 60 +%elifdef AES_192 +%define KS_LENGTH 52 +%else +%define KS_LENGTH 44 +%endif + +; These macros implement stack based local variables + +%macro save 2 + mov [esp+4*%1],%2 +%endmacro + +%macro restore 2 + mov %1,[esp+4*%2] +%endmacro + +; the DLL has to implement the _stdcall calling interface on return +; In this case we have to take our parameters (3 4-byte pointers) +; off the stack + +%macro do_name 1-2 parms +%ifndef DLL_EXPORT + align 32 + global %1 +%1: +%else + align 32 + global %1@%2 + export _%1@%2 +%1@%2: +%endif +%endmacro + +%macro do_call 1-2 parms +%ifndef DLL_EXPORT + call %1 + add esp,%2 +%else + call %1@%2 +%endif +%endmacro + +%macro do_exit 0-1 parms +%ifdef DLL_EXPORT + ret %1 +%else + ret +%endif +%endmacro + +%ifdef ENCRYPTION + + extern t_fn + +%define etab_0(x) [t_fn+4*x] +%define etab_1(x) [t_fn+1024+4*x] +%define etab_2(x) [t_fn+2048+4*x] +%define etab_3(x) [t_fn+3072+4*x] + +%ifdef LAST_ROUND_TABLES + + extern t_fl + +%define eltab_0(x) [t_fl+4*x] +%define eltab_1(x) [t_fl+1024+4*x] +%define eltab_2(x) [t_fl+2048+4*x] +%define eltab_3(x) [t_fl+3072+4*x] + +%else + +%define etab_b(x) byte [t_fn+3072+4*x] + +%endif + +; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the +; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX. +; +; Input: +; +; EAX column[0] +; EBX column[1] +; ECX column[2] +; EDX column[3] +; ESI column key[round][2] +; EDI column key[round][3] +; EBP scratch +; +; Output: +; +; EBP column[0] unkeyed +; EBX column[1] unkeyed +; ESI column[2] keyed +; EDI column[3] keyed +; EAX scratch +; ECX scratch +; EDX scratch + +%macro rnd_fun 2 + + rol ebx,16 + %1 esi, cl, 0, ebp + %1 esi, dh, 1, ebp + %1 esi, bh, 3, ebp + %1 edi, dl, 0, ebp + %1 edi, ah, 1, ebp + %1 edi, bl, 2, ebp + %2 ebp, al, 0, ebp + shr ebx,16 + and eax,0xffff0000 + or eax,ebx + shr edx,16 + %1 ebp, ah, 1, ebx + %1 ebp, dh, 3, ebx + %2 ebx, dl, 2, ebx + %1 ebx, ch, 1, edx + %1 ebx, al, 0, edx + shr eax,16 + shr ecx,16 + %1 ebp, cl, 2, edx + %1 edi, ch, 3, edx + %1 esi, al, 2, edx + %1 ebx, ah, 3, edx + +%endmacro + +; Basic MOV and XOR Operations for normal rounds + +%macro nr_xor 4 + movzx %4,%2 + xor %1,etab_%3(%4) +%endmacro + +%macro nr_mov 4 + movzx %4,%2 + mov %1,etab_%3(%4) +%endmacro + +; Basic MOV and XOR Operations for last round + +%ifdef LAST_ROUND_TABLES + + %macro lr_xor 4 + movzx %4,%2 + xor %1,eltab_%3(%4) + %endmacro + + %macro lr_mov 4 + movzx %4,%2 + mov %1,eltab_%3(%4) + %endmacro + +%else + + %macro lr_xor 4 + movzx %4,%2 + movzx %4,etab_b(%4) + %if %3 != 0 + shl %4,8*%3 + %endif + xor %1,%4 + %endmacro + + %macro lr_mov 4 + movzx %4,%2 + movzx %1,etab_b(%4) + %if %3 != 0 + shl %1,8*%3 + %endif + %endmacro + +%endif + +%macro enc_round 0 + + add ebp,16 + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + rnd_fun nr_xor, nr_mov + + mov eax,ebp + mov ecx,esi + mov edx,edi + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + +%macro enc_last_round 0 + + add ebp,16 + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + rnd_fun lr_xor, lr_mov + + mov eax,ebp + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + + section .text align=32 + +; AES Encryption Subroutine + + do_name aes_encrypt + + sub esp,stk_spc + mov [esp+16],ebp + mov [esp+12],ebx + mov [esp+ 8],esi + mov [esp+ 4],edi + + mov esi,[esp+in_blk+stk_spc] ; input pointer + mov eax,[esi ] + mov ebx,[esi+ 4] + mov ecx,[esi+ 8] + mov edx,[esi+12] + + mov ebp,[esp+ctx+stk_spc] ; key pointer + movzx edi,byte [ebp+4*KS_LENGTH] + xor eax,[ebp ] + xor ebx,[ebp+ 4] + xor ecx,[ebp+ 8] + xor edx,[ebp+12] + +; determine the number of rounds + + cmp edi,10*16 + je .3 + cmp edi,12*16 + je .2 + cmp edi,14*16 + je .1 + mov eax,-1 + jmp .5 + +.1: enc_round + enc_round +.2: enc_round + enc_round +.3: enc_round + enc_round + enc_round + enc_round + enc_round + enc_round + enc_round + enc_round + enc_round + enc_last_round + + mov edx,[esp+out_blk+stk_spc] + mov [edx],eax + mov [edx+4],ebx + mov [edx+8],esi + mov [edx+12],edi + xor eax,eax + +.5: mov ebp,[esp+16] + mov ebx,[esp+12] + mov esi,[esp+ 8] + mov edi,[esp+ 4] + add esp,stk_spc + do_exit + +%endif + +%ifdef DECRYPTION + + extern t_in + +%define dtab_0(x) [t_in+4*x] +%define dtab_1(x) [t_in+1024+4*x] +%define dtab_2(x) [t_in+2048+4*x] +%define dtab_3(x) [t_in+3072+4*x] + +%ifdef LAST_ROUND_TABLES + + extern t_il + +%define dltab_0(x) [t_il+4*x] +%define dltab_1(x) [t_il+1024+4*x] +%define dltab_2(x) [t_il+2048+4*x] +%define dltab_3(x) [t_il+3072+4*x] + +%else + + extern _t_ibox + +%define dtab_x(x) byte [_t_ibox+x] + +%endif + +%macro irn_fun 2 + + rol eax,16 + %1 esi, cl, 0, ebp + %1 esi, bh, 1, ebp + %1 esi, al, 2, ebp + %1 edi, dl, 0, ebp + %1 edi, ch, 1, ebp + %1 edi, ah, 3, ebp + %2 ebp, bl, 0, ebp + shr eax,16 + and ebx,0xffff0000 + or ebx,eax + shr ecx,16 + %1 ebp, bh, 1, eax + %1 ebp, ch, 3, eax + %2 eax, cl, 2, ecx + %1 eax, bl, 0, ecx + %1 eax, dh, 1, ecx + shr ebx,16 + shr edx,16 + %1 esi, dh, 3, ecx + %1 ebp, dl, 2, ecx + %1 eax, bh, 3, ecx + %1 edi, bl, 2, ecx + +%endmacro + +; Basic MOV and XOR Operations for normal rounds + +%macro ni_xor 4 + movzx %4,%2 + xor %1,dtab_%3(%4) +%endmacro + +%macro ni_mov 4 + movzx %4,%2 + mov %1,dtab_%3(%4) +%endmacro + +; Basic MOV and XOR Operations for last round + +%ifdef LAST_ROUND_TABLES + +%macro li_xor 4 + movzx %4,%2 + xor %1,dltab_%3(%4) +%endmacro + +%macro li_mov 4 + movzx %4,%2 + mov %1,dltab_%3(%4) +%endmacro + +%else + + %macro li_xor 4 + movzx %4,%2 + movzx %4,dtab_x(%4) + %if %3 != 0 + shl %4,8*%3 + %endif + xor %1,%4 + %endmacro + + %macro li_mov 4 + movzx %4,%2 + movzx %1,dtab_x(%4) + %if %3 != 0 + shl %1,8*%3 + %endif + %endmacro + +%endif + +%macro dec_round 0 + +%ifdef AES_REV_DKS + add ebp,16 +%else + sub ebp,16 +%endif + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + irn_fun ni_xor, ni_mov + + mov ebx,ebp + mov ecx,esi + mov edx,edi + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + +%macro dec_last_round 0 + +%ifdef AES_REV_DKS + add ebp,16 +%else + sub ebp,16 +%endif + save 0,ebp + mov esi,[ebp+8] + mov edi,[ebp+12] + + irn_fun li_xor, li_mov + + mov ebx,ebp + restore ebp,0 + xor eax,[ebp] + xor ebx,[ebp+4] + +%endmacro + + section .text + +; AES Decryption Subroutine + + do_name aes_decrypt + + sub esp,stk_spc + mov [esp+16],ebp + mov [esp+12],ebx + mov [esp+ 8],esi + mov [esp+ 4],edi + +; input four columns and xor in first round key + + mov esi,[esp+in_blk+stk_spc] ; input pointer + mov eax,[esi ] + mov ebx,[esi+ 4] + mov ecx,[esi+ 8] + mov edx,[esi+12] + lea esi,[esi+16] + + mov ebp,[esp+ctx+stk_spc] ; key pointer + movzx edi,byte[ebp+4*KS_LENGTH] +%ifndef AES_REV_DKS ; if decryption key schedule is not reversed + lea ebp,[ebp+edi] ; we have to access it from the top down +%endif + xor eax,[ebp ] ; key schedule + xor ebx,[ebp+ 4] + xor ecx,[ebp+ 8] + xor edx,[ebp+12] + +; determine the number of rounds + + cmp edi,10*16 + je .3 + cmp edi,12*16 + je .2 + cmp edi,14*16 + je .1 + mov eax,-1 + jmp .5 + +.1: dec_round + dec_round +.2: dec_round + dec_round +.3: dec_round + dec_round + dec_round + dec_round + dec_round + dec_round + dec_round + dec_round + dec_round + dec_last_round + +; move final values to the output array. + + mov ebp,[esp+out_blk+stk_spc] + mov [ebp],eax + mov [ebp+4],ebx + mov [ebp+8],esi + mov [ebp+12],edi + xor eax,eax + +.5: mov ebp,[esp+16] + mov ebx,[esp+12] + mov esi,[esp+ 8] + mov edi,[esp+ 4] + add esp,stk_spc + do_exit + +%endif diff --git a/src/Crypto/Aescrypt.c b/src/Crypto/Aescrypt.c index c77ec675..46175981 100644 --- a/src/Crypto/Aescrypt.c +++ b/src/Crypto/Aescrypt.c @@ -1,311 +1,311 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-*/
-
-#include "Aesopt.h"
-#include "Aestab.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
-#define so(y,x,c) word_out(y, c, s(x,c))
-
-#if defined(ARRAYS)
-#define locals(y,x) x[4],y[4]
-#else
-#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
-#endif
-
-#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
- s(y,2) = s(x,2); s(y,3) = s(x,3);
-#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
-#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
-#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
-
-#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
- Pentium optimiation with small code but this is poor for decryption
- so we need to control this with the following VC++ pragmas
-*/
-
-#if defined( _MSC_VER ) && !defined( _WIN64 )
-#pragma optimize( "s", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
- macros give the input state variables which are needed in its
- computation for each row (r) of the state. All the alternative
- macros give the same end values but expand into different ways
- of calculating these values. In particular the complex macro
- used for dynamically variable block sizes is designed to expand
- to a compile time constant whenever possible but will expand to
- conditional clauses on some branches (I am grateful to Frank
- Yellin for this construction)
-*/
-
-#define fwd_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- : ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
-
-#if defined(FT4_SET)
-#undef dec_fmvars
-#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
-#elif defined(FT1_SET)
-#undef dec_fmvars
-#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
-#else
-#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
-#endif
-
-#if defined(FL4_SET)
-#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
-#elif defined(FL1_SET)
-#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
-#else
-#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
-#endif
-
-AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
-{ uint_32t locals(b0, b1);
- const uint_32t *kp;
-#if defined( dec_fmvars )
- dec_fmvars; /* declare variables for fwd_mcol() if needed */
-#endif
-
-#if defined( AES_ERR_CHK )
- if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
- return EXIT_FAILURE;
-#endif
-
- kp = cx->ks;
- state_in(b0, in, kp);
-
-#if (ENC_UNROLL == FULL)
-
- switch(cx->inf.b[0])
- {
- case 14 * 16:
- round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
- kp += 2 * N_COLS;
- case 12 * 16:
- round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
- kp += 2 * N_COLS;
- case 10 * 16:
- round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
- round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
- round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
- round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
- }
-
-#else
-
-#if (ENC_UNROLL == PARTIAL)
- { uint_32t rnd;
- for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
- {
- kp += N_COLS;
- round(fwd_rnd, b1, b0, kp);
- kp += N_COLS;
- round(fwd_rnd, b0, b1, kp);
- }
- kp += N_COLS;
- round(fwd_rnd, b1, b0, kp);
-#else
- { uint_32t rnd;
- for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
- {
- kp += N_COLS;
- round(fwd_rnd, b1, b0, kp);
- l_copy(b0, b1);
- }
-#endif
- kp += N_COLS;
- round(fwd_lrnd, b0, b1, kp);
- }
-#endif
-
- state_out(out, b0);
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if ( FUNCS_IN_C & DECRYPTION_IN_C)
-
-/* Visual C++ .Net v7.1 provides the fastest encryption code when using
- Pentium optimiation with small code but this is poor for decryption
- so we need to control this with the following VC++ pragmas
-*/
-
-#if defined( _MSC_VER ) && !defined( _WIN64 )
-#pragma optimize( "t", on )
-#endif
-
-/* Given the column (c) of the output state variable, the following
- macros give the input state variables which are needed in its
- computation for each row (r) of the state. All the alternative
- macros give the same end values but expand into different ways
- of calculating these values. In particular the complex macro
- used for dynamically variable block sizes is designed to expand
- to a compile time constant whenever possible but will expand to
- conditional clauses on some branches (I am grateful to Frank
- Yellin for this construction)
-*/
-
-#define inv_var(x,r,c)\
- ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
- : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
- : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
- : ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
-
-#if defined(IT4_SET)
-#undef dec_imvars
-#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
-#elif defined(IT1_SET)
-#undef dec_imvars
-#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
-#else
-#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
-#endif
-
-#if defined(IL4_SET)
-#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
-#elif defined(IL1_SET)
-#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
-#else
-#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
-#endif
-
-/* This code can work with the decryption key schedule in the */
-/* order that is used for encrytpion (where the 1st decryption */
-/* round key is at the high end ot the schedule) or with a key */
-/* schedule that has been reversed to put the 1st decryption */
-/* round key at the low end of the schedule in memory (when */
-/* AES_REV_DKS is defined) */
-
-#ifdef AES_REV_DKS
-#define key_ofs 0
-#define rnd_key(n) (kp + n * N_COLS)
-#else
-#define key_ofs 1
-#define rnd_key(n) (kp - n * N_COLS)
-#endif
-
-AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
-{ uint_32t locals(b0, b1);
-#if defined( dec_imvars )
- dec_imvars; /* declare variables for inv_mcol() if needed */
-#endif
- const uint_32t *kp;
-
-#if defined( AES_ERR_CHK )
- if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
- return EXIT_FAILURE;
-#endif
-
- kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
- state_in(b0, in, kp);
-
-#if (DEC_UNROLL == FULL)
-
- kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
- switch(cx->inf.b[0])
- {
- case 14 * 16:
- round(inv_rnd, b1, b0, rnd_key(-13));
- round(inv_rnd, b0, b1, rnd_key(-12));
- case 12 * 16:
- round(inv_rnd, b1, b0, rnd_key(-11));
- round(inv_rnd, b0, b1, rnd_key(-10));
- case 10 * 16:
- round(inv_rnd, b1, b0, rnd_key(-9));
- round(inv_rnd, b0, b1, rnd_key(-8));
- round(inv_rnd, b1, b0, rnd_key(-7));
- round(inv_rnd, b0, b1, rnd_key(-6));
- round(inv_rnd, b1, b0, rnd_key(-5));
- round(inv_rnd, b0, b1, rnd_key(-4));
- round(inv_rnd, b1, b0, rnd_key(-3));
- round(inv_rnd, b0, b1, rnd_key(-2));
- round(inv_rnd, b1, b0, rnd_key(-1));
- round(inv_lrnd, b0, b1, rnd_key( 0));
- }
-
-#else
-
-#if (DEC_UNROLL == PARTIAL)
- { uint_32t rnd;
- for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
- {
- kp = rnd_key(1);
- round(inv_rnd, b1, b0, kp);
- kp = rnd_key(1);
- round(inv_rnd, b0, b1, kp);
- }
- kp = rnd_key(1);
- round(inv_rnd, b1, b0, kp);
-#else
- { uint_32t rnd;
- for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
- {
- kp = rnd_key(1);
- round(inv_rnd, b1, b0, kp);
- l_copy(b0, b1);
- }
-#endif
- kp = rnd_key(1);
- round(inv_lrnd, b0, b1, kp);
- }
-#endif
-
- state_out(out, b0);
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 +*/ + +#include "Aesopt.h" +#include "Aestab.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c]) +#define so(y,x,c) word_out(y, c, s(x,c)) + +#if defined(ARRAYS) +#define locals(y,x) x[4],y[4] +#else +#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3 +#endif + +#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \ + s(y,2) = s(x,2); s(y,3) = s(x,3); +#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3) +#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3) +#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3) + +#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) + +/* Visual C++ .Net v7.1 provides the fastest encryption code when using + Pentium optimiation with small code but this is poor for decryption + so we need to control this with the following VC++ pragmas +*/ + +#if defined( _MSC_VER ) && !defined( _WIN64 ) +#pragma optimize( "s", on ) +#endif + +/* Given the column (c) of the output state variable, the following + macros give the input state variables which are needed in its + computation for each row (r) of the state. All the alternative + macros give the same end values but expand into different ways + of calculating these values. In particular the complex macro + used for dynamically variable block sizes is designed to expand + to a compile time constant whenever possible but will expand to + conditional clauses on some branches (I am grateful to Frank + Yellin for this construction) +*/ + +#define fwd_var(x,r,c)\ + ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ + : r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\ + : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ + : ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))) + +#if defined(FT4_SET) +#undef dec_fmvars +#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c)) +#elif defined(FT1_SET) +#undef dec_fmvars +#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c)) +#else +#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c))) +#endif + +#if defined(FL4_SET) +#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c)) +#elif defined(FL1_SET) +#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c)) +#else +#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c)) +#endif + +AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]) +{ uint_32t locals(b0, b1); + const uint_32t *kp; +#if defined( dec_fmvars ) + dec_fmvars; /* declare variables for fwd_mcol() if needed */ +#endif + +#if defined( AES_ERR_CHK ) + if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 ) + return EXIT_FAILURE; +#endif + + kp = cx->ks; + state_in(b0, in, kp); + +#if (ENC_UNROLL == FULL) + + switch(cx->inf.b[0]) + { + case 14 * 16: + round(fwd_rnd, b1, b0, kp + 1 * N_COLS); + round(fwd_rnd, b0, b1, kp + 2 * N_COLS); + kp += 2 * N_COLS; + case 12 * 16: + round(fwd_rnd, b1, b0, kp + 1 * N_COLS); + round(fwd_rnd, b0, b1, kp + 2 * N_COLS); + kp += 2 * N_COLS; + case 10 * 16: + round(fwd_rnd, b1, b0, kp + 1 * N_COLS); + round(fwd_rnd, b0, b1, kp + 2 * N_COLS); + round(fwd_rnd, b1, b0, kp + 3 * N_COLS); + round(fwd_rnd, b0, b1, kp + 4 * N_COLS); + round(fwd_rnd, b1, b0, kp + 5 * N_COLS); + round(fwd_rnd, b0, b1, kp + 6 * N_COLS); + round(fwd_rnd, b1, b0, kp + 7 * N_COLS); + round(fwd_rnd, b0, b1, kp + 8 * N_COLS); + round(fwd_rnd, b1, b0, kp + 9 * N_COLS); + round(fwd_lrnd, b0, b1, kp +10 * N_COLS); + } + +#else + +#if (ENC_UNROLL == PARTIAL) + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd) + { + kp += N_COLS; + round(fwd_rnd, b1, b0, kp); + kp += N_COLS; + round(fwd_rnd, b0, b1, kp); + } + kp += N_COLS; + round(fwd_rnd, b1, b0, kp); +#else + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd) + { + kp += N_COLS; + round(fwd_rnd, b1, b0, kp); + l_copy(b0, b1); + } +#endif + kp += N_COLS; + round(fwd_lrnd, b0, b1, kp); + } +#endif + + state_out(out, b0); + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if ( FUNCS_IN_C & DECRYPTION_IN_C) + +/* Visual C++ .Net v7.1 provides the fastest encryption code when using + Pentium optimiation with small code but this is poor for decryption + so we need to control this with the following VC++ pragmas +*/ + +#if defined( _MSC_VER ) && !defined( _WIN64 ) +#pragma optimize( "t", on ) +#endif + +/* Given the column (c) of the output state variable, the following + macros give the input state variables which are needed in its + computation for each row (r) of the state. All the alternative + macros give the same end values but expand into different ways + of calculating these values. In particular the complex macro + used for dynamically variable block sizes is designed to expand + to a compile time constant whenever possible but will expand to + conditional clauses on some branches (I am grateful to Frank + Yellin for this construction) +*/ + +#define inv_var(x,r,c)\ + ( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\ + : r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\ + : r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\ + : ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))) + +#if defined(IT4_SET) +#undef dec_imvars +#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c)) +#elif defined(IT1_SET) +#undef dec_imvars +#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c)) +#else +#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))) +#endif + +#if defined(IL4_SET) +#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c)) +#elif defined(IL1_SET) +#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c)) +#else +#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)) +#endif + +/* This code can work with the decryption key schedule in the */ +/* order that is used for encrytpion (where the 1st decryption */ +/* round key is at the high end ot the schedule) or with a key */ +/* schedule that has been reversed to put the 1st decryption */ +/* round key at the low end of the schedule in memory (when */ +/* AES_REV_DKS is defined) */ + +#ifdef AES_REV_DKS +#define key_ofs 0 +#define rnd_key(n) (kp + n * N_COLS) +#else +#define key_ofs 1 +#define rnd_key(n) (kp - n * N_COLS) +#endif + +AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]) +{ uint_32t locals(b0, b1); +#if defined( dec_imvars ) + dec_imvars; /* declare variables for inv_mcol() if needed */ +#endif + const uint_32t *kp; + +#if defined( AES_ERR_CHK ) + if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 ) + return EXIT_FAILURE; +#endif + + kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0); + state_in(b0, in, kp); + +#if (DEC_UNROLL == FULL) + + kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2)); + switch(cx->inf.b[0]) + { + case 14 * 16: + round(inv_rnd, b1, b0, rnd_key(-13)); + round(inv_rnd, b0, b1, rnd_key(-12)); + case 12 * 16: + round(inv_rnd, b1, b0, rnd_key(-11)); + round(inv_rnd, b0, b1, rnd_key(-10)); + case 10 * 16: + round(inv_rnd, b1, b0, rnd_key(-9)); + round(inv_rnd, b0, b1, rnd_key(-8)); + round(inv_rnd, b1, b0, rnd_key(-7)); + round(inv_rnd, b0, b1, rnd_key(-6)); + round(inv_rnd, b1, b0, rnd_key(-5)); + round(inv_rnd, b0, b1, rnd_key(-4)); + round(inv_rnd, b1, b0, rnd_key(-3)); + round(inv_rnd, b0, b1, rnd_key(-2)); + round(inv_rnd, b1, b0, rnd_key(-1)); + round(inv_lrnd, b0, b1, rnd_key( 0)); + } + +#else + +#if (DEC_UNROLL == PARTIAL) + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd) + { + kp = rnd_key(1); + round(inv_rnd, b1, b0, kp); + kp = rnd_key(1); + round(inv_rnd, b0, b1, kp); + } + kp = rnd_key(1); + round(inv_rnd, b1, b0, kp); +#else + { uint_32t rnd; + for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd) + { + kp = rnd_key(1); + round(inv_rnd, b1, b0, kp); + l_copy(b0, b1); + } +#endif + kp = rnd_key(1); + round(inv_lrnd, b0, b1, kp); + } +#endif + + state_out(out, b0); + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(__cplusplus) +} +#endif diff --git a/src/Crypto/Aeskey.c b/src/Crypto/Aeskey.c index 948b9238..c9ab0269 100644 --- a/src/Crypto/Aeskey.c +++ b/src/Crypto/Aeskey.c @@ -1,573 +1,573 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-*/
-
-#include "Aesopt.h"
-#include "Aestab.h"
-
-#ifdef USE_VIA_ACE_IF_PRESENT
-# include "aes_via_ace.h"
-#endif
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/* Initialise the key schedule from the user supplied key. The key
- length can be specified in bytes, with legal values of 16, 24
- and 32, or in bits, with legal values of 128, 192 and 256. These
- values correspond with Nk values of 4, 6 and 8 respectively.
-
- The following macros implement a single cycle in the key
- schedule generation process. The number of cycles needed
- for each cx->n_col and nk value is:
-
- nk = 4 5 6 7 8
- ------------------------------
- cx->n_col = 4 10 9 8 7 7
- cx->n_col = 5 14 11 10 9 9
- cx->n_col = 6 19 15 12 11 11
- cx->n_col = 7 21 19 16 13 14
- cx->n_col = 8 29 23 19 17 14
-*/
-
-#if (FUNCS_IN_C & ENC_KEYING_IN_C)
-
-#if defined(AES_128) || defined(AES_VAR)
-
-#define ke4(k,i) \
-{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
- k[4*(i)+5] = ss[1] ^= ss[0]; \
- k[4*(i)+6] = ss[2] ^= ss[1]; \
- k[4*(i)+7] = ss[3] ^= ss[2]; \
-}
-
-AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
-{ uint_32t ss[4];
-
- cx->ks[0] = ss[0] = word_in(key, 0);
- cx->ks[1] = ss[1] = word_in(key, 1);
- cx->ks[2] = ss[2] = word_in(key, 2);
- cx->ks[3] = ss[3] = word_in(key, 3);
-
-#if ENC_UNROLL == NONE
- { uint_32t i;
- for(i = 0; i < 9; ++i)
- ke4(cx->ks, i);
- }
-#else
- ke4(cx->ks, 0); ke4(cx->ks, 1);
- ke4(cx->ks, 2); ke4(cx->ks, 3);
- ke4(cx->ks, 4); ke4(cx->ks, 5);
- ke4(cx->ks, 6); ke4(cx->ks, 7);
- ke4(cx->ks, 8);
-#endif
- ke4(cx->ks, 9);
- cx->inf.l = 0;
- cx->inf.b[0] = 10 * 16;
-
-#ifdef USE_VIA_ACE_IF_PRESENT
- if(VIA_ACE_AVAILABLE)
- cx->inf.b[1] = 0xff;
-#endif
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-
-#define kef6(k,i) \
-{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
- k[6*(i)+ 7] = ss[1] ^= ss[0]; \
- k[6*(i)+ 8] = ss[2] ^= ss[1]; \
- k[6*(i)+ 9] = ss[3] ^= ss[2]; \
-}
-
-#define ke6(k,i) \
-{ kef6(k,i); \
- k[6*(i)+10] = ss[4] ^= ss[3]; \
- k[6*(i)+11] = ss[5] ^= ss[4]; \
-}
-
-AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
-{ uint_32t ss[6];
-
- cx->ks[0] = ss[0] = word_in(key, 0);
- cx->ks[1] = ss[1] = word_in(key, 1);
- cx->ks[2] = ss[2] = word_in(key, 2);
- cx->ks[3] = ss[3] = word_in(key, 3);
- cx->ks[4] = ss[4] = word_in(key, 4);
- cx->ks[5] = ss[5] = word_in(key, 5);
-
-#if ENC_UNROLL == NONE
- { uint_32t i;
- for(i = 0; i < 7; ++i)
- ke6(cx->ks, i);
- }
-#else
- ke6(cx->ks, 0); ke6(cx->ks, 1);
- ke6(cx->ks, 2); ke6(cx->ks, 3);
- ke6(cx->ks, 4); ke6(cx->ks, 5);
- ke6(cx->ks, 6);
-#endif
- kef6(cx->ks, 7);
- cx->inf.l = 0;
- cx->inf.b[0] = 12 * 16;
-
-#ifdef USE_VIA_ACE_IF_PRESENT
- if(VIA_ACE_AVAILABLE)
- cx->inf.b[1] = 0xff;
-#endif
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-
-#define kef8(k,i) \
-{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
- k[8*(i)+ 9] = ss[1] ^= ss[0]; \
- k[8*(i)+10] = ss[2] ^= ss[1]; \
- k[8*(i)+11] = ss[3] ^= ss[2]; \
-}
-
-#define ke8(k,i) \
-{ kef8(k,i); \
- k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
- k[8*(i)+13] = ss[5] ^= ss[4]; \
- k[8*(i)+14] = ss[6] ^= ss[5]; \
- k[8*(i)+15] = ss[7] ^= ss[6]; \
-}
-
-AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
-{ uint_32t ss[8];
-
- cx->ks[0] = ss[0] = word_in(key, 0);
- cx->ks[1] = ss[1] = word_in(key, 1);
- cx->ks[2] = ss[2] = word_in(key, 2);
- cx->ks[3] = ss[3] = word_in(key, 3);
- cx->ks[4] = ss[4] = word_in(key, 4);
- cx->ks[5] = ss[5] = word_in(key, 5);
- cx->ks[6] = ss[6] = word_in(key, 6);
- cx->ks[7] = ss[7] = word_in(key, 7);
-
-#if ENC_UNROLL == NONE
- { uint_32t i;
- for(i = 0; i < 6; ++i)
- ke8(cx->ks, i);
- }
-#else
- ke8(cx->ks, 0); ke8(cx->ks, 1);
- ke8(cx->ks, 2); ke8(cx->ks, 3);
- ke8(cx->ks, 4); ke8(cx->ks, 5);
-#endif
- kef8(cx->ks, 6);
- cx->inf.l = 0;
- cx->inf.b[0] = 14 * 16;
-
-#ifdef USE_VIA_ACE_IF_PRESENT
- if(VIA_ACE_AVAILABLE)
- cx->inf.b[1] = 0xff;
-#endif
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(AES_VAR)
-
-AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
-{
- switch(key_len)
- {
-#if defined( AES_ERR_CHK )
- case 16: case 128: return aes_encrypt_key128(key, cx);
- case 24: case 192: return aes_encrypt_key192(key, cx);
- case 32: case 256: return aes_encrypt_key256(key, cx);
- default: return EXIT_FAILURE;
-#else
- case 16: case 128: aes_encrypt_key128(key, cx); return;
- case 24: case 192: aes_encrypt_key192(key, cx); return;
- case 32: case 256: aes_encrypt_key256(key, cx); return;
-#endif
- }
-}
-
-#endif
-
-#endif
-
-#if (FUNCS_IN_C & DEC_KEYING_IN_C)
-
-/* this is used to store the decryption round keys */
-/* in forward or reverse order */
-
-#ifdef AES_REV_DKS
-#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
-#else
-#define v(n,i) (i)
-#endif
-
-#if DEC_ROUND == NO_TABLES
-#define ff(x) (x)
-#else
-#define ff(x) inv_mcol(x)
-#if defined( dec_imvars )
-#define d_vars dec_imvars
-#endif
-#endif
-
-#if defined(AES_128) || defined(AES_VAR)
-
-#define k4e(k,i) \
-{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
- k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
- k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
- k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
-}
-
-#if 1
-
-#define kdf4(k,i) \
-{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
- ss[1] = ss[1] ^ ss[3]; \
- ss[2] = ss[2] ^ ss[3]; \
- ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
- ss[i % 4] ^= ss[4]; \
- ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
- ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
- ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
- ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
-}
-
-#define kd4(k,i) \
-{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
- ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
- k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
- k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
- k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
- k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
-}
-
-#define kdl4(k,i) \
-{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
- k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
- k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
- k[v(40,(4*(i))+6)] = ss[0]; \
- k[v(40,(4*(i))+7)] = ss[1]; \
-}
-
-#else
-
-#define kdf4(k,i) \
-{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
- ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
- ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
- ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
-}
-
-#define kd4(k,i) \
-{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
- ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
- ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
- ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
- ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
-}
-
-#define kdl4(k,i) \
-{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
- ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
- ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
- ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
-}
-
-#endif
-
-AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
-{ uint_32t ss[5];
-#if defined( d_vars )
- d_vars;
-#endif
- cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
- cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
- cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
- cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
-
-#if DEC_UNROLL == NONE
- { uint_32t i;
- for(i = 0; i < 10; ++i)
- k4e(cx->ks, i);
-#if !(DEC_ROUND == NO_TABLES)
- for(i = N_COLS; i < 10 * N_COLS; ++i)
- cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
- }
-#else
- kdf4(cx->ks, 0); kd4(cx->ks, 1);
- kd4(cx->ks, 2); kd4(cx->ks, 3);
- kd4(cx->ks, 4); kd4(cx->ks, 5);
- kd4(cx->ks, 6); kd4(cx->ks, 7);
- kd4(cx->ks, 8); kdl4(cx->ks, 9);
-#endif
- cx->inf.l = 0;
- cx->inf.b[0] = 10 * 16;
-
-#ifdef USE_VIA_ACE_IF_PRESENT
- if(VIA_ACE_AVAILABLE)
- cx->inf.b[1] = 0xff;
-#endif
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(AES_192) || defined(AES_VAR)
-
-#define k6ef(k,i) \
-{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
- k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
- k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
- k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
-}
-
-#define k6e(k,i) \
-{ k6ef(k,i); \
- k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
- k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
-}
-
-#define kdf6(k,i) \
-{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
- ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
- ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
- ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
- ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
- ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
-}
-
-#define kd6(k,i) \
-{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
- ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
- ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
- ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
- ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
- ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
- ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
-}
-
-#define kdl6(k,i) \
-{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
- ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
- ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
- ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
-}
-
-AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
-{ uint_32t ss[7];
-#if defined( d_vars )
- d_vars;
-#endif
- cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
- cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
- cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
- cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
-
-#if DEC_UNROLL == NONE
- cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
- cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
- { uint_32t i;
-
- for(i = 0; i < 7; ++i)
- k6e(cx->ks, i);
- k6ef(cx->ks, 7);
-#if !(DEC_ROUND == NO_TABLES)
- for(i = N_COLS; i < 12 * N_COLS; ++i)
- cx->ks[i] = inv_mcol(cx->ks[i]);
-#endif
- }
-#else
- cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4));
- cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5));
- kdf6(cx->ks, 0); kd6(cx->ks, 1);
- kd6(cx->ks, 2); kd6(cx->ks, 3);
- kd6(cx->ks, 4); kd6(cx->ks, 5);
- kd6(cx->ks, 6); kdl6(cx->ks, 7);
-#endif
- cx->inf.l = 0;
- cx->inf.b[0] = 12 * 16;
-
-#ifdef USE_VIA_ACE_IF_PRESENT
- if(VIA_ACE_AVAILABLE)
- cx->inf.b[1] = 0xff;
-#endif
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(AES_256) || defined(AES_VAR)
-
-#define k8ef(k,i) \
-{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
- k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
- k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
- k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
-}
-
-#define k8e(k,i) \
-{ k8ef(k,i); \
- k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
- k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
- k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
- k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
-}
-
-#define kdf8(k,i) \
-{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
- ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
- ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
- ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
- ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
- ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
- ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
- ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
-}
-
-#define kd8(k,i) \
-{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
- ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
- ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
- ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
- ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
- ss[8] = ls_box(ss[3],0); \
- ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
- ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
- ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
- ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
-}
-
-#define kdl8(k,i) \
-{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
- ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
- ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
- ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
-}
-
-AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
-{ uint_32t ss[9];
-#if defined( d_vars )
- d_vars;
-#endif
- cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
- cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
- cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
- cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
-
-#if DEC_UNROLL == NONE
- cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
- cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
- cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
- cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
- { uint_32t i;
-
- for(i = 0; i < 6; ++i)
- k8e(cx->ks, i);
- k8ef(cx->ks, 6);
-#if !(DEC_ROUND == NO_TABLES)
- for(i = N_COLS; i < 14 * N_COLS; ++i)
- cx->ks[i] = inv_mcol(cx->ks[i]);
-
-#endif
- }
-#else
- ss[4] = word_in(key, 4); cx->ks[v(56,(4))] = ff(ss[4]);
- ss[5] = word_in(key, 5); cx->ks[v(56,(5))] = ff(ss[5]);
- ss[6] = word_in(key, 6); cx->ks[v(56,(6))] = ff(ss[6]);
- ss[7] = word_in(key, 7); cx->ks[v(56,(7))] = ff(ss[7]);
- kdf8(cx->ks, 0); kd8(cx->ks, 1);
- kd8(cx->ks, 2); kd8(cx->ks, 3);
- kd8(cx->ks, 4); kd8(cx->ks, 5);
- kdl8(cx->ks, 6);
-#endif
- cx->inf.l = 0;
- cx->inf.b[0] = 14 * 16;
-
-#ifdef USE_VIA_ACE_IF_PRESENT
- if(VIA_ACE_AVAILABLE)
- cx->inf.b[1] = 0xff;
-#endif
-
-#if defined( AES_ERR_CHK )
- return EXIT_SUCCESS;
-#endif
-}
-
-#endif
-
-#if defined(AES_VAR)
-
-AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
-{
- switch(key_len)
- {
-#if defined( AES_ERR_CHK )
- case 16: case 128: return aes_decrypt_key128(key, cx);
- case 24: case 192: return aes_decrypt_key192(key, cx);
- case 32: case 256: return aes_decrypt_key256(key, cx);
- default: return EXIT_FAILURE;
-#else
- case 16: case 128: aes_decrypt_key128(key, cx); return;
- case 24: case 192: aes_decrypt_key192(key, cx); return;
- case 32: case 256: aes_decrypt_key256(key, cx); return;
-#endif
- }
-}
-
-#endif
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 +*/ + +#include "Aesopt.h" +#include "Aestab.h" + +#ifdef USE_VIA_ACE_IF_PRESENT +# include "aes_via_ace.h" +#endif + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* Initialise the key schedule from the user supplied key. The key + length can be specified in bytes, with legal values of 16, 24 + and 32, or in bits, with legal values of 128, 192 and 256. These + values correspond with Nk values of 4, 6 and 8 respectively. + + The following macros implement a single cycle in the key + schedule generation process. The number of cycles needed + for each cx->n_col and nk value is: + + nk = 4 5 6 7 8 + ------------------------------ + cx->n_col = 4 10 9 8 7 7 + cx->n_col = 5 14 11 10 9 9 + cx->n_col = 6 19 15 12 11 11 + cx->n_col = 7 21 19 16 13 14 + cx->n_col = 8 29 23 19 17 14 +*/ + +#if (FUNCS_IN_C & ENC_KEYING_IN_C) + +#if defined(AES_128) || defined(AES_VAR) + +#define ke4(k,i) \ +{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ + k[4*(i)+5] = ss[1] ^= ss[0]; \ + k[4*(i)+6] = ss[2] ^= ss[1]; \ + k[4*(i)+7] = ss[3] ^= ss[2]; \ +} + +AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]) +{ uint_32t ss[4]; + + cx->ks[0] = ss[0] = word_in(key, 0); + cx->ks[1] = ss[1] = word_in(key, 1); + cx->ks[2] = ss[2] = word_in(key, 2); + cx->ks[3] = ss[3] = word_in(key, 3); + +#if ENC_UNROLL == NONE + { uint_32t i; + for(i = 0; i < 9; ++i) + ke4(cx->ks, i); + } +#else + ke4(cx->ks, 0); ke4(cx->ks, 1); + ke4(cx->ks, 2); ke4(cx->ks, 3); + ke4(cx->ks, 4); ke4(cx->ks, 5); + ke4(cx->ks, 6); ke4(cx->ks, 7); + ke4(cx->ks, 8); +#endif + ke4(cx->ks, 9); + cx->inf.l = 0; + cx->inf.b[0] = 10 * 16; + +#ifdef USE_VIA_ACE_IF_PRESENT + if(VIA_ACE_AVAILABLE) + cx->inf.b[1] = 0xff; +#endif + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(AES_192) || defined(AES_VAR) + +#define kef6(k,i) \ +{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ + k[6*(i)+ 7] = ss[1] ^= ss[0]; \ + k[6*(i)+ 8] = ss[2] ^= ss[1]; \ + k[6*(i)+ 9] = ss[3] ^= ss[2]; \ +} + +#define ke6(k,i) \ +{ kef6(k,i); \ + k[6*(i)+10] = ss[4] ^= ss[3]; \ + k[6*(i)+11] = ss[5] ^= ss[4]; \ +} + +AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]) +{ uint_32t ss[6]; + + cx->ks[0] = ss[0] = word_in(key, 0); + cx->ks[1] = ss[1] = word_in(key, 1); + cx->ks[2] = ss[2] = word_in(key, 2); + cx->ks[3] = ss[3] = word_in(key, 3); + cx->ks[4] = ss[4] = word_in(key, 4); + cx->ks[5] = ss[5] = word_in(key, 5); + +#if ENC_UNROLL == NONE + { uint_32t i; + for(i = 0; i < 7; ++i) + ke6(cx->ks, i); + } +#else + ke6(cx->ks, 0); ke6(cx->ks, 1); + ke6(cx->ks, 2); ke6(cx->ks, 3); + ke6(cx->ks, 4); ke6(cx->ks, 5); + ke6(cx->ks, 6); +#endif + kef6(cx->ks, 7); + cx->inf.l = 0; + cx->inf.b[0] = 12 * 16; + +#ifdef USE_VIA_ACE_IF_PRESENT + if(VIA_ACE_AVAILABLE) + cx->inf.b[1] = 0xff; +#endif + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(AES_256) || defined(AES_VAR) + +#define kef8(k,i) \ +{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ + k[8*(i)+ 9] = ss[1] ^= ss[0]; \ + k[8*(i)+10] = ss[2] ^= ss[1]; \ + k[8*(i)+11] = ss[3] ^= ss[2]; \ +} + +#define ke8(k,i) \ +{ kef8(k,i); \ + k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ + k[8*(i)+13] = ss[5] ^= ss[4]; \ + k[8*(i)+14] = ss[6] ^= ss[5]; \ + k[8*(i)+15] = ss[7] ^= ss[6]; \ +} + +AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]) +{ uint_32t ss[8]; + + cx->ks[0] = ss[0] = word_in(key, 0); + cx->ks[1] = ss[1] = word_in(key, 1); + cx->ks[2] = ss[2] = word_in(key, 2); + cx->ks[3] = ss[3] = word_in(key, 3); + cx->ks[4] = ss[4] = word_in(key, 4); + cx->ks[5] = ss[5] = word_in(key, 5); + cx->ks[6] = ss[6] = word_in(key, 6); + cx->ks[7] = ss[7] = word_in(key, 7); + +#if ENC_UNROLL == NONE + { uint_32t i; + for(i = 0; i < 6; ++i) + ke8(cx->ks, i); + } +#else + ke8(cx->ks, 0); ke8(cx->ks, 1); + ke8(cx->ks, 2); ke8(cx->ks, 3); + ke8(cx->ks, 4); ke8(cx->ks, 5); +#endif + kef8(cx->ks, 6); + cx->inf.l = 0; + cx->inf.b[0] = 14 * 16; + +#ifdef USE_VIA_ACE_IF_PRESENT + if(VIA_ACE_AVAILABLE) + cx->inf.b[1] = 0xff; +#endif + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(AES_VAR) + +AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]) +{ + switch(key_len) + { +#if defined( AES_ERR_CHK ) + case 16: case 128: return aes_encrypt_key128(key, cx); + case 24: case 192: return aes_encrypt_key192(key, cx); + case 32: case 256: return aes_encrypt_key256(key, cx); + default: return EXIT_FAILURE; +#else + case 16: case 128: aes_encrypt_key128(key, cx); return; + case 24: case 192: aes_encrypt_key192(key, cx); return; + case 32: case 256: aes_encrypt_key256(key, cx); return; +#endif + } +} + +#endif + +#endif + +#if (FUNCS_IN_C & DEC_KEYING_IN_C) + +/* this is used to store the decryption round keys */ +/* in forward or reverse order */ + +#ifdef AES_REV_DKS +#define v(n,i) ((n) - (i) + 2 * ((i) & 3)) +#else +#define v(n,i) (i) +#endif + +#if DEC_ROUND == NO_TABLES +#define ff(x) (x) +#else +#define ff(x) inv_mcol(x) +#if defined( dec_imvars ) +#define d_vars dec_imvars +#endif +#endif + +#if defined(AES_128) || defined(AES_VAR) + +#define k4e(k,i) \ +{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ + k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \ + k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \ + k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \ +} + +#if 1 + +#define kdf4(k,i) \ +{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ + ss[1] = ss[1] ^ ss[3]; \ + ss[2] = ss[2] ^ ss[3]; \ + ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \ + ss[i % 4] ^= ss[4]; \ + ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \ + ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \ + ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \ + ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \ +} + +#define kd4(k,i) \ +{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \ + ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ + k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \ + k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \ + k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \ + k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \ +} + +#define kdl4(k,i) \ +{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \ + k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ + k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \ + k[v(40,(4*(i))+6)] = ss[0]; \ + k[v(40,(4*(i))+7)] = ss[1]; \ +} + +#else + +#define kdf4(k,i) \ +{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \ + ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \ + ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \ + ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \ +} + +#define kd4(k,i) \ +{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \ + ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \ + ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \ + ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \ + ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \ +} + +#define kdl4(k,i) \ +{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \ + ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \ + ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \ + ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \ +} + +#endif + +AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]) +{ uint_32t ss[5]; +#if defined( d_vars ) + d_vars; +#endif + cx->ks[v(40,(0))] = ss[0] = word_in(key, 0); + cx->ks[v(40,(1))] = ss[1] = word_in(key, 1); + cx->ks[v(40,(2))] = ss[2] = word_in(key, 2); + cx->ks[v(40,(3))] = ss[3] = word_in(key, 3); + +#if DEC_UNROLL == NONE + { uint_32t i; + for(i = 0; i < 10; ++i) + k4e(cx->ks, i); +#if !(DEC_ROUND == NO_TABLES) + for(i = N_COLS; i < 10 * N_COLS; ++i) + cx->ks[i] = inv_mcol(cx->ks[i]); +#endif + } +#else + kdf4(cx->ks, 0); kd4(cx->ks, 1); + kd4(cx->ks, 2); kd4(cx->ks, 3); + kd4(cx->ks, 4); kd4(cx->ks, 5); + kd4(cx->ks, 6); kd4(cx->ks, 7); + kd4(cx->ks, 8); kdl4(cx->ks, 9); +#endif + cx->inf.l = 0; + cx->inf.b[0] = 10 * 16; + +#ifdef USE_VIA_ACE_IF_PRESENT + if(VIA_ACE_AVAILABLE) + cx->inf.b[1] = 0xff; +#endif + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(AES_192) || defined(AES_VAR) + +#define k6ef(k,i) \ +{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ + k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \ + k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \ + k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \ +} + +#define k6e(k,i) \ +{ k6ef(k,i); \ + k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \ + k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \ +} + +#define kdf6(k,i) \ +{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \ + ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \ + ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \ + ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \ + ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \ + ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \ +} + +#define kd6(k,i) \ +{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \ + ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \ + ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \ + ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \ + ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \ + ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \ + ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \ +} + +#define kdl6(k,i) \ +{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \ + ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \ + ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \ + ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \ +} + +AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]) +{ uint_32t ss[7]; +#if defined( d_vars ) + d_vars; +#endif + cx->ks[v(48,(0))] = ss[0] = word_in(key, 0); + cx->ks[v(48,(1))] = ss[1] = word_in(key, 1); + cx->ks[v(48,(2))] = ss[2] = word_in(key, 2); + cx->ks[v(48,(3))] = ss[3] = word_in(key, 3); + +#if DEC_UNROLL == NONE + cx->ks[v(48,(4))] = ss[4] = word_in(key, 4); + cx->ks[v(48,(5))] = ss[5] = word_in(key, 5); + { uint_32t i; + + for(i = 0; i < 7; ++i) + k6e(cx->ks, i); + k6ef(cx->ks, 7); +#if !(DEC_ROUND == NO_TABLES) + for(i = N_COLS; i < 12 * N_COLS; ++i) + cx->ks[i] = inv_mcol(cx->ks[i]); +#endif + } +#else + cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4)); + cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5)); + kdf6(cx->ks, 0); kd6(cx->ks, 1); + kd6(cx->ks, 2); kd6(cx->ks, 3); + kd6(cx->ks, 4); kd6(cx->ks, 5); + kd6(cx->ks, 6); kdl6(cx->ks, 7); +#endif + cx->inf.l = 0; + cx->inf.b[0] = 12 * 16; + +#ifdef USE_VIA_ACE_IF_PRESENT + if(VIA_ACE_AVAILABLE) + cx->inf.b[1] = 0xff; +#endif + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(AES_256) || defined(AES_VAR) + +#define k8ef(k,i) \ +{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ + k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \ + k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \ + k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \ +} + +#define k8e(k,i) \ +{ k8ef(k,i); \ + k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \ + k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \ + k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \ + k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \ +} + +#define kdf8(k,i) \ +{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \ + ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \ + ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \ + ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \ + ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \ + ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \ + ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \ + ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \ +} + +#define kd8(k,i) \ +{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \ + ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \ + ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \ + ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \ + ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \ + ss[8] = ls_box(ss[3],0); \ + ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \ + ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \ + ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \ + ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \ +} + +#define kdl8(k,i) \ +{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \ + ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \ + ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \ + ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \ +} + +AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]) +{ uint_32t ss[9]; +#if defined( d_vars ) + d_vars; +#endif + cx->ks[v(56,(0))] = ss[0] = word_in(key, 0); + cx->ks[v(56,(1))] = ss[1] = word_in(key, 1); + cx->ks[v(56,(2))] = ss[2] = word_in(key, 2); + cx->ks[v(56,(3))] = ss[3] = word_in(key, 3); + +#if DEC_UNROLL == NONE + cx->ks[v(56,(4))] = ss[4] = word_in(key, 4); + cx->ks[v(56,(5))] = ss[5] = word_in(key, 5); + cx->ks[v(56,(6))] = ss[6] = word_in(key, 6); + cx->ks[v(56,(7))] = ss[7] = word_in(key, 7); + { uint_32t i; + + for(i = 0; i < 6; ++i) + k8e(cx->ks, i); + k8ef(cx->ks, 6); +#if !(DEC_ROUND == NO_TABLES) + for(i = N_COLS; i < 14 * N_COLS; ++i) + cx->ks[i] = inv_mcol(cx->ks[i]); + +#endif + } +#else + ss[4] = word_in(key, 4); cx->ks[v(56,(4))] = ff(ss[4]); + ss[5] = word_in(key, 5); cx->ks[v(56,(5))] = ff(ss[5]); + ss[6] = word_in(key, 6); cx->ks[v(56,(6))] = ff(ss[6]); + ss[7] = word_in(key, 7); cx->ks[v(56,(7))] = ff(ss[7]); + kdf8(cx->ks, 0); kd8(cx->ks, 1); + kd8(cx->ks, 2); kd8(cx->ks, 3); + kd8(cx->ks, 4); kd8(cx->ks, 5); + kdl8(cx->ks, 6); +#endif + cx->inf.l = 0; + cx->inf.b[0] = 14 * 16; + +#ifdef USE_VIA_ACE_IF_PRESENT + if(VIA_ACE_AVAILABLE) + cx->inf.b[1] = 0xff; +#endif + +#if defined( AES_ERR_CHK ) + return EXIT_SUCCESS; +#endif +} + +#endif + +#if defined(AES_VAR) + +AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]) +{ + switch(key_len) + { +#if defined( AES_ERR_CHK ) + case 16: case 128: return aes_decrypt_key128(key, cx); + case 24: case 192: return aes_decrypt_key192(key, cx); + case 32: case 256: return aes_decrypt_key256(key, cx); + default: return EXIT_FAILURE; +#else + case 16: case 128: aes_decrypt_key128(key, cx); return; + case 24: case 192: aes_decrypt_key192(key, cx); return; + case 32: case 256: aes_decrypt_key256(key, cx); return; +#endif + } +} + +#endif + +#endif + +#if defined(__cplusplus) +} +#endif diff --git a/src/Crypto/Aesopt.h b/src/Crypto/Aesopt.h index 1b793e43..cf7edbe2 100644 --- a/src/Crypto/Aesopt.h +++ b/src/Crypto/Aesopt.h @@ -1,734 +1,734 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-
- This file contains the compilation options for AES (Rijndael) and code
- that is common across encryption, key scheduling and table generation.
-
- OPERATION
-
- These source code files implement the AES algorithm Rijndael designed by
- Joan Daemen and Vincent Rijmen. This version is designed for the standard
- block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
- and 32 bytes).
-
- This version is designed for flexibility and speed using operations on
- 32-bit words rather than operations on bytes. It can be compiled with
- either big or little endian internal byte order but is faster when the
- native byte order for the processor is used.
-
- THE CIPHER INTERFACE
-
- The cipher interface is implemented as an array of bytes in which lower
- AES bit sequence indexes map to higher numeric significance within bytes.
-
- uint_8t (an unsigned 8-bit type)
- uint_32t (an unsigned 32-bit type)
- struct aes_encrypt_ctx (structure for the cipher encryption context)
- struct aes_decrypt_ctx (structure for the cipher decryption context)
- AES_RETURN the function return type
-
- C subroutine calls:
-
- AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
- AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
- AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
- AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
- const aes_encrypt_ctx cx[1]);
-
- AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
- AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
- AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
- AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
- const aes_decrypt_ctx cx[1]);
-
- IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
- you call aes_init() before AES is used so that the tables are initialised.
-
- C++ aes class subroutines:
-
- Class AESencrypt for encryption
-
- Construtors:
- AESencrypt(void)
- AESencrypt(const unsigned char *key) - 128 bit key
- Members:
- AES_RETURN key128(const unsigned char *key)
- AES_RETURN key192(const unsigned char *key)
- AES_RETURN key256(const unsigned char *key)
- AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
-
- Class AESdecrypt for encryption
- Construtors:
- AESdecrypt(void)
- AESdecrypt(const unsigned char *key) - 128 bit key
- Members:
- AES_RETURN key128(const unsigned char *key)
- AES_RETURN key192(const unsigned char *key)
- AES_RETURN key256(const unsigned char *key)
- AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
-*/
-
-/* Adapted for TrueCrypt */
-
-#if !defined( _AESOPT_H )
-#define _AESOPT_H
-
-#ifdef TC_WINDOWS_BOOT
-#define ASM_X86_V2
-#endif
-
-#if defined( __cplusplus )
-#include "Aescpp.h"
-#else
-#include "Aes.h"
-#endif
-
-
-#include "Common/Endian.h"
-#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
-#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
-#endif
-
-#if BYTE_ORDER == BIG_ENDIAN
-# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
-#endif
-
-
-/* CONFIGURATION - THE USE OF DEFINES
-
- Later in this section there are a number of defines that control the
- operation of the code. In each section, the purpose of each define is
- explained so that the relevant form can be included or excluded by
- setting either 1's or 0's respectively on the branches of the related
- #if clauses. The following local defines should not be changed.
-*/
-
-#define ENCRYPTION_IN_C 1
-#define DECRYPTION_IN_C 2
-#define ENC_KEYING_IN_C 4
-#define DEC_KEYING_IN_C 8
-
-#define NO_TABLES 0
-#define ONE_TABLE 1
-#define FOUR_TABLES 4
-#define NONE 0
-#define PARTIAL 1
-#define FULL 2
-
-/* --- START OF USER CONFIGURED OPTIONS --- */
-
-/* 1. BYTE ORDER WITHIN 32 BIT WORDS
-
- The fundamental data processing units in Rijndael are 8-bit bytes. The
- input, output and key input are all enumerated arrays of bytes in which
- bytes are numbered starting at zero and increasing to one less than the
- number of bytes in the array in question. This enumeration is only used
- for naming bytes and does not imply any adjacency or order relationship
- from one byte to another. When these inputs and outputs are considered
- as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
- byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
- In this implementation bits are numbered from 0 to 7 starting at the
- numerically least significant end of each byte (bit n represents 2^n).
-
- However, Rijndael can be implemented more efficiently using 32-bit
- words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
- into word[n]. While in principle these bytes can be assembled into words
- in any positions, this implementation only supports the two formats in
- which bytes in adjacent positions within words also have adjacent byte
- numbers. This order is called big-endian if the lowest numbered bytes
- in words have the highest numeric significance and little-endian if the
- opposite applies.
-
- This code can work in either order irrespective of the order used by the
- machine on which it runs. Normally the internal byte order will be set
- to the order of the processor on which the code is to be run but this
- define can be used to reverse this in special situations
-
- WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
- This define will hence be redefined later (in section 4) if necessary
-*/
-
-#if 1
-#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
-#elif 0
-#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
-#elif 0
-#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
-#else
-#error The algorithm byte order is not defined
-#endif
-
-/* 2. VIA ACE SUPPORT
-
- Define this option if support for the VIA ACE is required. This uses
- inline assembler instructions and is only implemented for the Microsoft,
- Intel and GCC compilers. If VIA ACE is known to be present, then defining
- ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
- code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
- it is detected (both present and enabled) but the normal AES code will
- also be present.
-
- When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
- aligned; other input/output buffers do not need to be 16 byte aligned
- but there are very large performance gains if this can be arranged.
- VIA ACE also requires the decryption key schedule to be in reverse
- order (which later checks below ensure).
-*/
-
-#if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
-# define USE_VIA_ACE_IF_PRESENT
-#endif
-
-#if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
-# define ASSUME_VIA_ACE_PRESENT
-# endif
-
-#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
- defined( _MSC_VER ) && ( _MSC_VER <= 800 )
-# if defined( USE_VIA_ACE_IF_PRESENT )
-# undef USE_VIA_ACE_IF_PRESENT
-# endif
-# if defined( ASSUME_VIA_ACE_PRESENT )
-# undef ASSUME_VIA_ACE_PRESENT
-# endif
-#endif
-
-/* 3. ASSEMBLER SUPPORT
-
- This define (which can be on the command line) enables the use of the
- assembler code routines for encryption, decryption and key scheduling
- as follows:
-
- ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
- encryption and decryption and but with key scheduling in C
- ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
- encryption, decryption and key scheduling
- ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
- encryption and decryption and but with key scheduling in C
- ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
- encryption and decryption and but with key scheduling in C
-
- Change one 'if 0' below to 'if 1' to select the version or define
- as a compilation option.
-*/
-
-#if 0 && !defined( ASM_X86_V1C )
-# define ASM_X86_V1C
-#elif 0 && !defined( ASM_X86_V2 )
-# define ASM_X86_V2
-#elif 0 && !defined( ASM_X86_V2C )
-# define ASM_X86_V2C
-#elif 0 && !defined( ASM_AMD64_C )
-# define ASM_AMD64_C
-#endif
-
-#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
- && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
-//# error Assembler code is only available for x86 and AMD64 systems
-#endif
-
-/* 4. FAST INPUT/OUTPUT OPERATIONS.
-
- On some machines it is possible to improve speed by transferring the
- bytes in the input and output arrays to and from the internal 32-bit
- variables by addressing these arrays as if they are arrays of 32-bit
- words. On some machines this will always be possible but there may
- be a large performance penalty if the byte arrays are not aligned on
- the normal word boundaries. On other machines this technique will
- lead to memory access errors when such 32-bit word accesses are not
- properly aligned. The option SAFE_IO avoids such problems but will
- often be slower on those machines that support misaligned access
- (especially so if care is taken to align the input and output byte
- arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
- assumed that access to byte arrays as if they are arrays of 32-bit
- words will not cause problems when such accesses are misaligned.
-*/
-#if 1 && !defined( _MSC_VER )
-#define SAFE_IO
-#endif
-
-/* 5. LOOP UNROLLING
-
- The code for encryption and decrytpion cycles through a number of rounds
- that can be implemented either in a loop or by expanding the code into a
- long sequence of instructions, the latter producing a larger program but
- one that will often be much faster. The latter is called loop unrolling.
- There are also potential speed advantages in expanding two iterations in
- a loop with half the number of iterations, which is called partial loop
- unrolling. The following options allow partial or full loop unrolling
- to be set independently for encryption and decryption
-*/
-#if 1
-#define ENC_UNROLL FULL
-#elif 0
-#define ENC_UNROLL PARTIAL
-#else
-#define ENC_UNROLL NONE
-#endif
-
-#if 1
-#define DEC_UNROLL FULL
-#elif 0
-#define DEC_UNROLL PARTIAL
-#else
-#define DEC_UNROLL NONE
-#endif
-
-/* 6. FAST FINITE FIELD OPERATIONS
-
- If this section is included, tables are used to provide faster finite
- field arithmetic (this has no effect if FIXED_TABLES is defined).
-*/
-#if !defined (TC_WINDOWS_BOOT)
-#define FF_TABLES
-#endif
-
-/* 7. INTERNAL STATE VARIABLE FORMAT
-
- The internal state of Rijndael is stored in a number of local 32-bit
- word varaibles which can be defined either as an array or as individual
- names variables. Include this section if you want to store these local
- varaibles in arrays. Otherwise individual local variables will be used.
-*/
-#if 1
-#define ARRAYS
-#endif
-
-/* 8. FIXED OR DYNAMIC TABLES
-
- When this section is included the tables used by the code are compiled
- statically into the binary file. Otherwise the subroutine aes_init()
- must be called to compute them before the code is first used.
-*/
-#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
-#define FIXED_TABLES
-#endif
-
-/* 9. TABLE ALIGNMENT
-
- On some sytsems speed will be improved by aligning the AES large lookup
- tables on particular boundaries. This define should be set to a power of
- two giving the desired alignment. It can be left undefined if alignment
- is not needed. This option is specific to the Microsft VC++ compiler -
- it seems to sometimes cause trouble for the VC++ version 6 compiler.
-*/
-
-#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
-#define TABLE_ALIGN 32
-#endif
-
-/* 10. TABLE OPTIONS
-
- This cipher proceeds by repeating in a number of cycles known as 'rounds'
- which are implemented by a round function which can optionally be speeded
- up using tables. The basic tables are each 256 32-bit words, with either
- one or four tables being required for each round function depending on
- how much speed is required. The encryption and decryption round functions
- are different and the last encryption and decrytpion round functions are
- different again making four different round functions in all.
-
- This means that:
- 1. Normal encryption and decryption rounds can each use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
- 2. The last encryption and decryption rounds can also use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
-
- Include or exclude the appropriate definitions below to set the number
- of tables used by this implementation.
-*/
-
-#if 1 /* set tables for the normal encryption round */
-#define ENC_ROUND FOUR_TABLES
-#elif 0
-#define ENC_ROUND ONE_TABLE
-#else
-#define ENC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the last encryption round */
-#define LAST_ENC_ROUND FOUR_TABLES
-#elif 0
-#define LAST_ENC_ROUND ONE_TABLE
-#else
-#define LAST_ENC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the normal decryption round */
-#define DEC_ROUND FOUR_TABLES
-#elif 0
-#define DEC_ROUND ONE_TABLE
-#else
-#define DEC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the last decryption round */
-#define LAST_DEC_ROUND FOUR_TABLES
-#elif 0
-#define LAST_DEC_ROUND ONE_TABLE
-#else
-#define LAST_DEC_ROUND NO_TABLES
-#endif
-
-/* The decryption key schedule can be speeded up with tables in the same
- way that the round functions can. Include or exclude the following
- defines to set this requirement.
-*/
-#if 1
-#define KEY_SCHED FOUR_TABLES
-#elif 0
-#define KEY_SCHED ONE_TABLE
-#else
-#define KEY_SCHED NO_TABLES
-#endif
-
-/* ---- END OF USER CONFIGURED OPTIONS ---- */
-
-/* VIA ACE support is only available for VC++ and GCC */
-
-#if !defined( _MSC_VER ) && !defined( __GNUC__ )
-# if defined( ASSUME_VIA_ACE_PRESENT )
-# undef ASSUME_VIA_ACE_PRESENT
-# endif
-# if defined( USE_VIA_ACE_IF_PRESENT )
-# undef USE_VIA_ACE_IF_PRESENT
-# endif
-#endif
-
-#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
-#define USE_VIA_ACE_IF_PRESENT
-#endif
-
-#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
-#define AES_REV_DKS
-#endif
-
-/* Assembler support requires the use of platform byte order */
-
-#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
- && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
-#undef ALGORITHM_BYTE_ORDER
-#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
-#endif
-
-/* In this implementation the columns of the state array are each held in
- 32-bit words. The state array can be held in various ways: in an array
- of words, in a number of individual word variables or in a number of
- processor registers. The following define maps a variable name x and
- a column number c to the way the state array variable is to be held.
- The first define below maps the state into an array x[c] whereas the
- second form maps the state into a number of individual variables x0,
- x1, etc. Another form could map individual state colums to machine
- register names.
-*/
-
-#if defined( ARRAYS )
-#define s(x,c) x[c]
-#else
-#define s(x,c) x##c
-#endif
-
-/* This implementation provides subroutines for encryption, decryption
- and for setting the three key lengths (separately) for encryption
- and decryption. Since not all functions are needed, masks are set
- up here to determine which will be implemented in C
-*/
-
-#if !defined( AES_ENCRYPT )
-# define EFUNCS_IN_C 0
-#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
- || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
-# define EFUNCS_IN_C ENC_KEYING_IN_C
-#elif !defined( ASM_X86_V2 )
-# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
-#else
-# define EFUNCS_IN_C 0
-#endif
-
-#if !defined( AES_DECRYPT )
-# define DFUNCS_IN_C 0
-#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
- || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
-# define DFUNCS_IN_C DEC_KEYING_IN_C
-#elif !defined( ASM_X86_V2 )
-# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
-#else
-# define DFUNCS_IN_C 0
-#endif
-
-#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
-
-/* END OF CONFIGURATION OPTIONS */
-
-#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
-
-/* Disable or report errors on some combinations of options */
-
-#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
-#undef LAST_ENC_ROUND
-#define LAST_ENC_ROUND NO_TABLES
-#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
-#undef LAST_ENC_ROUND
-#define LAST_ENC_ROUND ONE_TABLE
-#endif
-
-#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
-#undef ENC_UNROLL
-#define ENC_UNROLL NONE
-#endif
-
-#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
-#undef LAST_DEC_ROUND
-#define LAST_DEC_ROUND NO_TABLES
-#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
-#undef LAST_DEC_ROUND
-#define LAST_DEC_ROUND ONE_TABLE
-#endif
-
-#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
-#undef DEC_UNROLL
-#define DEC_UNROLL NONE
-#endif
-
-#if defined( bswap32 )
-#define aes_sw32 bswap32
-#elif defined( bswap_32 )
-#define aes_sw32 bswap_32
-#else
-#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
-#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
-#endif
-
-/* upr(x,n): rotates bytes within words by n positions, moving bytes to
- higher index positions with wrap around into low positions
- ups(x,n): moves bytes by n positions to higher index positions in
- words but without wrap around
- bval(x,n): extracts a byte from a word
-
- WARNING: The definitions given here are intended only for use with
- unsigned variables and with shift counts that are compile
- time constants
-*/
-
-#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
-#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
-#define ups(x,n) ((uint_32t) (x) << (8 * (n)))
-#define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
-#define bytes2word(b0, b1, b2, b3) \
- (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
-#endif
-
-#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
-#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
-#define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
-#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
-#define bytes2word(b0, b1, b2, b3) \
- (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
-#endif
-
-#if defined( SAFE_IO )
-
-#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
- ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
-#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
- ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
-
-#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
-
-#define word_in(x,c) (*((uint_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
-
-#else
-
-#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
-
-#endif
-
-/* the finite field modular polynomial and elements */
-
-#define WPOLY 0x011b
-#define BPOLY 0x1b
-
-/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
-
-#define m1 0x80808080
-#define m2 0x7f7f7f7f
-#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
-
-/* The following defines provide alternative definitions of gf_mulx that might
- give improved performance if a fast 32-bit multiply is not available. Note
- that a temporary variable u needs to be defined where gf_mulx is used.
-
-#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
-#define m4 (0x01010101 * BPOLY)
-#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
-*/
-
-/* Work out which tables are needed for the different options */
-
-#if defined( ASM_X86_V1C )
-#if defined( ENC_ROUND )
-#undef ENC_ROUND
-#endif
-#define ENC_ROUND FOUR_TABLES
-#if defined( LAST_ENC_ROUND )
-#undef LAST_ENC_ROUND
-#endif
-#define LAST_ENC_ROUND FOUR_TABLES
-#if defined( DEC_ROUND )
-#undef DEC_ROUND
-#endif
-#define DEC_ROUND FOUR_TABLES
-#if defined( LAST_DEC_ROUND )
-#undef LAST_DEC_ROUND
-#endif
-#define LAST_DEC_ROUND FOUR_TABLES
-#if defined( KEY_SCHED )
-#undef KEY_SCHED
-#define KEY_SCHED FOUR_TABLES
-#endif
-#endif
-
-#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
-#if ENC_ROUND == ONE_TABLE
-#define FT1_SET
-#elif ENC_ROUND == FOUR_TABLES
-#define FT4_SET
-#else
-#define SBX_SET
-#endif
-#if LAST_ENC_ROUND == ONE_TABLE
-#define FL1_SET
-#elif LAST_ENC_ROUND == FOUR_TABLES
-#define FL4_SET
-#elif !defined( SBX_SET )
-#define SBX_SET
-#endif
-#endif
-
-#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
-#if DEC_ROUND == ONE_TABLE
-#define IT1_SET
-#elif DEC_ROUND == FOUR_TABLES
-#define IT4_SET
-#else
-#define ISB_SET
-#endif
-#if LAST_DEC_ROUND == ONE_TABLE
-#define IL1_SET
-#elif LAST_DEC_ROUND == FOUR_TABLES
-#define IL4_SET
-#elif !defined(ISB_SET)
-#define ISB_SET
-#endif
-#endif
-
-#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
-#if KEY_SCHED == ONE_TABLE
-#define LS1_SET
-#elif KEY_SCHED == FOUR_TABLES
-#define LS4_SET
-#elif !defined( SBX_SET )
-#define SBX_SET
-#endif
-#endif
-
-#if (FUNCS_IN_C & DEC_KEYING_IN_C)
-#if KEY_SCHED == ONE_TABLE
-#define IM1_SET
-#elif KEY_SCHED == FOUR_TABLES
-#define IM4_SET
-#elif !defined( SBX_SET )
-#define SBX_SET
-#endif
-#endif
-
-/* generic definitions of Rijndael macros that use tables */
-
-#define no_table(x,box,vf,rf,c) bytes2word( \
- box[bval(vf(x,0,c),rf(0,c))], \
- box[bval(vf(x,1,c),rf(1,c))], \
- box[bval(vf(x,2,c),rf(2,c))], \
- box[bval(vf(x,3,c),rf(3,c))])
-
-#define one_table(x,op,tab,vf,rf,c) \
- ( tab[bval(vf(x,0,c),rf(0,c))] \
- ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
- ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
- ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
-
-#define four_tables(x,tab,vf,rf,c) \
- ( tab[0][bval(vf(x,0,c),rf(0,c))] \
- ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
- ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
- ^ tab[3][bval(vf(x,3,c),rf(3,c))])
-
-#define vf1(x,r,c) (x)
-#define rf1(r,c) (r)
-#define rf2(r,c) ((8+r-c)&3)
-
-/* perform forward and inverse column mix operation on four bytes in long word x in */
-/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
-
-#if defined( FM4_SET ) /* not currently used */
-#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
-#elif defined( FM1_SET ) /* not currently used */
-#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
-#else
-#define dec_fmvars uint_32t g2
-#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
-#endif
-
-#if defined( IM4_SET )
-#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
-#elif defined( IM1_SET )
-#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
-#else
-#define dec_imvars uint_32t g2, g4, g9
-#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
- (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
-#endif
-
-#if defined( FL4_SET )
-#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
-#elif defined( LS4_SET )
-#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
-#elif defined( FL1_SET )
-#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
-#elif defined( LS1_SET )
-#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
-#else
-#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
-#endif
-
-#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
-#define ISB_SET
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 + + This file contains the compilation options for AES (Rijndael) and code + that is common across encryption, key scheduling and table generation. + + OPERATION + + These source code files implement the AES algorithm Rijndael designed by + Joan Daemen and Vincent Rijmen. This version is designed for the standard + block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 + and 32 bytes). + + This version is designed for flexibility and speed using operations on + 32-bit words rather than operations on bytes. It can be compiled with + either big or little endian internal byte order but is faster when the + native byte order for the processor is used. + + THE CIPHER INTERFACE + + The cipher interface is implemented as an array of bytes in which lower + AES bit sequence indexes map to higher numeric significance within bytes. + + uint_8t (an unsigned 8-bit type) + uint_32t (an unsigned 32-bit type) + struct aes_encrypt_ctx (structure for the cipher encryption context) + struct aes_decrypt_ctx (structure for the cipher decryption context) + AES_RETURN the function return type + + C subroutine calls: + + AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, + const aes_encrypt_ctx cx[1]); + + AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, + const aes_decrypt_ctx cx[1]); + + IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that + you call aes_init() before AES is used so that the tables are initialised. + + C++ aes class subroutines: + + Class AESencrypt for encryption + + Construtors: + AESencrypt(void) + AESencrypt(const unsigned char *key) - 128 bit key + Members: + AES_RETURN key128(const unsigned char *key) + AES_RETURN key192(const unsigned char *key) + AES_RETURN key256(const unsigned char *key) + AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const + + Class AESdecrypt for encryption + Construtors: + AESdecrypt(void) + AESdecrypt(const unsigned char *key) - 128 bit key + Members: + AES_RETURN key128(const unsigned char *key) + AES_RETURN key192(const unsigned char *key) + AES_RETURN key256(const unsigned char *key) + AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const +*/ + +/* Adapted for TrueCrypt */ + +#if !defined( _AESOPT_H ) +#define _AESOPT_H + +#ifdef TC_WINDOWS_BOOT +#define ASM_X86_V2 +#endif + +#if defined( __cplusplus ) +#include "Aescpp.h" +#else +#include "Aes.h" +#endif + + +#include "Common/Endian.h" +#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ +#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ + +#if BYTE_ORDER == LITTLE_ENDIAN +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#endif + +#if BYTE_ORDER == BIG_ENDIAN +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#endif + + +/* CONFIGURATION - THE USE OF DEFINES + + Later in this section there are a number of defines that control the + operation of the code. In each section, the purpose of each define is + explained so that the relevant form can be included or excluded by + setting either 1's or 0's respectively on the branches of the related + #if clauses. The following local defines should not be changed. +*/ + +#define ENCRYPTION_IN_C 1 +#define DECRYPTION_IN_C 2 +#define ENC_KEYING_IN_C 4 +#define DEC_KEYING_IN_C 8 + +#define NO_TABLES 0 +#define ONE_TABLE 1 +#define FOUR_TABLES 4 +#define NONE 0 +#define PARTIAL 1 +#define FULL 2 + +/* --- START OF USER CONFIGURED OPTIONS --- */ + +/* 1. BYTE ORDER WITHIN 32 BIT WORDS + + The fundamental data processing units in Rijndael are 8-bit bytes. The + input, output and key input are all enumerated arrays of bytes in which + bytes are numbered starting at zero and increasing to one less than the + number of bytes in the array in question. This enumeration is only used + for naming bytes and does not imply any adjacency or order relationship + from one byte to another. When these inputs and outputs are considered + as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to + byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. + In this implementation bits are numbered from 0 to 7 starting at the + numerically least significant end of each byte (bit n represents 2^n). + + However, Rijndael can be implemented more efficiently using 32-bit + words by packing bytes into words so that bytes 4*n to 4*n+3 are placed + into word[n]. While in principle these bytes can be assembled into words + in any positions, this implementation only supports the two formats in + which bytes in adjacent positions within words also have adjacent byte + numbers. This order is called big-endian if the lowest numbered bytes + in words have the highest numeric significance and little-endian if the + opposite applies. + + This code can work in either order irrespective of the order used by the + machine on which it runs. Normally the internal byte order will be set + to the order of the processor on which the code is to be run but this + define can be used to reverse this in special situations + + WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set. + This define will hence be redefined later (in section 4) if necessary +*/ + +#if 1 +#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#elif 0 +#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN +#elif 0 +#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN +#else +#error The algorithm byte order is not defined +#endif + +/* 2. VIA ACE SUPPORT + + Define this option if support for the VIA ACE is required. This uses + inline assembler instructions and is only implemented for the Microsoft, + Intel and GCC compilers. If VIA ACE is known to be present, then defining + ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption + code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if + it is detected (both present and enabled) but the normal AES code will + also be present. + + When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte + aligned; other input/output buffers do not need to be 16 byte aligned + but there are very large performance gains if this can be arranged. + VIA ACE also requires the decryption key schedule to be in reverse + order (which later checks below ensure). +*/ + +#if 0 && !defined( USE_VIA_ACE_IF_PRESENT ) +# define USE_VIA_ACE_IF_PRESENT +#endif + +#if 0 && !defined( ASSUME_VIA_ACE_PRESENT ) +# define ASSUME_VIA_ACE_PRESENT +# endif + +#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \ + defined( _MSC_VER ) && ( _MSC_VER <= 800 ) +# if defined( USE_VIA_ACE_IF_PRESENT ) +# undef USE_VIA_ACE_IF_PRESENT +# endif +# if defined( ASSUME_VIA_ACE_PRESENT ) +# undef ASSUME_VIA_ACE_PRESENT +# endif +#endif + +/* 3. ASSEMBLER SUPPORT + + This define (which can be on the command line) enables the use of the + assembler code routines for encryption, decryption and key scheduling + as follows: + + ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for + encryption and decryption and but with key scheduling in C + ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for + encryption, decryption and key scheduling + ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for + encryption and decryption and but with key scheduling in C + ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for + encryption and decryption and but with key scheduling in C + + Change one 'if 0' below to 'if 1' to select the version or define + as a compilation option. +*/ + +#if 0 && !defined( ASM_X86_V1C ) +# define ASM_X86_V1C +#elif 0 && !defined( ASM_X86_V2 ) +# define ASM_X86_V2 +#elif 0 && !defined( ASM_X86_V2C ) +# define ASM_X86_V2C +#elif 0 && !defined( ASM_AMD64_C ) +# define ASM_AMD64_C +#endif + +#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \ + && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 ) +//# error Assembler code is only available for x86 and AMD64 systems +#endif + +/* 4. FAST INPUT/OUTPUT OPERATIONS. + + On some machines it is possible to improve speed by transferring the + bytes in the input and output arrays to and from the internal 32-bit + variables by addressing these arrays as if they are arrays of 32-bit + words. On some machines this will always be possible but there may + be a large performance penalty if the byte arrays are not aligned on + the normal word boundaries. On other machines this technique will + lead to memory access errors when such 32-bit word accesses are not + properly aligned. The option SAFE_IO avoids such problems but will + often be slower on those machines that support misaligned access + (especially so if care is taken to align the input and output byte + arrays on 32-bit word boundaries). If SAFE_IO is not defined it is + assumed that access to byte arrays as if they are arrays of 32-bit + words will not cause problems when such accesses are misaligned. +*/ +#if 1 && !defined( _MSC_VER ) +#define SAFE_IO +#endif + +/* 5. LOOP UNROLLING + + The code for encryption and decrytpion cycles through a number of rounds + that can be implemented either in a loop or by expanding the code into a + long sequence of instructions, the latter producing a larger program but + one that will often be much faster. The latter is called loop unrolling. + There are also potential speed advantages in expanding two iterations in + a loop with half the number of iterations, which is called partial loop + unrolling. The following options allow partial or full loop unrolling + to be set independently for encryption and decryption +*/ +#if 1 +#define ENC_UNROLL FULL +#elif 0 +#define ENC_UNROLL PARTIAL +#else +#define ENC_UNROLL NONE +#endif + +#if 1 +#define DEC_UNROLL FULL +#elif 0 +#define DEC_UNROLL PARTIAL +#else +#define DEC_UNROLL NONE +#endif + +/* 6. FAST FINITE FIELD OPERATIONS + + If this section is included, tables are used to provide faster finite + field arithmetic (this has no effect if FIXED_TABLES is defined). +*/ +#if !defined (TC_WINDOWS_BOOT) +#define FF_TABLES +#endif + +/* 7. INTERNAL STATE VARIABLE FORMAT + + The internal state of Rijndael is stored in a number of local 32-bit + word varaibles which can be defined either as an array or as individual + names variables. Include this section if you want to store these local + varaibles in arrays. Otherwise individual local variables will be used. +*/ +#if 1 +#define ARRAYS +#endif + +/* 8. FIXED OR DYNAMIC TABLES + + When this section is included the tables used by the code are compiled + statically into the binary file. Otherwise the subroutine aes_init() + must be called to compute them before the code is first used. +*/ +#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 )) +#define FIXED_TABLES +#endif + +/* 9. TABLE ALIGNMENT + + On some sytsems speed will be improved by aligning the AES large lookup + tables on particular boundaries. This define should be set to a power of + two giving the desired alignment. It can be left undefined if alignment + is not needed. This option is specific to the Microsft VC++ compiler - + it seems to sometimes cause trouble for the VC++ version 6 compiler. +*/ + +#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 ) +#define TABLE_ALIGN 32 +#endif + +/* 10. TABLE OPTIONS + + This cipher proceeds by repeating in a number of cycles known as 'rounds' + which are implemented by a round function which can optionally be speeded + up using tables. The basic tables are each 256 32-bit words, with either + one or four tables being required for each round function depending on + how much speed is required. The encryption and decryption round functions + are different and the last encryption and decrytpion round functions are + different again making four different round functions in all. + + This means that: + 1. Normal encryption and decryption rounds can each use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + 2. The last encryption and decryption rounds can also use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + + Include or exclude the appropriate definitions below to set the number + of tables used by this implementation. +*/ + +#if 1 /* set tables for the normal encryption round */ +#define ENC_ROUND FOUR_TABLES +#elif 0 +#define ENC_ROUND ONE_TABLE +#else +#define ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last encryption round */ +#define LAST_ENC_ROUND FOUR_TABLES +#elif 0 +#define LAST_ENC_ROUND ONE_TABLE +#else +#define LAST_ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the normal decryption round */ +#define DEC_ROUND FOUR_TABLES +#elif 0 +#define DEC_ROUND ONE_TABLE +#else +#define DEC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last decryption round */ +#define LAST_DEC_ROUND FOUR_TABLES +#elif 0 +#define LAST_DEC_ROUND ONE_TABLE +#else +#define LAST_DEC_ROUND NO_TABLES +#endif + +/* The decryption key schedule can be speeded up with tables in the same + way that the round functions can. Include or exclude the following + defines to set this requirement. +*/ +#if 1 +#define KEY_SCHED FOUR_TABLES +#elif 0 +#define KEY_SCHED ONE_TABLE +#else +#define KEY_SCHED NO_TABLES +#endif + +/* ---- END OF USER CONFIGURED OPTIONS ---- */ + +/* VIA ACE support is only available for VC++ and GCC */ + +#if !defined( _MSC_VER ) && !defined( __GNUC__ ) +# if defined( ASSUME_VIA_ACE_PRESENT ) +# undef ASSUME_VIA_ACE_PRESENT +# endif +# if defined( USE_VIA_ACE_IF_PRESENT ) +# undef USE_VIA_ACE_IF_PRESENT +# endif +#endif + +#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT ) +#define USE_VIA_ACE_IF_PRESENT +#endif + +#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS ) +#define AES_REV_DKS +#endif + +/* Assembler support requires the use of platform byte order */ + +#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \ + && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) +#undef ALGORITHM_BYTE_ORDER +#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#endif + +/* In this implementation the columns of the state array are each held in + 32-bit words. The state array can be held in various ways: in an array + of words, in a number of individual word variables or in a number of + processor registers. The following define maps a variable name x and + a column number c to the way the state array variable is to be held. + The first define below maps the state into an array x[c] whereas the + second form maps the state into a number of individual variables x0, + x1, etc. Another form could map individual state colums to machine + register names. +*/ + +#if defined( ARRAYS ) +#define s(x,c) x[c] +#else +#define s(x,c) x##c +#endif + +/* This implementation provides subroutines for encryption, decryption + and for setting the three key lengths (separately) for encryption + and decryption. Since not all functions are needed, masks are set + up here to determine which will be implemented in C +*/ + +#if !defined( AES_ENCRYPT ) +# define EFUNCS_IN_C 0 +#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ + || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) +# define EFUNCS_IN_C ENC_KEYING_IN_C +#elif !defined( ASM_X86_V2 ) +# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C ) +#else +# define EFUNCS_IN_C 0 +#endif + +#if !defined( AES_DECRYPT ) +# define DFUNCS_IN_C 0 +#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ + || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) +# define DFUNCS_IN_C DEC_KEYING_IN_C +#elif !defined( ASM_X86_V2 ) +# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C ) +#else +# define DFUNCS_IN_C 0 +#endif + +#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C ) + +/* END OF CONFIGURATION OPTIONS */ + +#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) + +/* Disable or report errors on some combinations of options */ + +#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND NO_TABLES +#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND ONE_TABLE +#endif + +#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE +#undef ENC_UNROLL +#define ENC_UNROLL NONE +#endif + +#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND NO_TABLES +#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND ONE_TABLE +#endif + +#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE +#undef DEC_UNROLL +#define DEC_UNROLL NONE +#endif + +#if defined( bswap32 ) +#define aes_sw32 bswap32 +#elif defined( bswap_32 ) +#define aes_sw32 bswap_32 +#else +#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n))) +#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00)) +#endif + +/* upr(x,n): rotates bytes within words by n positions, moving bytes to + higher index positions with wrap around into low positions + ups(x,n): moves bytes by n positions to higher index positions in + words but without wrap around + bval(x,n): extracts a byte from a word + + WARNING: The definitions given here are intended only for use with + unsigned variables and with shift counts that are compile + time constants +*/ + +#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN ) +#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n)))) +#define ups(x,n) ((uint_32t) (x) << (8 * (n))) +#define bval(x,n) ((uint_8t)((x) >> (8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0)) +#endif + +#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN ) +#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n)))) +#define ups(x,n) ((uint_32t) (x) >> (8 * (n))) +#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3)) +#endif + +#if defined( SAFE_IO ) + +#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \ + ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3]) +#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \ + ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); } + +#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER ) + +#define word_in(x,c) (*((uint_32t*)(x)+(c))) +#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v)) + +#else + +#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c))) +#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v)) + +#endif + +/* the finite field modular polynomial and elements */ + +#define WPOLY 0x011b +#define BPOLY 0x1b + +/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ + +#define m1 0x80808080 +#define m2 0x7f7f7f7f +#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) + +/* The following defines provide alternative definitions of gf_mulx that might + give improved performance if a fast 32-bit multiply is not available. Note + that a temporary variable u needs to be defined where gf_mulx is used. + +#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) +#define m4 (0x01010101 * BPOLY) +#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) +*/ + +/* Work out which tables are needed for the different options */ + +#if defined( ASM_X86_V1C ) +#if defined( ENC_ROUND ) +#undef ENC_ROUND +#endif +#define ENC_ROUND FOUR_TABLES +#if defined( LAST_ENC_ROUND ) +#undef LAST_ENC_ROUND +#endif +#define LAST_ENC_ROUND FOUR_TABLES +#if defined( DEC_ROUND ) +#undef DEC_ROUND +#endif +#define DEC_ROUND FOUR_TABLES +#if defined( LAST_DEC_ROUND ) +#undef LAST_DEC_ROUND +#endif +#define LAST_DEC_ROUND FOUR_TABLES +#if defined( KEY_SCHED ) +#undef KEY_SCHED +#define KEY_SCHED FOUR_TABLES +#endif +#endif + +#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C ) +#if ENC_ROUND == ONE_TABLE +#define FT1_SET +#elif ENC_ROUND == FOUR_TABLES +#define FT4_SET +#else +#define SBX_SET +#endif +#if LAST_ENC_ROUND == ONE_TABLE +#define FL1_SET +#elif LAST_ENC_ROUND == FOUR_TABLES +#define FL4_SET +#elif !defined( SBX_SET ) +#define SBX_SET +#endif +#endif + +#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C ) +#if DEC_ROUND == ONE_TABLE +#define IT1_SET +#elif DEC_ROUND == FOUR_TABLES +#define IT4_SET +#else +#define ISB_SET +#endif +#if LAST_DEC_ROUND == ONE_TABLE +#define IL1_SET +#elif LAST_DEC_ROUND == FOUR_TABLES +#define IL4_SET +#elif !defined(ISB_SET) +#define ISB_SET +#endif +#endif + +#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C) +#if KEY_SCHED == ONE_TABLE +#define LS1_SET +#elif KEY_SCHED == FOUR_TABLES +#define LS4_SET +#elif !defined( SBX_SET ) +#define SBX_SET +#endif +#endif + +#if (FUNCS_IN_C & DEC_KEYING_IN_C) +#if KEY_SCHED == ONE_TABLE +#define IM1_SET +#elif KEY_SCHED == FOUR_TABLES +#define IM4_SET +#elif !defined( SBX_SET ) +#define SBX_SET +#endif +#endif + +/* generic definitions of Rijndael macros that use tables */ + +#define no_table(x,box,vf,rf,c) bytes2word( \ + box[bval(vf(x,0,c),rf(0,c))], \ + box[bval(vf(x,1,c),rf(1,c))], \ + box[bval(vf(x,2,c),rf(2,c))], \ + box[bval(vf(x,3,c),rf(3,c))]) + +#define one_table(x,op,tab,vf,rf,c) \ + ( tab[bval(vf(x,0,c),rf(0,c))] \ + ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ + ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ + ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) + +#define four_tables(x,tab,vf,rf,c) \ + ( tab[0][bval(vf(x,0,c),rf(0,c))] \ + ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ + ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ + ^ tab[3][bval(vf(x,3,c),rf(3,c))]) + +#define vf1(x,r,c) (x) +#define rf1(r,c) (r) +#define rf2(r,c) ((8+r-c)&3) + +/* perform forward and inverse column mix operation on four bytes in long word x in */ +/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ + +#if defined( FM4_SET ) /* not currently used */ +#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) +#elif defined( FM1_SET ) /* not currently used */ +#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) +#else +#define dec_fmvars uint_32t g2 +#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) +#endif + +#if defined( IM4_SET ) +#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) +#elif defined( IM1_SET ) +#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) +#else +#define dec_imvars uint_32t g2, g4, g9 +#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ + (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) +#endif + +#if defined( FL4_SET ) +#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) +#elif defined( LS4_SET ) +#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) +#elif defined( FL1_SET ) +#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) +#elif defined( LS1_SET ) +#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) +#else +#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) +#endif + +#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET ) +#define ISB_SET +#endif + +#endif diff --git a/src/Crypto/Aestab.c b/src/Crypto/Aestab.c index 2fd53789..1effb6f6 100644 --- a/src/Crypto/Aestab.c +++ b/src/Crypto/Aestab.c @@ -1,428 +1,428 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-*/
-
-/* Adapted for TrueCrypt:
- - Added run-time table generator for Aes_x86_v2.asm
-*/
-
-#define DO_TABLES
-
-#include "Aes.h"
-#include "Aesopt.h"
-
-#if defined(FIXED_TABLES)
-
-#define sb_data(w) {\
- w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
- w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
- w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
- w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
- w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
- w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
- w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
- w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
- w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
- w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
- w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
- w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
- w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
- w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
- w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
- w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
- w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
- w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
- w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
- w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
- w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
- w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
- w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
- w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
- w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
- w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
- w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
- w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
- w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
- w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
- w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
- w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
-
-#define isb_data(w) {\
- w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
- w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
- w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
- w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
- w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
- w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
- w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
- w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
- w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
- w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
- w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
- w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
- w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
- w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
- w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
- w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
- w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
- w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
- w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
- w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
- w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
- w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
- w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
- w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
- w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
- w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
- w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
- w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
- w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
- w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
- w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
- w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
-
-#define mm_data(w) {\
- w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
- w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
- w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
- w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
- w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
- w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
- w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
- w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
- w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
- w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
- w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
- w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
- w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
- w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
- w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
- w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
- w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
- w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
- w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
- w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
- w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
- w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
- w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
- w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
- w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
- w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
- w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
- w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
- w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
- w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
- w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
- w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
-
-#define rc_data(w) {\
- w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
- w(0x1b), w(0x36) }
-
-#define h0(x) (x)
-
-#define w0(p) bytes2word(p, 0, 0, 0)
-#define w1(p) bytes2word(0, p, 0, 0)
-#define w2(p) bytes2word(0, 0, p, 0)
-#define w3(p) bytes2word(0, 0, 0, p)
-
-#define u0(p) bytes2word(f2(p), p, p, f3(p))
-#define u1(p) bytes2word(f3(p), f2(p), p, p)
-#define u2(p) bytes2word(p, f3(p), f2(p), p)
-#define u3(p) bytes2word(p, p, f3(p), f2(p))
-
-#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
-#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
-#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
-#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
-
-#endif
-
-#if defined(FIXED_TABLES) || !defined(FF_TABLES)
-
-#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
-#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
-#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
- ^ (((x>>5) & 4) * WPOLY))
-#define f3(x) (f2(x) ^ x)
-#define f9(x) (f8(x) ^ x)
-#define fb(x) (f8(x) ^ f2(x) ^ x)
-#define fd(x) (f8(x) ^ f4(x) ^ x)
-#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
-
-#else
-
-#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
-#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
-#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
-#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
-#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
-#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
-#define fi(x) ((x) ? pow[ 255 - log[x]] : 0)
-
-#endif
-
-#include "Aestab.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#if defined(FIXED_TABLES)
-
-/* implemented in case of wrong call for fixed tables */
-
-AES_RETURN aes_init(void)
-{
- return EXIT_SUCCESS;
-}
-
-#else /* dynamic table generation */
-
-#if !defined(FF_TABLES)
-
-/* Generate the tables for the dynamic table option
-
- It will generally be sensible to use tables to compute finite
- field multiplies and inverses but where memory is scarse this
- code might sometimes be better. But it only has effect during
- initialisation so its pretty unimportant in overall terms.
-*/
-
-/* return 2 ^ (n - 1) where n is the bit number of the highest bit
- set in x with x in the range 1 < x < 0x00000200. This form is
- used so that locals within fi can be bytes rather than words
-*/
-
-static uint_8t hibit(const uint_32t x)
-{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2));
-
- r |= (r >> 2);
- r |= (r >> 4);
- return (r + 1) >> 1;
-}
-
-/* return the inverse of the finite field element x */
-
-static uint_8t fi(const uint_8t x)
-{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
-
- if(x < 2) return x;
-
- for(;;)
- {
- if(!n1) return v1;
-
- while(n2 >= n1)
- {
- n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2);
- }
-
- if(!n2) return v2;
-
- while(n1 >= n2)
- {
- n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1);
- }
- }
-}
-
-#endif
-
-/* The forward and inverse affine transformations used in the S-box */
-
-#define fwd_affine(x) \
- (w = (uint_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(uint_8t)(w^(w>>8)))
-
-#define inv_affine(x) \
- (w = (uint_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(uint_8t)(w^(w>>8)))
-
-static int init = 0;
-
-#ifdef TC_WINDOWS_BOOT
-
-#pragma optimize ("l", on)
-uint_8t aes_enc_tab[256][8];
-uint_8t aes_dec_tab[256][8];
-
-#endif
-
-AES_RETURN aes_init(void)
-{ uint_32t i, w;
-
-#ifdef TC_WINDOWS_BOOT
-
- if (init)
- return EXIT_SUCCESS;
-
- for (i = 0; i < 256; ++i)
- {
- uint_8t x = fwd_affine(fi((uint_8t)i));
- aes_enc_tab[i][0] = 0;
- aes_enc_tab[i][1] = x;
- aes_enc_tab[i][2] = x;
- aes_enc_tab[i][3] = f3(x);
- aes_enc_tab[i][4] = f2(x);
- aes_enc_tab[i][5] = x;
- aes_enc_tab[i][6] = x;
- aes_enc_tab[i][7] = f3(x);
-
- x = fi((uint_8t)inv_affine((uint_8t)i));
- aes_dec_tab[i][0] = fe(x);
- aes_dec_tab[i][1] = f9(x);
- aes_dec_tab[i][2] = fd(x);
- aes_dec_tab[i][3] = fb(x);
- aes_dec_tab[i][4] = fe(x);
- aes_dec_tab[i][5] = f9(x);
- aes_dec_tab[i][6] = fd(x);
- aes_dec_tab[i][7] = x;
- }
-
-#else // TC_WINDOWS_BOOT
-
-#if defined(FF_TABLES)
-
- uint_8t pow[512], log[256];
-
- if(init)
- return EXIT_SUCCESS;
- /* log and power tables for GF(2^8) finite field with
- WPOLY as modular polynomial - the simplest primitive
- root is 0x03, used here to generate the tables
- */
-
- i = 0; w = 1;
- do
- {
- pow[i] = (uint_8t)w;
- pow[i + 255] = (uint_8t)w;
- log[w] = (uint_8t)i++;
- w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
- }
- while (w != 1);
-
-#else
- if(init)
- return EXIT_SUCCESS;
-#endif
-
- for(i = 0, w = 1; i < RC_LENGTH; ++i)
- {
- t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
- w = f2(w);
- }
-
- for(i = 0; i < 256; ++i)
- { uint_8t b;
-
- b = fwd_affine(fi((uint_8t)i));
- w = bytes2word(f2(b), b, b, f3(b));
-
-#if defined( SBX_SET )
- t_set(s,box)[i] = b;
-#endif
-
-#if defined( FT1_SET ) /* tables for a normal encryption round */
- t_set(f,n)[i] = w;
-#endif
-#if defined( FT4_SET )
- t_set(f,n)[0][i] = w;
- t_set(f,n)[1][i] = upr(w,1);
- t_set(f,n)[2][i] = upr(w,2);
- t_set(f,n)[3][i] = upr(w,3);
-#endif
- w = bytes2word(b, 0, 0, 0);
-
-#if defined( FL1_SET ) /* tables for last encryption round (may also */
- t_set(f,l)[i] = w; /* be used in the key schedule) */
-#endif
-#if defined( FL4_SET )
- t_set(f,l)[0][i] = w;
- t_set(f,l)[1][i] = upr(w,1);
- t_set(f,l)[2][i] = upr(w,2);
- t_set(f,l)[3][i] = upr(w,3);
-#endif
-
-#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/
- t_set(l,s)[i] = w; /* not of the required form */
-#endif
-#if defined( LS4_SET )
- t_set(l,s)[0][i] = w;
- t_set(l,s)[1][i] = upr(w,1);
- t_set(l,s)[2][i] = upr(w,2);
- t_set(l,s)[3][i] = upr(w,3);
-#endif
-
- b = fi(inv_affine((uint_8t)i));
- w = bytes2word(fe(b), f9(b), fd(b), fb(b));
-
-#if defined( IM1_SET ) /* tables for the inverse mix column operation */
- t_set(i,m)[b] = w;
-#endif
-#if defined( IM4_SET )
- t_set(i,m)[0][b] = w;
- t_set(i,m)[1][b] = upr(w,1);
- t_set(i,m)[2][b] = upr(w,2);
- t_set(i,m)[3][b] = upr(w,3);
-#endif
-
-#if defined( ISB_SET )
- t_set(i,box)[i] = b;
-#endif
-#if defined( IT1_SET ) /* tables for a normal decryption round */
- t_set(i,n)[i] = w;
-#endif
-#if defined( IT4_SET )
- t_set(i,n)[0][i] = w;
- t_set(i,n)[1][i] = upr(w,1);
- t_set(i,n)[2][i] = upr(w,2);
- t_set(i,n)[3][i] = upr(w,3);
-#endif
- w = bytes2word(b, 0, 0, 0);
-#if defined( IL1_SET ) /* tables for last decryption round */
- t_set(i,l)[i] = w;
-#endif
-#if defined( IL4_SET )
- t_set(i,l)[0][i] = w;
- t_set(i,l)[1][i] = upr(w,1);
- t_set(i,l)[2][i] = upr(w,2);
- t_set(i,l)[3][i] = upr(w,3);
-#endif
- }
-
-#endif // TC_WINDOWS_BOOT
-
- init = 1;
- return EXIT_SUCCESS;
-}
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 +*/ + +/* Adapted for TrueCrypt: + - Added run-time table generator for Aes_x86_v2.asm +*/ + +#define DO_TABLES + +#include "Aes.h" +#include "Aesopt.h" + +#if defined(FIXED_TABLES) + +#define sb_data(w) {\ + w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ + w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ + w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ + w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ + w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ + w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ + w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ + w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ + w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ + w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ + w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ + w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ + w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ + w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ + w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ + w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ + w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ + w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ + w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ + w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ + w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ + w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ + w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ + w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ + w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ + w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ + w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ + w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ + w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ + w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ + w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ + w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) } + +#define isb_data(w) {\ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ + w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ + w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ + w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ + w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ + w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ + w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ + w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ + w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ + w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ + w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ + w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ + w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ + w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ + w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ + w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ + w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ + w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ + w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ + w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ + w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ + w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ + w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ + w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ + w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ + w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ + w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ + w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) } + +#define mm_data(w) {\ + w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ + w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ + w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ + w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ + w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ + w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ + w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ + w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ + w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ + w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ + w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ + w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ + w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ + w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ + w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ + w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ + w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ + w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ + w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ + w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ + w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ + w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ + w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ + w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ + w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ + w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ + w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ + w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ + w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ + w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ + w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ + w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) } + +#define rc_data(w) {\ + w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\ + w(0x1b), w(0x36) } + +#define h0(x) (x) + +#define w0(p) bytes2word(p, 0, 0, 0) +#define w1(p) bytes2word(0, p, 0, 0) +#define w2(p) bytes2word(0, 0, p, 0) +#define w3(p) bytes2word(0, 0, 0, p) + +#define u0(p) bytes2word(f2(p), p, p, f3(p)) +#define u1(p) bytes2word(f3(p), f2(p), p, p) +#define u2(p) bytes2word(p, f3(p), f2(p), p) +#define u3(p) bytes2word(p, p, f3(p), f2(p)) + +#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p)) +#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p)) +#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p)) +#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p)) + +#endif + +#if defined(FIXED_TABLES) || !defined(FF_TABLES) + +#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY)) +#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY)) +#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \ + ^ (((x>>5) & 4) * WPOLY)) +#define f3(x) (f2(x) ^ x) +#define f9(x) (f8(x) ^ x) +#define fb(x) (f8(x) ^ f2(x) ^ x) +#define fd(x) (f8(x) ^ f4(x) ^ x) +#define fe(x) (f8(x) ^ f4(x) ^ f2(x)) + +#else + +#define f2(x) ((x) ? pow[log[x] + 0x19] : 0) +#define f3(x) ((x) ? pow[log[x] + 0x01] : 0) +#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) +#define fb(x) ((x) ? pow[log[x] + 0x68] : 0) +#define fd(x) ((x) ? pow[log[x] + 0xee] : 0) +#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) +#define fi(x) ((x) ? pow[ 255 - log[x]] : 0) + +#endif + +#include "Aestab.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined(FIXED_TABLES) + +/* implemented in case of wrong call for fixed tables */ + +AES_RETURN aes_init(void) +{ + return EXIT_SUCCESS; +} + +#else /* dynamic table generation */ + +#if !defined(FF_TABLES) + +/* Generate the tables for the dynamic table option + + It will generally be sensible to use tables to compute finite + field multiplies and inverses but where memory is scarse this + code might sometimes be better. But it only has effect during + initialisation so its pretty unimportant in overall terms. +*/ + +/* return 2 ^ (n - 1) where n is the bit number of the highest bit + set in x with x in the range 1 < x < 0x00000200. This form is + used so that locals within fi can be bytes rather than words +*/ + +static uint_8t hibit(const uint_32t x) +{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2)); + + r |= (r >> 2); + r |= (r >> 4); + return (r + 1) >> 1; +} + +/* return the inverse of the finite field element x */ + +static uint_8t fi(const uint_8t x) +{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; + + if(x < 2) return x; + + for(;;) + { + if(!n1) return v1; + + while(n2 >= n1) + { + n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2); + } + + if(!n2) return v2; + + while(n1 >= n2) + { + n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1); + } + } +} + +#endif + +/* The forward and inverse affine transformations used in the S-box */ + +#define fwd_affine(x) \ + (w = (uint_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(uint_8t)(w^(w>>8))) + +#define inv_affine(x) \ + (w = (uint_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(uint_8t)(w^(w>>8))) + +static int init = 0; + +#ifdef TC_WINDOWS_BOOT + +#pragma optimize ("l", on) +uint_8t aes_enc_tab[256][8]; +uint_8t aes_dec_tab[256][8]; + +#endif + +AES_RETURN aes_init(void) +{ uint_32t i, w; + +#ifdef TC_WINDOWS_BOOT + + if (init) + return EXIT_SUCCESS; + + for (i = 0; i < 256; ++i) + { + uint_8t x = fwd_affine(fi((uint_8t)i)); + aes_enc_tab[i][0] = 0; + aes_enc_tab[i][1] = x; + aes_enc_tab[i][2] = x; + aes_enc_tab[i][3] = f3(x); + aes_enc_tab[i][4] = f2(x); + aes_enc_tab[i][5] = x; + aes_enc_tab[i][6] = x; + aes_enc_tab[i][7] = f3(x); + + x = fi((uint_8t)inv_affine((uint_8t)i)); + aes_dec_tab[i][0] = fe(x); + aes_dec_tab[i][1] = f9(x); + aes_dec_tab[i][2] = fd(x); + aes_dec_tab[i][3] = fb(x); + aes_dec_tab[i][4] = fe(x); + aes_dec_tab[i][5] = f9(x); + aes_dec_tab[i][6] = fd(x); + aes_dec_tab[i][7] = x; + } + +#else // TC_WINDOWS_BOOT + +#if defined(FF_TABLES) + + uint_8t pow[512], log[256]; + + if(init) + return EXIT_SUCCESS; + /* log and power tables for GF(2^8) finite field with + WPOLY as modular polynomial - the simplest primitive + root is 0x03, used here to generate the tables + */ + + i = 0; w = 1; + do + { + pow[i] = (uint_8t)w; + pow[i + 255] = (uint_8t)w; + log[w] = (uint_8t)i++; + w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); + } + while (w != 1); + +#else + if(init) + return EXIT_SUCCESS; +#endif + + for(i = 0, w = 1; i < RC_LENGTH; ++i) + { + t_set(r,c)[i] = bytes2word(w, 0, 0, 0); + w = f2(w); + } + + for(i = 0; i < 256; ++i) + { uint_8t b; + + b = fwd_affine(fi((uint_8t)i)); + w = bytes2word(f2(b), b, b, f3(b)); + +#if defined( SBX_SET ) + t_set(s,box)[i] = b; +#endif + +#if defined( FT1_SET ) /* tables for a normal encryption round */ + t_set(f,n)[i] = w; +#endif +#if defined( FT4_SET ) + t_set(f,n)[0][i] = w; + t_set(f,n)[1][i] = upr(w,1); + t_set(f,n)[2][i] = upr(w,2); + t_set(f,n)[3][i] = upr(w,3); +#endif + w = bytes2word(b, 0, 0, 0); + +#if defined( FL1_SET ) /* tables for last encryption round (may also */ + t_set(f,l)[i] = w; /* be used in the key schedule) */ +#endif +#if defined( FL4_SET ) + t_set(f,l)[0][i] = w; + t_set(f,l)[1][i] = upr(w,1); + t_set(f,l)[2][i] = upr(w,2); + t_set(f,l)[3][i] = upr(w,3); +#endif + +#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/ + t_set(l,s)[i] = w; /* not of the required form */ +#endif +#if defined( LS4_SET ) + t_set(l,s)[0][i] = w; + t_set(l,s)[1][i] = upr(w,1); + t_set(l,s)[2][i] = upr(w,2); + t_set(l,s)[3][i] = upr(w,3); +#endif + + b = fi(inv_affine((uint_8t)i)); + w = bytes2word(fe(b), f9(b), fd(b), fb(b)); + +#if defined( IM1_SET ) /* tables for the inverse mix column operation */ + t_set(i,m)[b] = w; +#endif +#if defined( IM4_SET ) + t_set(i,m)[0][b] = w; + t_set(i,m)[1][b] = upr(w,1); + t_set(i,m)[2][b] = upr(w,2); + t_set(i,m)[3][b] = upr(w,3); +#endif + +#if defined( ISB_SET ) + t_set(i,box)[i] = b; +#endif +#if defined( IT1_SET ) /* tables for a normal decryption round */ + t_set(i,n)[i] = w; +#endif +#if defined( IT4_SET ) + t_set(i,n)[0][i] = w; + t_set(i,n)[1][i] = upr(w,1); + t_set(i,n)[2][i] = upr(w,2); + t_set(i,n)[3][i] = upr(w,3); +#endif + w = bytes2word(b, 0, 0, 0); +#if defined( IL1_SET ) /* tables for last decryption round */ + t_set(i,l)[i] = w; +#endif +#if defined( IL4_SET ) + t_set(i,l)[0][i] = w; + t_set(i,l)[1][i] = upr(w,1); + t_set(i,l)[2][i] = upr(w,2); + t_set(i,l)[3][i] = upr(w,3); +#endif + } + +#endif // TC_WINDOWS_BOOT + + init = 1; + return EXIT_SUCCESS; +} + +#endif + +#if defined(__cplusplus) +} +#endif + diff --git a/src/Crypto/Aestab.h b/src/Crypto/Aestab.h index 2ad1b034..e52e0057 100644 --- a/src/Crypto/Aestab.h +++ b/src/Crypto/Aestab.h @@ -1,174 +1,174 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-
- This file contains the code for declaring the tables needed to implement
- AES. The file aesopt.h is assumed to be included before this header file.
- If there are no global variables, the definitions here can be used to put
- the AES tables in a structure so that a pointer can then be added to the
- AES context to pass them to the AES routines that need them. If this
- facility is used, the calling program has to ensure that this pointer is
- managed appropriately. In particular, the value of the t_dec(in,it) item
- in the table structure must be set to zero in order to ensure that the
- tables are initialised. In practice the three code sequences in aeskey.c
- that control the calls to aes_init() and the aes_init() routine itself will
- have to be changed for a specific implementation. If global variables are
- available it will generally be preferable to use them with the precomputed
- FIXED_TABLES option that uses static global tables.
-
- The following defines can be used to control the way the tables
- are defined, initialised and used in embedded environments that
- require special features for these purposes
-
- the 't_dec' construction is used to declare fixed table arrays
- the 't_set' construction is used to set fixed table values
- the 't_use' construction is used to access fixed table values
-
- 256 byte tables:
-
- t_xxx(s,box) => forward S box
- t_xxx(i,box) => inverse S box
-
- 256 32-bit word OR 4 x 256 32-bit word tables:
-
- t_xxx(f,n) => forward normal round
- t_xxx(f,l) => forward last round
- t_xxx(i,n) => inverse normal round
- t_xxx(i,l) => inverse last round
- t_xxx(l,s) => key schedule table
- t_xxx(i,m) => key schedule table
-
- Other variables and tables:
-
- t_xxx(r,c) => the rcon table
-*/
-
-#if !defined( _AESTAB_H )
-#define _AESTAB_H
-
-#define t_dec(m,n) t_##m##n
-#define t_set(m,n) t_##m##n
-#define t_use(m,n) t_##m##n
-
-#if defined(FIXED_TABLES)
-# if !defined( __GNUC__ ) && (defined( __MSDOS__ ) || defined( __WIN16__ ))
-/* make tables far data to avoid using too much DGROUP space (PG) */
-# define CONST const far
-# else
-# define CONST const
-# endif
-#else
-# define CONST
-#endif
-
-#if defined(__cplusplus)
-# define EXTERN extern "C"
-#elif defined(DO_TABLES)
-# define EXTERN
-#else
-# define EXTERN extern
-#endif
-
-#if defined(_MSC_VER) && defined(TABLE_ALIGN)
-#define ALIGN __declspec(align(TABLE_ALIGN))
-#else
-#define ALIGN
-#endif
-
-#if defined( __WATCOMC__ ) && ( __WATCOMC__ >= 1100 )
-# define XP_DIR __cdecl
-#else
-# define XP_DIR
-#endif
-
-#if defined(DO_TABLES) && defined(FIXED_TABLES)
-#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] = b(e)
-#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) }
-EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH] = rc_data(w0);
-#else
-#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256]
-#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256]
-EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH];
-#endif
-
-#if defined( SBX_SET )
- d_1(uint_8t, t_dec(s,box), sb_data, h0);
-#endif
-#if defined( ISB_SET )
- d_1(uint_8t, t_dec(i,box), isb_data, h0);
-#endif
-
-#if defined( FT1_SET )
- d_1(uint_32t, t_dec(f,n), sb_data, u0);
-#endif
-#if defined( FT4_SET )
- d_4(uint_32t, t_dec(f,n), sb_data, u0, u1, u2, u3);
-#endif
-
-#if defined( FL1_SET )
- d_1(uint_32t, t_dec(f,l), sb_data, w0);
-#endif
-#if defined( FL4_SET )
- d_4(uint_32t, t_dec(f,l), sb_data, w0, w1, w2, w3);
-#endif
-
-#if defined( IT1_SET )
- d_1(uint_32t, t_dec(i,n), isb_data, v0);
-#endif
-#if defined( IT4_SET )
- d_4(uint_32t, t_dec(i,n), isb_data, v0, v1, v2, v3);
-#endif
-
-#if defined( IL1_SET )
- d_1(uint_32t, t_dec(i,l), isb_data, w0);
-#endif
-#if defined( IL4_SET )
- d_4(uint_32t, t_dec(i,l), isb_data, w0, w1, w2, w3);
-#endif
-
-#if defined( LS1_SET )
-#if defined( FL1_SET )
-#undef LS1_SET
-#else
- d_1(uint_32t, t_dec(l,s), sb_data, w0);
-#endif
-#endif
-
-#if defined( LS4_SET )
-#if defined( FL4_SET )
-#undef LS4_SET
-#else
- d_4(uint_32t, t_dec(l,s), sb_data, w0, w1, w2, w3);
-#endif
-#endif
-
-#if defined( IM1_SET )
- d_1(uint_32t, t_dec(i,m), mm_data, v0);
-#endif
-#if defined( IM4_SET )
- d_4(uint_32t, t_dec(i,m), mm_data, v0, v1, v2, v3);
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 + + This file contains the code for declaring the tables needed to implement + AES. The file aesopt.h is assumed to be included before this header file. + If there are no global variables, the definitions here can be used to put + the AES tables in a structure so that a pointer can then be added to the + AES context to pass them to the AES routines that need them. If this + facility is used, the calling program has to ensure that this pointer is + managed appropriately. In particular, the value of the t_dec(in,it) item + in the table structure must be set to zero in order to ensure that the + tables are initialised. In practice the three code sequences in aeskey.c + that control the calls to aes_init() and the aes_init() routine itself will + have to be changed for a specific implementation. If global variables are + available it will generally be preferable to use them with the precomputed + FIXED_TABLES option that uses static global tables. + + The following defines can be used to control the way the tables + are defined, initialised and used in embedded environments that + require special features for these purposes + + the 't_dec' construction is used to declare fixed table arrays + the 't_set' construction is used to set fixed table values + the 't_use' construction is used to access fixed table values + + 256 byte tables: + + t_xxx(s,box) => forward S box + t_xxx(i,box) => inverse S box + + 256 32-bit word OR 4 x 256 32-bit word tables: + + t_xxx(f,n) => forward normal round + t_xxx(f,l) => forward last round + t_xxx(i,n) => inverse normal round + t_xxx(i,l) => inverse last round + t_xxx(l,s) => key schedule table + t_xxx(i,m) => key schedule table + + Other variables and tables: + + t_xxx(r,c) => the rcon table +*/ + +#if !defined( _AESTAB_H ) +#define _AESTAB_H + +#define t_dec(m,n) t_##m##n +#define t_set(m,n) t_##m##n +#define t_use(m,n) t_##m##n + +#if defined(FIXED_TABLES) +# if !defined( __GNUC__ ) && (defined( __MSDOS__ ) || defined( __WIN16__ )) +/* make tables far data to avoid using too much DGROUP space (PG) */ +# define CONST const far +# else +# define CONST const +# endif +#else +# define CONST +#endif + +#if defined(__cplusplus) +# define EXTERN extern "C" +#elif defined(DO_TABLES) +# define EXTERN +#else +# define EXTERN extern +#endif + +#if defined(_MSC_VER) && defined(TABLE_ALIGN) +#define ALIGN __declspec(align(TABLE_ALIGN)) +#else +#define ALIGN +#endif + +#if defined( __WATCOMC__ ) && ( __WATCOMC__ >= 1100 ) +# define XP_DIR __cdecl +#else +# define XP_DIR +#endif + +#if defined(DO_TABLES) && defined(FIXED_TABLES) +#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] = b(e) +#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) } +EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH] = rc_data(w0); +#else +#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] +#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] +EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH]; +#endif + +#if defined( SBX_SET ) + d_1(uint_8t, t_dec(s,box), sb_data, h0); +#endif +#if defined( ISB_SET ) + d_1(uint_8t, t_dec(i,box), isb_data, h0); +#endif + +#if defined( FT1_SET ) + d_1(uint_32t, t_dec(f,n), sb_data, u0); +#endif +#if defined( FT4_SET ) + d_4(uint_32t, t_dec(f,n), sb_data, u0, u1, u2, u3); +#endif + +#if defined( FL1_SET ) + d_1(uint_32t, t_dec(f,l), sb_data, w0); +#endif +#if defined( FL4_SET ) + d_4(uint_32t, t_dec(f,l), sb_data, w0, w1, w2, w3); +#endif + +#if defined( IT1_SET ) + d_1(uint_32t, t_dec(i,n), isb_data, v0); +#endif +#if defined( IT4_SET ) + d_4(uint_32t, t_dec(i,n), isb_data, v0, v1, v2, v3); +#endif + +#if defined( IL1_SET ) + d_1(uint_32t, t_dec(i,l), isb_data, w0); +#endif +#if defined( IL4_SET ) + d_4(uint_32t, t_dec(i,l), isb_data, w0, w1, w2, w3); +#endif + +#if defined( LS1_SET ) +#if defined( FL1_SET ) +#undef LS1_SET +#else + d_1(uint_32t, t_dec(l,s), sb_data, w0); +#endif +#endif + +#if defined( LS4_SET ) +#if defined( FL4_SET ) +#undef LS4_SET +#else + d_4(uint_32t, t_dec(l,s), sb_data, w0, w1, w2, w3); +#endif +#endif + +#if defined( IM1_SET ) + d_1(uint_32t, t_dec(i,m), mm_data, v0); +#endif +#if defined( IM4_SET ) + d_4(uint_32t, t_dec(i,m), mm_data, v0, v1, v2, v3); +#endif + +#endif diff --git a/src/Crypto/Crypto.vcproj b/src/Crypto/Crypto.vcproj index 24b012c5..50f67a11 100644 --- a/src/Crypto/Crypto.vcproj +++ b/src/Crypto/Crypto.vcproj @@ -1,517 +1,517 @@ -<?xml version="1.0" encoding="Windows-1252"?>
-<VisualStudioProject
- ProjectType="Visual C++"
- Version="9.00"
- Name="Crypto"
- ProjectGUID="{993245CF-6B70-47EE-91BB-39F8FC6DC0E7}"
- RootNamespace="Crypto"
- Keyword="Win32Proj"
- TargetFrameworkVersion="131072"
- >
- <Platforms>
- <Platform
- Name="Win32"
- />
- <Platform
- Name="x64"
- />
- </Platforms>
- <ToolFiles>
- </ToolFiles>
- <Configurations>
- <Configuration
- Name="Debug|Win32"
- OutputDirectory="Debug"
- IntermediateDirectory="Debug"
- ConfigurationType="4"
- InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops"
- CharacterSet="1"
- >
- <Tool
- Name="VCPreBuildEventTool"
- />
- <Tool
- Name="VCCustomBuildTool"
- />
- <Tool
- Name="VCXMLDataGeneratorTool"
- />
- <Tool
- Name="VCWebServiceProxyGeneratorTool"
- />
- <Tool
- Name="VCMIDLTool"
- />
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common""
- PreprocessorDefinitions="WIN32;DEBUG;_DEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS"
- MinimalRebuild="true"
- BasicRuntimeChecks="0"
- RuntimeLibrary="1"
- BufferSecurityCheck="false"
- UsePrecompiledHeader="0"
- WarningLevel="4"
- DebugInformationFormat="3"
- DisableSpecificWarnings="4100;4127;4201"
- />
- <Tool
- Name="VCManagedResourceCompilerTool"
- />
- <Tool
- Name="VCResourceCompilerTool"
- />
- <Tool
- Name="VCPreLinkEventTool"
- />
- <Tool
- Name="VCLibrarianTool"
- OutputFile="$(OutDir)/Crypto.lib"
- />
- <Tool
- Name="VCALinkTool"
- />
- <Tool
- Name="VCXDCMakeTool"
- />
- <Tool
- Name="VCBscMakeTool"
- />
- <Tool
- Name="VCFxCopTool"
- />
- <Tool
- Name="VCPostBuildEventTool"
- />
- </Configuration>
- <Configuration
- Name="Debug|x64"
- OutputDirectory="$(PlatformName)\$(ConfigurationName)"
- IntermediateDirectory="$(PlatformName)\$(ConfigurationName)"
- ConfigurationType="4"
- InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops"
- CharacterSet="1"
- >
- <Tool
- Name="VCPreBuildEventTool"
- />
- <Tool
- Name="VCCustomBuildTool"
- />
- <Tool
- Name="VCXMLDataGeneratorTool"
- />
- <Tool
- Name="VCWebServiceProxyGeneratorTool"
- />
- <Tool
- Name="VCMIDLTool"
- TargetEnvironment="3"
- />
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common""
- PreprocessorDefinitions="WIN32;DEBUG;_DEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS"
- MinimalRebuild="true"
- BasicRuntimeChecks="0"
- RuntimeLibrary="1"
- BufferSecurityCheck="false"
- UsePrecompiledHeader="0"
- WarningLevel="4"
- DebugInformationFormat="3"
- DisableSpecificWarnings="4100;4127;4201"
- />
- <Tool
- Name="VCManagedResourceCompilerTool"
- />
- <Tool
- Name="VCResourceCompilerTool"
- />
- <Tool
- Name="VCPreLinkEventTool"
- />
- <Tool
- Name="VCLibrarianTool"
- OutputFile="$(OutDir)/Crypto.lib"
- />
- <Tool
- Name="VCALinkTool"
- />
- <Tool
- Name="VCXDCMakeTool"
- />
- <Tool
- Name="VCBscMakeTool"
- />
- <Tool
- Name="VCFxCopTool"
- />
- <Tool
- Name="VCPostBuildEventTool"
- />
- </Configuration>
- <Configuration
- Name="Release|Win32"
- OutputDirectory="Release"
- IntermediateDirectory="Release"
- ConfigurationType="4"
- InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops"
- CharacterSet="1"
- >
- <Tool
- Name="VCPreBuildEventTool"
- />
- <Tool
- Name="VCCustomBuildTool"
- />
- <Tool
- Name="VCXMLDataGeneratorTool"
- />
- <Tool
- Name="VCWebServiceProxyGeneratorTool"
- />
- <Tool
- Name="VCMIDLTool"
- />
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common""
- PreprocessorDefinitions="WIN32;NDEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS"
- RuntimeLibrary="0"
- BufferSecurityCheck="true"
- UsePrecompiledHeader="0"
- AssemblerOutput="2"
- AssemblerListingLocation="$(IntDir)/"
- WarningLevel="4"
- Detect64BitPortabilityProblems="false"
- DebugInformationFormat="0"
- DisableSpecificWarnings="4100;4127;4201"
- />
- <Tool
- Name="VCManagedResourceCompilerTool"
- />
- <Tool
- Name="VCResourceCompilerTool"
- />
- <Tool
- Name="VCPreLinkEventTool"
- />
- <Tool
- Name="VCLibrarianTool"
- OutputFile="$(OutDir)/Crypto.lib"
- AdditionalLibraryDirectories="$(TargetDir)"
- />
- <Tool
- Name="VCALinkTool"
- />
- <Tool
- Name="VCXDCMakeTool"
- />
- <Tool
- Name="VCBscMakeTool"
- />
- <Tool
- Name="VCFxCopTool"
- />
- <Tool
- Name="VCPostBuildEventTool"
- />
- </Configuration>
- <Configuration
- Name="Release|x64"
- OutputDirectory="$(PlatformName)\$(ConfigurationName)"
- IntermediateDirectory="$(PlatformName)\$(ConfigurationName)"
- ConfigurationType="4"
- InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops"
- CharacterSet="1"
- >
- <Tool
- Name="VCPreBuildEventTool"
- />
- <Tool
- Name="VCCustomBuildTool"
- />
- <Tool
- Name="VCXMLDataGeneratorTool"
- />
- <Tool
- Name="VCWebServiceProxyGeneratorTool"
- />
- <Tool
- Name="VCMIDLTool"
- TargetEnvironment="3"
- />
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common""
- PreprocessorDefinitions="WIN32;NDEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS"
- RuntimeLibrary="0"
- BufferSecurityCheck="true"
- UsePrecompiledHeader="0"
- AssemblerOutput="2"
- AssemblerListingLocation="$(IntDir)/"
- WarningLevel="4"
- Detect64BitPortabilityProblems="false"
- DebugInformationFormat="0"
- DisableSpecificWarnings="4100;4127;4201"
- />
- <Tool
- Name="VCManagedResourceCompilerTool"
- />
- <Tool
- Name="VCResourceCompilerTool"
- />
- <Tool
- Name="VCPreLinkEventTool"
- />
- <Tool
- Name="VCLibrarianTool"
- OutputFile="$(OutDir)/Crypto.lib"
- AdditionalLibraryDirectories="$(TargetDir)"
- />
- <Tool
- Name="VCALinkTool"
- />
- <Tool
- Name="VCXDCMakeTool"
- />
- <Tool
- Name="VCBscMakeTool"
- />
- <Tool
- Name="VCFxCopTool"
- />
- <Tool
- Name="VCPostBuildEventTool"
- />
- </Configuration>
- </Configurations>
- <References>
- </References>
- <Files>
- <Filter
- Name="Source Files"
- Filter="cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx"
- UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
- >
- <File
- RelativePath=".\Aes_hw_cpu.asm"
- >
- <FileConfiguration
- Name="Debug|Win32"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|x64"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -g -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Release|Win32"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Release|x64"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- </File>
- <File
- RelativePath=".\Aes_x64.asm"
- >
- <FileConfiguration
- Name="Debug|Win32"
- ExcludedFromBuild="true"
- >
- <Tool
- Name="VCCustomBuildTool"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|x64"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Release|Win32"
- ExcludedFromBuild="true"
- >
- <Tool
- Name="VCCustomBuildTool"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Release|x64"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- </File>
- <File
- RelativePath=".\Aes_x86.asm"
- >
- <FileConfiguration
- Name="Debug|Win32"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|x64"
- ExcludedFromBuild="true"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Release|Win32"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- <FileConfiguration
- Name="Release|x64"
- ExcludedFromBuild="true"
- >
- <Tool
- Name="VCCustomBuildTool"
- CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
"
- Outputs="$(TargetDir)\$(InputName).obj"
- />
- </FileConfiguration>
- </File>
- <File
- RelativePath=".\Aeskey.c"
- >
- </File>
- <File
- RelativePath=".\Aestab.c"
- >
- </File>
- <File
- RelativePath=".\cpu.c"
- >
- </File>
- <File
- RelativePath=".\Rmd160.c"
- >
- </File>
- <File
- RelativePath=".\Serpent.c"
- >
- </File>
- <File
- RelativePath=".\Sha2.c"
- >
- </File>
- <File
- RelativePath=".\Twofish.c"
- >
- </File>
- <File
- RelativePath=".\Whirlpool.c"
- >
- </File>
- </Filter>
- <Filter
- Name="Header Files"
- Filter="h;hpp;hxx;hm;inl;inc;xsd"
- UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
- >
- <File
- RelativePath=".\Aes.h"
- >
- </File>
- <File
- RelativePath=".\Aes_hw_cpu.h"
- >
- </File>
- <File
- RelativePath=".\Aesopt.h"
- >
- </File>
- <File
- RelativePath=".\Aestab.h"
- >
- </File>
- <File
- RelativePath=".\config.h"
- >
- </File>
- <File
- RelativePath=".\cpu.h"
- >
- </File>
- <File
- RelativePath=".\misc.h"
- >
- </File>
- <File
- RelativePath=".\Rmd160.h"
- >
- </File>
- <File
- RelativePath=".\Serpent.h"
- >
- </File>
- <File
- RelativePath=".\Sha2.h"
- >
- </File>
- <File
- RelativePath=".\Twofish.h"
- >
- </File>
- <File
- RelativePath=".\Whirlpool.h"
- >
- </File>
- </Filter>
- <Filter
- Name="Resource Files"
- Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx"
- UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
- >
- </Filter>
- </Files>
- <Globals>
- </Globals>
-</VisualStudioProject>
+<?xml version="1.0" encoding="Windows-1252"?> +<VisualStudioProject + ProjectType="Visual C++" + Version="9.00" + Name="Crypto" + ProjectGUID="{993245CF-6B70-47EE-91BB-39F8FC6DC0E7}" + RootNamespace="Crypto" + Keyword="Win32Proj" + TargetFrameworkVersion="131072" + > + <Platforms> + <Platform + Name="Win32" + /> + <Platform + Name="x64" + /> + </Platforms> + <ToolFiles> + </ToolFiles> + <Configurations> + <Configuration + Name="Debug|Win32" + OutputDirectory="Debug" + IntermediateDirectory="Debug" + ConfigurationType="4" + InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops" + CharacterSet="1" + > + <Tool + Name="VCPreBuildEventTool" + /> + <Tool + Name="VCCustomBuildTool" + /> + <Tool + Name="VCXMLDataGeneratorTool" + /> + <Tool + Name="VCWebServiceProxyGeneratorTool" + /> + <Tool + Name="VCMIDLTool" + /> + <Tool + Name="VCCLCompilerTool" + Optimization="0" + AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common"" + PreprocessorDefinitions="WIN32;DEBUG;_DEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS" + MinimalRebuild="true" + BasicRuntimeChecks="0" + RuntimeLibrary="1" + BufferSecurityCheck="false" + UsePrecompiledHeader="0" + WarningLevel="4" + DebugInformationFormat="3" + DisableSpecificWarnings="4100;4127;4201" + /> + <Tool + Name="VCManagedResourceCompilerTool" + /> + <Tool + Name="VCResourceCompilerTool" + /> + <Tool + Name="VCPreLinkEventTool" + /> + <Tool + Name="VCLibrarianTool" + OutputFile="$(OutDir)/Crypto.lib" + /> + <Tool + Name="VCALinkTool" + /> + <Tool + Name="VCXDCMakeTool" + /> + <Tool + Name="VCBscMakeTool" + /> + <Tool + Name="VCFxCopTool" + /> + <Tool + Name="VCPostBuildEventTool" + /> + </Configuration> + <Configuration + Name="Debug|x64" + OutputDirectory="$(PlatformName)\$(ConfigurationName)" + IntermediateDirectory="$(PlatformName)\$(ConfigurationName)" + ConfigurationType="4" + InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops" + CharacterSet="1" + > + <Tool + Name="VCPreBuildEventTool" + /> + <Tool + Name="VCCustomBuildTool" + /> + <Tool + Name="VCXMLDataGeneratorTool" + /> + <Tool + Name="VCWebServiceProxyGeneratorTool" + /> + <Tool + Name="VCMIDLTool" + TargetEnvironment="3" + /> + <Tool + Name="VCCLCompilerTool" + Optimization="0" + AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common"" + PreprocessorDefinitions="WIN32;DEBUG;_DEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS" + MinimalRebuild="true" + BasicRuntimeChecks="0" + RuntimeLibrary="1" + BufferSecurityCheck="false" + UsePrecompiledHeader="0" + WarningLevel="4" + DebugInformationFormat="3" + DisableSpecificWarnings="4100;4127;4201" + /> + <Tool + Name="VCManagedResourceCompilerTool" + /> + <Tool + Name="VCResourceCompilerTool" + /> + <Tool + Name="VCPreLinkEventTool" + /> + <Tool + Name="VCLibrarianTool" + OutputFile="$(OutDir)/Crypto.lib" + /> + <Tool + Name="VCALinkTool" + /> + <Tool + Name="VCXDCMakeTool" + /> + <Tool + Name="VCBscMakeTool" + /> + <Tool + Name="VCFxCopTool" + /> + <Tool + Name="VCPostBuildEventTool" + /> + </Configuration> + <Configuration + Name="Release|Win32" + OutputDirectory="Release" + IntermediateDirectory="Release" + ConfigurationType="4" + InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops" + CharacterSet="1" + > + <Tool + Name="VCPreBuildEventTool" + /> + <Tool + Name="VCCustomBuildTool" + /> + <Tool + Name="VCXMLDataGeneratorTool" + /> + <Tool + Name="VCWebServiceProxyGeneratorTool" + /> + <Tool + Name="VCMIDLTool" + /> + <Tool + Name="VCCLCompilerTool" + Optimization="2" + AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common"" + PreprocessorDefinitions="WIN32;NDEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS" + RuntimeLibrary="0" + BufferSecurityCheck="true" + UsePrecompiledHeader="0" + AssemblerOutput="2" + AssemblerListingLocation="$(IntDir)/" + WarningLevel="4" + Detect64BitPortabilityProblems="false" + DebugInformationFormat="0" + DisableSpecificWarnings="4100;4127;4201" + /> + <Tool + Name="VCManagedResourceCompilerTool" + /> + <Tool + Name="VCResourceCompilerTool" + /> + <Tool + Name="VCPreLinkEventTool" + /> + <Tool + Name="VCLibrarianTool" + OutputFile="$(OutDir)/Crypto.lib" + AdditionalLibraryDirectories="$(TargetDir)" + /> + <Tool + Name="VCALinkTool" + /> + <Tool + Name="VCXDCMakeTool" + /> + <Tool + Name="VCBscMakeTool" + /> + <Tool + Name="VCFxCopTool" + /> + <Tool + Name="VCPostBuildEventTool" + /> + </Configuration> + <Configuration + Name="Release|x64" + OutputDirectory="$(PlatformName)\$(ConfigurationName)" + IntermediateDirectory="$(PlatformName)\$(ConfigurationName)" + ConfigurationType="4" + InheritedPropertySheets="$(VCInstallDir)VCProjectDefaults\UpgradeFromVC71.vsprops" + CharacterSet="1" + > + <Tool + Name="VCPreBuildEventTool" + /> + <Tool + Name="VCCustomBuildTool" + /> + <Tool + Name="VCXMLDataGeneratorTool" + /> + <Tool + Name="VCWebServiceProxyGeneratorTool" + /> + <Tool + Name="VCMIDLTool" + TargetEnvironment="3" + /> + <Tool + Name="VCCLCompilerTool" + Optimization="2" + AdditionalIncludeDirectories=""$(ProjectDir)\..";"$(ProjectDir)\..\Common"" + PreprocessorDefinitions="WIN32;NDEBUG;_LIB;_CRT_SECURE_NO_DEPRECATE;_CRT_NON_CONFORMING_SWPRINTFS" + RuntimeLibrary="0" + BufferSecurityCheck="true" + UsePrecompiledHeader="0" + AssemblerOutput="2" + AssemblerListingLocation="$(IntDir)/" + WarningLevel="4" + Detect64BitPortabilityProblems="false" + DebugInformationFormat="0" + DisableSpecificWarnings="4100;4127;4201" + /> + <Tool + Name="VCManagedResourceCompilerTool" + /> + <Tool + Name="VCResourceCompilerTool" + /> + <Tool + Name="VCPreLinkEventTool" + /> + <Tool + Name="VCLibrarianTool" + OutputFile="$(OutDir)/Crypto.lib" + AdditionalLibraryDirectories="$(TargetDir)" + /> + <Tool + Name="VCALinkTool" + /> + <Tool + Name="VCXDCMakeTool" + /> + <Tool + Name="VCBscMakeTool" + /> + <Tool + Name="VCFxCopTool" + /> + <Tool + Name="VCPostBuildEventTool" + /> + </Configuration> + </Configurations> + <References> + </References> + <Files> + <Filter + Name="Source Files" + Filter="cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx" + UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}" + > + <File + RelativePath=".\Aes_hw_cpu.asm" + > + <FileConfiguration + Name="Debug|Win32" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Debug|x64" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -g -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Release|Win32" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Release|x64" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + </File> + <File + RelativePath=".\Aes_x64.asm" + > + <FileConfiguration + Name="Debug|Win32" + ExcludedFromBuild="true" + > + <Tool + Name="VCCustomBuildTool" + /> + </FileConfiguration> + <FileConfiguration + Name="Debug|x64" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Release|Win32" + ExcludedFromBuild="true" + > + <Tool + Name="VCCustomBuildTool" + /> + </FileConfiguration> + <FileConfiguration + Name="Release|x64" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win64 -Ox -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + </File> + <File + RelativePath=".\Aes_x86.asm" + > + <FileConfiguration + Name="Debug|Win32" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Debug|x64" + ExcludedFromBuild="true" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox -g --prefix _ -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Release|Win32" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + <FileConfiguration + Name="Release|x64" + ExcludedFromBuild="true" + > + <Tool + Name="VCCustomBuildTool" + CommandLine="echo $(InputFileName) & nasm.exe -Xvc -f win32 -Ox --prefix _ -o "$(TargetDir)\$(InputName).obj" -l "$(TargetDir)\$(InputName).lst" "$(InputPath)"
" + Outputs="$(TargetDir)\$(InputName).obj" + /> + </FileConfiguration> + </File> + <File + RelativePath=".\Aeskey.c" + > + </File> + <File + RelativePath=".\Aestab.c" + > + </File> + <File + RelativePath=".\cpu.c" + > + </File> + <File + RelativePath=".\Rmd160.c" + > + </File> + <File + RelativePath=".\Serpent.c" + > + </File> + <File + RelativePath=".\Sha2.c" + > + </File> + <File + RelativePath=".\Twofish.c" + > + </File> + <File + RelativePath=".\Whirlpool.c" + > + </File> + </Filter> + <Filter + Name="Header Files" + Filter="h;hpp;hxx;hm;inl;inc;xsd" + UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}" + > + <File + RelativePath=".\Aes.h" + > + </File> + <File + RelativePath=".\Aes_hw_cpu.h" + > + </File> + <File + RelativePath=".\Aesopt.h" + > + </File> + <File + RelativePath=".\Aestab.h" + > + </File> + <File + RelativePath=".\config.h" + > + </File> + <File + RelativePath=".\cpu.h" + > + </File> + <File + RelativePath=".\misc.h" + > + </File> + <File + RelativePath=".\Rmd160.h" + > + </File> + <File + RelativePath=".\Serpent.h" + > + </File> + <File + RelativePath=".\Sha2.h" + > + </File> + <File + RelativePath=".\Twofish.h" + > + </File> + <File + RelativePath=".\Whirlpool.h" + > + </File> + </Filter> + <Filter + Name="Resource Files" + Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx" + UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}" + > + </Filter> + </Files> + <Globals> + </Globals> +</VisualStudioProject> diff --git a/src/Crypto/Makefile b/src/Crypto/Makefile index 53b9a3d6..5acbbd24 100644 --- a/src/Crypto/Makefile +++ b/src/Crypto/Makefile @@ -1 +1 @@ -!INCLUDE $(NTMAKEENV)\makefile.def
+!INCLUDE $(NTMAKEENV)\makefile.def diff --git a/src/Crypto/Makefile.inc b/src/Crypto/Makefile.inc index 51c4f46d..955f2a76 100644 --- a/src/Crypto/Makefile.inc +++ b/src/Crypto/Makefile.inc @@ -1,15 +1,15 @@ -TC_ASFLAGS = -Xvc -Ox
-
-!if "$(TC_ARCH)" == "x86"
-TC_ASFLAGS = $(TC_ASFLAGS) -f win32 --prefix _ -D MS_STDCALL -D DLL_EXPORT
-!else
-TC_ASFLAGS = $(TC_ASFLAGS) -f win64
-!endif
-
-TC_ASM_ERR_LOG = ..\Driver\build_errors_asm.log
-
-"$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).obj": Aes_$(TC_ARCH).asm
- nasm.exe $(TC_ASFLAGS) -o "$@" -l "$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).lst" Aes_$(TC_ARCH).asm 2>$(TC_ASM_ERR_LOG)
-
-"$(OBJ_PATH)\$(O)\Aes_hw_cpu.obj": Aes_hw_cpu.asm
- nasm.exe $(TC_ASFLAGS) -o "$@" -l "$(OBJ_PATH)\$(O)\Aes_hw_cpu.lst" Aes_hw_cpu.asm 2>$(TC_ASM_ERR_LOG)
+TC_ASFLAGS = -Xvc -Ox + +!if "$(TC_ARCH)" == "x86" +TC_ASFLAGS = $(TC_ASFLAGS) -f win32 --prefix _ -D MS_STDCALL -D DLL_EXPORT +!else +TC_ASFLAGS = $(TC_ASFLAGS) -f win64 +!endif + +TC_ASM_ERR_LOG = ..\Driver\build_errors_asm.log + +"$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).obj": Aes_$(TC_ARCH).asm + nasm.exe $(TC_ASFLAGS) -o "$@" -l "$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).lst" Aes_$(TC_ARCH).asm 2>$(TC_ASM_ERR_LOG) + +"$(OBJ_PATH)\$(O)\Aes_hw_cpu.obj": Aes_hw_cpu.asm + nasm.exe $(TC_ASFLAGS) -o "$@" -l "$(OBJ_PATH)\$(O)\Aes_hw_cpu.lst" Aes_hw_cpu.asm 2>$(TC_ASM_ERR_LOG) diff --git a/src/Crypto/Rmd160.c b/src/Crypto/Rmd160.c index f94f5e08..75a34c3e 100644 --- a/src/Crypto/Rmd160.c +++ b/src/Crypto/Rmd160.c @@ -1,498 +1,498 @@ -// RIPEMD-160 written and placed in the public domain by Wei Dai
-
-/*
- * This code implements the MD4 message-digest algorithm.
- * The algorithm is due to Ron Rivest. This code was
- * written by Colin Plumb in 1993, no copyright is claimed.
- * This code is in the public domain; do with it what you wish.
- */
-
-/* Adapted for TrueCrypt */
-/* Adapted for VeraCrypt */
-
-#include <memory.h>
-#include "Common/Tcdefs.h"
-#include "Common/Endian.h"
-#include "Rmd160.h"
-
-#define F(x, y, z) (x ^ y ^ z)
-#define G(x, y, z) (z ^ (x & (y^z)))
-#define H(x, y, z) (z ^ (x | ~y))
-#define I(x, y, z) (y ^ (z & (x^y)))
-#define J(x, y, z) (x ^ (y | ~z))
-
-#define PUT_64BIT_LE(cp, value) do { \
- (cp)[7] = (byte) ((value) >> 56); \
- (cp)[6] = (byte) ((value) >> 48); \
- (cp)[5] = (byte) ((value) >> 40); \
- (cp)[4] = (byte) ((value) >> 32); \
- (cp)[3] = (byte) ((value) >> 24); \
- (cp)[2] = (byte) ((value) >> 16); \
- (cp)[1] = (byte) ((value) >> 8); \
- (cp)[0] = (byte) (value); } while (0)
-
-#define PUT_32BIT_LE(cp, value) do { \
- (cp)[3] = (byte) ((value) >> 24); \
- (cp)[2] = (byte) ((value) >> 16); \
- (cp)[1] = (byte) ((value) >> 8); \
- (cp)[0] = (byte) (value); } while (0)
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-static byte PADDING[64] = {
- 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-#else
-
-static byte PADDING[64];
-
-#endif
-
-void RMD160Init (RMD160_CTX *ctx)
-{
- ctx->count = 0;
- ctx->state[0] = 0x67452301;
- ctx->state[1] = 0xefcdab89;
- ctx->state[2] = 0x98badcfe;
- ctx->state[3] = 0x10325476;
- ctx->state[4] = 0xc3d2e1f0;
- PADDING[0] = 0x80;
-}
-
-/*
-* Update context to reflect the concatenation of another buffer full
-* of bytes.
-*/
-void RMD160Update (RMD160_CTX *ctx, const unsigned char *input, unsigned __int32 lenArg)
-{
-#ifndef TC_WINDOWS_BOOT
- uint64 len = lenArg;
-#else
- uint32 len = lenArg;
-#endif
- unsigned int have, need;
-
- /* Check how many bytes we already have and how many more we need. */
- have = (unsigned int) ((ctx->count) & (RIPEMD160_BLOCK_LENGTH - 1));
- need = RIPEMD160_BLOCK_LENGTH - have;
-
- /* Update bitcount */
- ctx->count += len;
-
- if (len >= need) {
- if (have != 0) {
- memcpy (ctx->buffer + have, input, (size_t) need);
- RMD160Transform ((uint32 *) ctx->state, (const uint32 *) ctx->buffer);
- input += need;
- len -= need;
- have = 0;
- }
-
- /* Process data in RIPEMD160_BLOCK_LENGTH-byte chunks. */
- while (len >= RIPEMD160_BLOCK_LENGTH) {
- RMD160Transform ((uint32 *) ctx->state, (const uint32 *) input);
- input += RIPEMD160_BLOCK_LENGTH;
- len -= RIPEMD160_BLOCK_LENGTH;
- }
- }
-
- /* Handle any remaining bytes of data. */
- if (len != 0)
- memcpy (ctx->buffer + have, input, (size_t) len);
-}
-
-/*
-* Pad pad to 64-byte boundary with the bit pattern
-* 1 0* (64-bit count of bits processed, MSB-first)
-*/
-static void RMD160Pad(RMD160_CTX *ctx)
-{
- byte count[8];
- uint32 padlen;
-
- /* Convert count to 8 bytes in little endian order. */
-
-#ifndef TC_WINDOWS_BOOT
- uint64 bitcount = ctx->count << 3;
- PUT_64BIT_LE(count, bitcount);
-#else
- *(uint32 *) (count + 4) = 0;
- *(uint32 *) (count + 0) = ctx->count << 3;
-#endif
-
- /* Pad out to 56 mod 64. */
- padlen = RIPEMD160_BLOCK_LENGTH -
- (uint32)((ctx->count) & (RIPEMD160_BLOCK_LENGTH - 1));
- if (padlen < 1 + 8)
- padlen += RIPEMD160_BLOCK_LENGTH;
- RMD160Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
- RMD160Update(ctx, count, 8);
-}
-
-/*
-* Final wrapup--call RMD160Pad, fill in digest and zero out ctx.
-*/
-void RMD160Final(unsigned char *digest, RMD160_CTX *ctx)
-{
- int i;
-
- RMD160Pad(ctx);
- if (digest) {
- for (i = 0; i < 5; i++)
- PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
-#ifndef TC_WINDOWS_BOOT
- burn (ctx, sizeof(*ctx));
-#endif
- }
-}
-
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-#define word32 unsigned __int32
-
-#define k0 0
-#define k1 0x5a827999UL
-#define k2 0x6ed9eba1UL
-#define k3 0x8f1bbcdcUL
-#define k4 0xa953fd4eUL
-#define k5 0x50a28be6UL
-#define k6 0x5c4dd124UL
-#define k7 0x6d703ef3UL
-#define k8 0x7a6d76e9UL
-#define k9 0
-
-static word32 rotlFixed (word32 x, unsigned int y)
-{
- return (word32)((x<<y) | (x>>(sizeof(word32)*8-y)));
-}
-
-#define Subround(f, a, b, c, d, e, x, s, k) \
- a += f(b, c, d) + x + k;\
- a = rotlFixed((word32)a, s) + e;\
- c = rotlFixed((word32)c, 10U)
-
-void RMD160Transform (unsigned __int32 *digest, const unsigned __int32 *data)
-{
-#if BYTE_ORDER == LITTLE_ENDIAN
- const word32 *X = data;
-#else
- word32 X[16];
- int i;
-#endif
-
- word32 a1, b1, c1, d1, e1, a2, b2, c2, d2, e2;
- a1 = a2 = digest[0];
- b1 = b2 = digest[1];
- c1 = c2 = digest[2];
- d1 = d2 = digest[3];
- e1 = e2 = digest[4];
-
-#if BYTE_ORDER == BIG_ENDIAN
- for (i = 0; i < 16; i++)
- {
- X[i] = LE32 (data[i]);
- }
-#endif
-
- Subround(F, a1, b1, c1, d1, e1, X[ 0], 11, k0);
- Subround(F, e1, a1, b1, c1, d1, X[ 1], 14, k0);
- Subround(F, d1, e1, a1, b1, c1, X[ 2], 15, k0);
- Subround(F, c1, d1, e1, a1, b1, X[ 3], 12, k0);
- Subround(F, b1, c1, d1, e1, a1, X[ 4], 5, k0);
- Subround(F, a1, b1, c1, d1, e1, X[ 5], 8, k0);
- Subround(F, e1, a1, b1, c1, d1, X[ 6], 7, k0);
- Subround(F, d1, e1, a1, b1, c1, X[ 7], 9, k0);
- Subround(F, c1, d1, e1, a1, b1, X[ 8], 11, k0);
- Subround(F, b1, c1, d1, e1, a1, X[ 9], 13, k0);
- Subround(F, a1, b1, c1, d1, e1, X[10], 14, k0);
- Subround(F, e1, a1, b1, c1, d1, X[11], 15, k0);
- Subround(F, d1, e1, a1, b1, c1, X[12], 6, k0);
- Subround(F, c1, d1, e1, a1, b1, X[13], 7, k0);
- Subround(F, b1, c1, d1, e1, a1, X[14], 9, k0);
- Subround(F, a1, b1, c1, d1, e1, X[15], 8, k0);
-
- Subround(G, e1, a1, b1, c1, d1, X[ 7], 7, k1);
- Subround(G, d1, e1, a1, b1, c1, X[ 4], 6, k1);
- Subround(G, c1, d1, e1, a1, b1, X[13], 8, k1);
- Subround(G, b1, c1, d1, e1, a1, X[ 1], 13, k1);
- Subround(G, a1, b1, c1, d1, e1, X[10], 11, k1);
- Subround(G, e1, a1, b1, c1, d1, X[ 6], 9, k1);
- Subround(G, d1, e1, a1, b1, c1, X[15], 7, k1);
- Subround(G, c1, d1, e1, a1, b1, X[ 3], 15, k1);
- Subround(G, b1, c1, d1, e1, a1, X[12], 7, k1);
- Subround(G, a1, b1, c1, d1, e1, X[ 0], 12, k1);
- Subround(G, e1, a1, b1, c1, d1, X[ 9], 15, k1);
- Subround(G, d1, e1, a1, b1, c1, X[ 5], 9, k1);
- Subround(G, c1, d1, e1, a1, b1, X[ 2], 11, k1);
- Subround(G, b1, c1, d1, e1, a1, X[14], 7, k1);
- Subround(G, a1, b1, c1, d1, e1, X[11], 13, k1);
- Subround(G, e1, a1, b1, c1, d1, X[ 8], 12, k1);
-
- Subround(H, d1, e1, a1, b1, c1, X[ 3], 11, k2);
- Subround(H, c1, d1, e1, a1, b1, X[10], 13, k2);
- Subround(H, b1, c1, d1, e1, a1, X[14], 6, k2);
- Subround(H, a1, b1, c1, d1, e1, X[ 4], 7, k2);
- Subround(H, e1, a1, b1, c1, d1, X[ 9], 14, k2);
- Subround(H, d1, e1, a1, b1, c1, X[15], 9, k2);
- Subround(H, c1, d1, e1, a1, b1, X[ 8], 13, k2);
- Subround(H, b1, c1, d1, e1, a1, X[ 1], 15, k2);
- Subround(H, a1, b1, c1, d1, e1, X[ 2], 14, k2);
- Subround(H, e1, a1, b1, c1, d1, X[ 7], 8, k2);
- Subround(H, d1, e1, a1, b1, c1, X[ 0], 13, k2);
- Subround(H, c1, d1, e1, a1, b1, X[ 6], 6, k2);
- Subround(H, b1, c1, d1, e1, a1, X[13], 5, k2);
- Subround(H, a1, b1, c1, d1, e1, X[11], 12, k2);
- Subround(H, e1, a1, b1, c1, d1, X[ 5], 7, k2);
- Subround(H, d1, e1, a1, b1, c1, X[12], 5, k2);
-
- Subround(I, c1, d1, e1, a1, b1, X[ 1], 11, k3);
- Subround(I, b1, c1, d1, e1, a1, X[ 9], 12, k3);
- Subround(I, a1, b1, c1, d1, e1, X[11], 14, k3);
- Subround(I, e1, a1, b1, c1, d1, X[10], 15, k3);
- Subround(I, d1, e1, a1, b1, c1, X[ 0], 14, k3);
- Subround(I, c1, d1, e1, a1, b1, X[ 8], 15, k3);
- Subround(I, b1, c1, d1, e1, a1, X[12], 9, k3);
- Subround(I, a1, b1, c1, d1, e1, X[ 4], 8, k3);
- Subround(I, e1, a1, b1, c1, d1, X[13], 9, k3);
- Subround(I, d1, e1, a1, b1, c1, X[ 3], 14, k3);
- Subround(I, c1, d1, e1, a1, b1, X[ 7], 5, k3);
- Subround(I, b1, c1, d1, e1, a1, X[15], 6, k3);
- Subround(I, a1, b1, c1, d1, e1, X[14], 8, k3);
- Subround(I, e1, a1, b1, c1, d1, X[ 5], 6, k3);
- Subround(I, d1, e1, a1, b1, c1, X[ 6], 5, k3);
- Subround(I, c1, d1, e1, a1, b1, X[ 2], 12, k3);
-
- Subround(J, b1, c1, d1, e1, a1, X[ 4], 9, k4);
- Subround(J, a1, b1, c1, d1, e1, X[ 0], 15, k4);
- Subround(J, e1, a1, b1, c1, d1, X[ 5], 5, k4);
- Subround(J, d1, e1, a1, b1, c1, X[ 9], 11, k4);
- Subround(J, c1, d1, e1, a1, b1, X[ 7], 6, k4);
- Subround(J, b1, c1, d1, e1, a1, X[12], 8, k4);
- Subround(J, a1, b1, c1, d1, e1, X[ 2], 13, k4);
- Subround(J, e1, a1, b1, c1, d1, X[10], 12, k4);
- Subround(J, d1, e1, a1, b1, c1, X[14], 5, k4);
- Subround(J, c1, d1, e1, a1, b1, X[ 1], 12, k4);
- Subround(J, b1, c1, d1, e1, a1, X[ 3], 13, k4);
- Subround(J, a1, b1, c1, d1, e1, X[ 8], 14, k4);
- Subround(J, e1, a1, b1, c1, d1, X[11], 11, k4);
- Subround(J, d1, e1, a1, b1, c1, X[ 6], 8, k4);
- Subround(J, c1, d1, e1, a1, b1, X[15], 5, k4);
- Subround(J, b1, c1, d1, e1, a1, X[13], 6, k4);
-
- Subround(J, a2, b2, c2, d2, e2, X[ 5], 8, k5);
- Subround(J, e2, a2, b2, c2, d2, X[14], 9, k5);
- Subround(J, d2, e2, a2, b2, c2, X[ 7], 9, k5);
- Subround(J, c2, d2, e2, a2, b2, X[ 0], 11, k5);
- Subround(J, b2, c2, d2, e2, a2, X[ 9], 13, k5);
- Subround(J, a2, b2, c2, d2, e2, X[ 2], 15, k5);
- Subround(J, e2, a2, b2, c2, d2, X[11], 15, k5);
- Subround(J, d2, e2, a2, b2, c2, X[ 4], 5, k5);
- Subround(J, c2, d2, e2, a2, b2, X[13], 7, k5);
- Subround(J, b2, c2, d2, e2, a2, X[ 6], 7, k5);
- Subround(J, a2, b2, c2, d2, e2, X[15], 8, k5);
- Subround(J, e2, a2, b2, c2, d2, X[ 8], 11, k5);
- Subround(J, d2, e2, a2, b2, c2, X[ 1], 14, k5);
- Subround(J, c2, d2, e2, a2, b2, X[10], 14, k5);
- Subround(J, b2, c2, d2, e2, a2, X[ 3], 12, k5);
- Subround(J, a2, b2, c2, d2, e2, X[12], 6, k5);
-
- Subround(I, e2, a2, b2, c2, d2, X[ 6], 9, k6);
- Subround(I, d2, e2, a2, b2, c2, X[11], 13, k6);
- Subround(I, c2, d2, e2, a2, b2, X[ 3], 15, k6);
- Subround(I, b2, c2, d2, e2, a2, X[ 7], 7, k6);
- Subround(I, a2, b2, c2, d2, e2, X[ 0], 12, k6);
- Subround(I, e2, a2, b2, c2, d2, X[13], 8, k6);
- Subround(I, d2, e2, a2, b2, c2, X[ 5], 9, k6);
- Subround(I, c2, d2, e2, a2, b2, X[10], 11, k6);
- Subround(I, b2, c2, d2, e2, a2, X[14], 7, k6);
- Subround(I, a2, b2, c2, d2, e2, X[15], 7, k6);
- Subround(I, e2, a2, b2, c2, d2, X[ 8], 12, k6);
- Subround(I, d2, e2, a2, b2, c2, X[12], 7, k6);
- Subround(I, c2, d2, e2, a2, b2, X[ 4], 6, k6);
- Subround(I, b2, c2, d2, e2, a2, X[ 9], 15, k6);
- Subround(I, a2, b2, c2, d2, e2, X[ 1], 13, k6);
- Subround(I, e2, a2, b2, c2, d2, X[ 2], 11, k6);
-
- Subround(H, d2, e2, a2, b2, c2, X[15], 9, k7);
- Subround(H, c2, d2, e2, a2, b2, X[ 5], 7, k7);
- Subround(H, b2, c2, d2, e2, a2, X[ 1], 15, k7);
- Subround(H, a2, b2, c2, d2, e2, X[ 3], 11, k7);
- Subround(H, e2, a2, b2, c2, d2, X[ 7], 8, k7);
- Subround(H, d2, e2, a2, b2, c2, X[14], 6, k7);
- Subround(H, c2, d2, e2, a2, b2, X[ 6], 6, k7);
- Subround(H, b2, c2, d2, e2, a2, X[ 9], 14, k7);
- Subround(H, a2, b2, c2, d2, e2, X[11], 12, k7);
- Subround(H, e2, a2, b2, c2, d2, X[ 8], 13, k7);
- Subround(H, d2, e2, a2, b2, c2, X[12], 5, k7);
- Subround(H, c2, d2, e2, a2, b2, X[ 2], 14, k7);
- Subround(H, b2, c2, d2, e2, a2, X[10], 13, k7);
- Subround(H, a2, b2, c2, d2, e2, X[ 0], 13, k7);
- Subround(H, e2, a2, b2, c2, d2, X[ 4], 7, k7);
- Subround(H, d2, e2, a2, b2, c2, X[13], 5, k7);
-
- Subround(G, c2, d2, e2, a2, b2, X[ 8], 15, k8);
- Subround(G, b2, c2, d2, e2, a2, X[ 6], 5, k8);
- Subround(G, a2, b2, c2, d2, e2, X[ 4], 8, k8);
- Subround(G, e2, a2, b2, c2, d2, X[ 1], 11, k8);
- Subround(G, d2, e2, a2, b2, c2, X[ 3], 14, k8);
- Subround(G, c2, d2, e2, a2, b2, X[11], 14, k8);
- Subround(G, b2, c2, d2, e2, a2, X[15], 6, k8);
- Subround(G, a2, b2, c2, d2, e2, X[ 0], 14, k8);
- Subround(G, e2, a2, b2, c2, d2, X[ 5], 6, k8);
- Subround(G, d2, e2, a2, b2, c2, X[12], 9, k8);
- Subround(G, c2, d2, e2, a2, b2, X[ 2], 12, k8);
- Subround(G, b2, c2, d2, e2, a2, X[13], 9, k8);
- Subround(G, a2, b2, c2, d2, e2, X[ 9], 12, k8);
- Subround(G, e2, a2, b2, c2, d2, X[ 7], 5, k8);
- Subround(G, d2, e2, a2, b2, c2, X[10], 15, k8);
- Subround(G, c2, d2, e2, a2, b2, X[14], 8, k8);
-
- Subround(F, b2, c2, d2, e2, a2, X[12], 8, k9);
- Subround(F, a2, b2, c2, d2, e2, X[15], 5, k9);
- Subround(F, e2, a2, b2, c2, d2, X[10], 12, k9);
- Subround(F, d2, e2, a2, b2, c2, X[ 4], 9, k9);
- Subround(F, c2, d2, e2, a2, b2, X[ 1], 12, k9);
- Subround(F, b2, c2, d2, e2, a2, X[ 5], 5, k9);
- Subround(F, a2, b2, c2, d2, e2, X[ 8], 14, k9);
- Subround(F, e2, a2, b2, c2, d2, X[ 7], 6, k9);
- Subround(F, d2, e2, a2, b2, c2, X[ 6], 8, k9);
- Subround(F, c2, d2, e2, a2, b2, X[ 2], 13, k9);
- Subround(F, b2, c2, d2, e2, a2, X[13], 6, k9);
- Subround(F, a2, b2, c2, d2, e2, X[14], 5, k9);
- Subround(F, e2, a2, b2, c2, d2, X[ 0], 15, k9);
- Subround(F, d2, e2, a2, b2, c2, X[ 3], 13, k9);
- Subround(F, c2, d2, e2, a2, b2, X[ 9], 11, k9);
- Subround(F, b2, c2, d2, e2, a2, X[11], 11, k9);
-
- c1 = digest[1] + c1 + d2;
- digest[1] = digest[2] + d1 + e2;
- digest[2] = digest[3] + e1 + a2;
- digest[3] = digest[4] + a1 + b2;
- digest[4] = digest[0] + b1 + c2;
- digest[0] = c1;
-}
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-/*
- Derived from source code of TrueCrypt 7.1a, which is
- Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
- by the TrueCrypt License 3.0.
-
- Modifications and additions to the original source code (contained in this file)
- and all other portions of this file are Copyright (c) 2013-2016 IDRIX
- and are governed by the Apache License 2.0 the full text of which is
- contained in the file License.txt included in VeraCrypt binary and source
- code distribution packages.
-*/
-
-#pragma optimize ("tl", on)
-
-typedef unsigned __int32 uint32;
-typedef unsigned __int8 byte;
-
-#include <stdlib.h>
-#pragma intrinsic (_lrotl)
-
-static const byte OrderTab[] = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
- 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
- 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
- 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13,
- 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
- 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
- 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
- 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
- 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
-};
-
-static const byte RolTab[] = {
- 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
- 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
- 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
- 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
- 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6,
- 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
- 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
- 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
- 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
- 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
-};
-
-static const uint32 KTab[] = {
- 0x00000000UL,
- 0x5A827999UL,
- 0x6ED9EBA1UL,
- 0x8F1BBCDCUL,
- 0xA953FD4EUL,
- 0x50A28BE6UL,
- 0x5C4DD124UL,
- 0x6D703EF3UL,
- 0x7A6D76E9UL,
- 0x00000000UL
-};
-
-
-void RMD160Transform (unsigned __int32 *state, const unsigned __int32 *data)
-{
- uint32 a, b, c, d, e;
- uint32 a2, b2, c2, d2, e2;
- byte pos;
- uint32 tmp;
-
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- e = state[4];
-
- for (pos = 0; pos < 160; ++pos)
- {
- tmp = a + data[OrderTab[pos]] + KTab[pos >> 4];
-
- switch (pos >> 4)
- {
- case 0: case 9: tmp += F (b, c, d); break;
- case 1: case 8: tmp += G (b, c, d); break;
- case 2: case 7: tmp += H (b, c, d); break;
- case 3: case 6: tmp += I (b, c, d); break;
- case 4: case 5: tmp += J (b, c, d); break;
- }
-
- tmp = _lrotl (tmp, RolTab[pos]) + e;
- a = e;
- e = d;
- d = _lrotl (c, 10);
- c = b;
- b = tmp;
-
- if (pos == 79)
- {
- a2 = a;
- b2 = b;
- c2 = c;
- d2 = d;
- e2 = e;
-
- a = state[0];
- b = state[1];
- c = state[2];
- d = state[3];
- e = state[4];
- }
- }
-
- tmp = state[1] + c2 + d;
- state[1] = state[2] + d2 + e;
- state[2] = state[3] + e2 + a;
- state[3] = state[4] + a2 + b;
- state[4] = state[0] + b2 + c;
- state[0] = tmp;
-}
-
-#endif // TC_MINIMIZE_CODE_SIZE
+// RIPEMD-160 written and placed in the public domain by Wei Dai + +/* + * This code implements the MD4 message-digest algorithm. + * The algorithm is due to Ron Rivest. This code was + * written by Colin Plumb in 1993, no copyright is claimed. + * This code is in the public domain; do with it what you wish. + */ + +/* Adapted for TrueCrypt */ +/* Adapted for VeraCrypt */ + +#include <memory.h> +#include "Common/Tcdefs.h" +#include "Common/Endian.h" +#include "Rmd160.h" + +#define F(x, y, z) (x ^ y ^ z) +#define G(x, y, z) (z ^ (x & (y^z))) +#define H(x, y, z) (z ^ (x | ~y)) +#define I(x, y, z) (y ^ (z & (x^y))) +#define J(x, y, z) (x ^ (y | ~z)) + +#define PUT_64BIT_LE(cp, value) do { \ + (cp)[7] = (byte) ((value) >> 56); \ + (cp)[6] = (byte) ((value) >> 48); \ + (cp)[5] = (byte) ((value) >> 40); \ + (cp)[4] = (byte) ((value) >> 32); \ + (cp)[3] = (byte) ((value) >> 24); \ + (cp)[2] = (byte) ((value) >> 16); \ + (cp)[1] = (byte) ((value) >> 8); \ + (cp)[0] = (byte) (value); } while (0) + +#define PUT_32BIT_LE(cp, value) do { \ + (cp)[3] = (byte) ((value) >> 24); \ + (cp)[2] = (byte) ((value) >> 16); \ + (cp)[1] = (byte) ((value) >> 8); \ + (cp)[0] = (byte) (value); } while (0) + +#ifndef TC_MINIMIZE_CODE_SIZE + +static byte PADDING[64] = { + 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 +}; + +#else + +static byte PADDING[64]; + +#endif + +void RMD160Init (RMD160_CTX *ctx) +{ + ctx->count = 0; + ctx->state[0] = 0x67452301; + ctx->state[1] = 0xefcdab89; + ctx->state[2] = 0x98badcfe; + ctx->state[3] = 0x10325476; + ctx->state[4] = 0xc3d2e1f0; + PADDING[0] = 0x80; +} + +/* +* Update context to reflect the concatenation of another buffer full +* of bytes. +*/ +void RMD160Update (RMD160_CTX *ctx, const unsigned char *input, unsigned __int32 lenArg) +{ +#ifndef TC_WINDOWS_BOOT + uint64 len = lenArg; +#else + uint32 len = lenArg; +#endif + unsigned int have, need; + + /* Check how many bytes we already have and how many more we need. */ + have = (unsigned int) ((ctx->count) & (RIPEMD160_BLOCK_LENGTH - 1)); + need = RIPEMD160_BLOCK_LENGTH - have; + + /* Update bitcount */ + ctx->count += len; + + if (len >= need) { + if (have != 0) { + memcpy (ctx->buffer + have, input, (size_t) need); + RMD160Transform ((uint32 *) ctx->state, (const uint32 *) ctx->buffer); + input += need; + len -= need; + have = 0; + } + + /* Process data in RIPEMD160_BLOCK_LENGTH-byte chunks. */ + while (len >= RIPEMD160_BLOCK_LENGTH) { + RMD160Transform ((uint32 *) ctx->state, (const uint32 *) input); + input += RIPEMD160_BLOCK_LENGTH; + len -= RIPEMD160_BLOCK_LENGTH; + } + } + + /* Handle any remaining bytes of data. */ + if (len != 0) + memcpy (ctx->buffer + have, input, (size_t) len); +} + +/* +* Pad pad to 64-byte boundary with the bit pattern +* 1 0* (64-bit count of bits processed, MSB-first) +*/ +static void RMD160Pad(RMD160_CTX *ctx) +{ + byte count[8]; + uint32 padlen; + + /* Convert count to 8 bytes in little endian order. */ + +#ifndef TC_WINDOWS_BOOT + uint64 bitcount = ctx->count << 3; + PUT_64BIT_LE(count, bitcount); +#else + *(uint32 *) (count + 4) = 0; + *(uint32 *) (count + 0) = ctx->count << 3; +#endif + + /* Pad out to 56 mod 64. */ + padlen = RIPEMD160_BLOCK_LENGTH - + (uint32)((ctx->count) & (RIPEMD160_BLOCK_LENGTH - 1)); + if (padlen < 1 + 8) + padlen += RIPEMD160_BLOCK_LENGTH; + RMD160Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ + RMD160Update(ctx, count, 8); +} + +/* +* Final wrapup--call RMD160Pad, fill in digest and zero out ctx. +*/ +void RMD160Final(unsigned char *digest, RMD160_CTX *ctx) +{ + int i; + + RMD160Pad(ctx); + if (digest) { + for (i = 0; i < 5; i++) + PUT_32BIT_LE(digest + i * 4, ctx->state[i]); +#ifndef TC_WINDOWS_BOOT + burn (ctx, sizeof(*ctx)); +#endif + } +} + + +#ifndef TC_MINIMIZE_CODE_SIZE + +#define word32 unsigned __int32 + +#define k0 0 +#define k1 0x5a827999UL +#define k2 0x6ed9eba1UL +#define k3 0x8f1bbcdcUL +#define k4 0xa953fd4eUL +#define k5 0x50a28be6UL +#define k6 0x5c4dd124UL +#define k7 0x6d703ef3UL +#define k8 0x7a6d76e9UL +#define k9 0 + +static word32 rotlFixed (word32 x, unsigned int y) +{ + return (word32)((x<<y) | (x>>(sizeof(word32)*8-y))); +} + +#define Subround(f, a, b, c, d, e, x, s, k) \ + a += f(b, c, d) + x + k;\ + a = rotlFixed((word32)a, s) + e;\ + c = rotlFixed((word32)c, 10U) + +void RMD160Transform (unsigned __int32 *digest, const unsigned __int32 *data) +{ +#if BYTE_ORDER == LITTLE_ENDIAN + const word32 *X = data; +#else + word32 X[16]; + int i; +#endif + + word32 a1, b1, c1, d1, e1, a2, b2, c2, d2, e2; + a1 = a2 = digest[0]; + b1 = b2 = digest[1]; + c1 = c2 = digest[2]; + d1 = d2 = digest[3]; + e1 = e2 = digest[4]; + +#if BYTE_ORDER == BIG_ENDIAN + for (i = 0; i < 16; i++) + { + X[i] = LE32 (data[i]); + } +#endif + + Subround(F, a1, b1, c1, d1, e1, X[ 0], 11, k0); + Subround(F, e1, a1, b1, c1, d1, X[ 1], 14, k0); + Subround(F, d1, e1, a1, b1, c1, X[ 2], 15, k0); + Subround(F, c1, d1, e1, a1, b1, X[ 3], 12, k0); + Subround(F, b1, c1, d1, e1, a1, X[ 4], 5, k0); + Subround(F, a1, b1, c1, d1, e1, X[ 5], 8, k0); + Subround(F, e1, a1, b1, c1, d1, X[ 6], 7, k0); + Subround(F, d1, e1, a1, b1, c1, X[ 7], 9, k0); + Subround(F, c1, d1, e1, a1, b1, X[ 8], 11, k0); + Subround(F, b1, c1, d1, e1, a1, X[ 9], 13, k0); + Subround(F, a1, b1, c1, d1, e1, X[10], 14, k0); + Subround(F, e1, a1, b1, c1, d1, X[11], 15, k0); + Subround(F, d1, e1, a1, b1, c1, X[12], 6, k0); + Subround(F, c1, d1, e1, a1, b1, X[13], 7, k0); + Subround(F, b1, c1, d1, e1, a1, X[14], 9, k0); + Subround(F, a1, b1, c1, d1, e1, X[15], 8, k0); + + Subround(G, e1, a1, b1, c1, d1, X[ 7], 7, k1); + Subround(G, d1, e1, a1, b1, c1, X[ 4], 6, k1); + Subround(G, c1, d1, e1, a1, b1, X[13], 8, k1); + Subround(G, b1, c1, d1, e1, a1, X[ 1], 13, k1); + Subround(G, a1, b1, c1, d1, e1, X[10], 11, k1); + Subround(G, e1, a1, b1, c1, d1, X[ 6], 9, k1); + Subround(G, d1, e1, a1, b1, c1, X[15], 7, k1); + Subround(G, c1, d1, e1, a1, b1, X[ 3], 15, k1); + Subround(G, b1, c1, d1, e1, a1, X[12], 7, k1); + Subround(G, a1, b1, c1, d1, e1, X[ 0], 12, k1); + Subround(G, e1, a1, b1, c1, d1, X[ 9], 15, k1); + Subround(G, d1, e1, a1, b1, c1, X[ 5], 9, k1); + Subround(G, c1, d1, e1, a1, b1, X[ 2], 11, k1); + Subround(G, b1, c1, d1, e1, a1, X[14], 7, k1); + Subround(G, a1, b1, c1, d1, e1, X[11], 13, k1); + Subround(G, e1, a1, b1, c1, d1, X[ 8], 12, k1); + + Subround(H, d1, e1, a1, b1, c1, X[ 3], 11, k2); + Subround(H, c1, d1, e1, a1, b1, X[10], 13, k2); + Subround(H, b1, c1, d1, e1, a1, X[14], 6, k2); + Subround(H, a1, b1, c1, d1, e1, X[ 4], 7, k2); + Subround(H, e1, a1, b1, c1, d1, X[ 9], 14, k2); + Subround(H, d1, e1, a1, b1, c1, X[15], 9, k2); + Subround(H, c1, d1, e1, a1, b1, X[ 8], 13, k2); + Subround(H, b1, c1, d1, e1, a1, X[ 1], 15, k2); + Subround(H, a1, b1, c1, d1, e1, X[ 2], 14, k2); + Subround(H, e1, a1, b1, c1, d1, X[ 7], 8, k2); + Subround(H, d1, e1, a1, b1, c1, X[ 0], 13, k2); + Subround(H, c1, d1, e1, a1, b1, X[ 6], 6, k2); + Subround(H, b1, c1, d1, e1, a1, X[13], 5, k2); + Subround(H, a1, b1, c1, d1, e1, X[11], 12, k2); + Subround(H, e1, a1, b1, c1, d1, X[ 5], 7, k2); + Subround(H, d1, e1, a1, b1, c1, X[12], 5, k2); + + Subround(I, c1, d1, e1, a1, b1, X[ 1], 11, k3); + Subround(I, b1, c1, d1, e1, a1, X[ 9], 12, k3); + Subround(I, a1, b1, c1, d1, e1, X[11], 14, k3); + Subround(I, e1, a1, b1, c1, d1, X[10], 15, k3); + Subround(I, d1, e1, a1, b1, c1, X[ 0], 14, k3); + Subround(I, c1, d1, e1, a1, b1, X[ 8], 15, k3); + Subround(I, b1, c1, d1, e1, a1, X[12], 9, k3); + Subround(I, a1, b1, c1, d1, e1, X[ 4], 8, k3); + Subround(I, e1, a1, b1, c1, d1, X[13], 9, k3); + Subround(I, d1, e1, a1, b1, c1, X[ 3], 14, k3); + Subround(I, c1, d1, e1, a1, b1, X[ 7], 5, k3); + Subround(I, b1, c1, d1, e1, a1, X[15], 6, k3); + Subround(I, a1, b1, c1, d1, e1, X[14], 8, k3); + Subround(I, e1, a1, b1, c1, d1, X[ 5], 6, k3); + Subround(I, d1, e1, a1, b1, c1, X[ 6], 5, k3); + Subround(I, c1, d1, e1, a1, b1, X[ 2], 12, k3); + + Subround(J, b1, c1, d1, e1, a1, X[ 4], 9, k4); + Subround(J, a1, b1, c1, d1, e1, X[ 0], 15, k4); + Subround(J, e1, a1, b1, c1, d1, X[ 5], 5, k4); + Subround(J, d1, e1, a1, b1, c1, X[ 9], 11, k4); + Subround(J, c1, d1, e1, a1, b1, X[ 7], 6, k4); + Subround(J, b1, c1, d1, e1, a1, X[12], 8, k4); + Subround(J, a1, b1, c1, d1, e1, X[ 2], 13, k4); + Subround(J, e1, a1, b1, c1, d1, X[10], 12, k4); + Subround(J, d1, e1, a1, b1, c1, X[14], 5, k4); + Subround(J, c1, d1, e1, a1, b1, X[ 1], 12, k4); + Subround(J, b1, c1, d1, e1, a1, X[ 3], 13, k4); + Subround(J, a1, b1, c1, d1, e1, X[ 8], 14, k4); + Subround(J, e1, a1, b1, c1, d1, X[11], 11, k4); + Subround(J, d1, e1, a1, b1, c1, X[ 6], 8, k4); + Subround(J, c1, d1, e1, a1, b1, X[15], 5, k4); + Subround(J, b1, c1, d1, e1, a1, X[13], 6, k4); + + Subround(J, a2, b2, c2, d2, e2, X[ 5], 8, k5); + Subround(J, e2, a2, b2, c2, d2, X[14], 9, k5); + Subround(J, d2, e2, a2, b2, c2, X[ 7], 9, k5); + Subround(J, c2, d2, e2, a2, b2, X[ 0], 11, k5); + Subround(J, b2, c2, d2, e2, a2, X[ 9], 13, k5); + Subround(J, a2, b2, c2, d2, e2, X[ 2], 15, k5); + Subround(J, e2, a2, b2, c2, d2, X[11], 15, k5); + Subround(J, d2, e2, a2, b2, c2, X[ 4], 5, k5); + Subround(J, c2, d2, e2, a2, b2, X[13], 7, k5); + Subround(J, b2, c2, d2, e2, a2, X[ 6], 7, k5); + Subround(J, a2, b2, c2, d2, e2, X[15], 8, k5); + Subround(J, e2, a2, b2, c2, d2, X[ 8], 11, k5); + Subround(J, d2, e2, a2, b2, c2, X[ 1], 14, k5); + Subround(J, c2, d2, e2, a2, b2, X[10], 14, k5); + Subround(J, b2, c2, d2, e2, a2, X[ 3], 12, k5); + Subround(J, a2, b2, c2, d2, e2, X[12], 6, k5); + + Subround(I, e2, a2, b2, c2, d2, X[ 6], 9, k6); + Subround(I, d2, e2, a2, b2, c2, X[11], 13, k6); + Subround(I, c2, d2, e2, a2, b2, X[ 3], 15, k6); + Subround(I, b2, c2, d2, e2, a2, X[ 7], 7, k6); + Subround(I, a2, b2, c2, d2, e2, X[ 0], 12, k6); + Subround(I, e2, a2, b2, c2, d2, X[13], 8, k6); + Subround(I, d2, e2, a2, b2, c2, X[ 5], 9, k6); + Subround(I, c2, d2, e2, a2, b2, X[10], 11, k6); + Subround(I, b2, c2, d2, e2, a2, X[14], 7, k6); + Subround(I, a2, b2, c2, d2, e2, X[15], 7, k6); + Subround(I, e2, a2, b2, c2, d2, X[ 8], 12, k6); + Subround(I, d2, e2, a2, b2, c2, X[12], 7, k6); + Subround(I, c2, d2, e2, a2, b2, X[ 4], 6, k6); + Subround(I, b2, c2, d2, e2, a2, X[ 9], 15, k6); + Subround(I, a2, b2, c2, d2, e2, X[ 1], 13, k6); + Subround(I, e2, a2, b2, c2, d2, X[ 2], 11, k6); + + Subround(H, d2, e2, a2, b2, c2, X[15], 9, k7); + Subround(H, c2, d2, e2, a2, b2, X[ 5], 7, k7); + Subround(H, b2, c2, d2, e2, a2, X[ 1], 15, k7); + Subround(H, a2, b2, c2, d2, e2, X[ 3], 11, k7); + Subround(H, e2, a2, b2, c2, d2, X[ 7], 8, k7); + Subround(H, d2, e2, a2, b2, c2, X[14], 6, k7); + Subround(H, c2, d2, e2, a2, b2, X[ 6], 6, k7); + Subround(H, b2, c2, d2, e2, a2, X[ 9], 14, k7); + Subround(H, a2, b2, c2, d2, e2, X[11], 12, k7); + Subround(H, e2, a2, b2, c2, d2, X[ 8], 13, k7); + Subround(H, d2, e2, a2, b2, c2, X[12], 5, k7); + Subround(H, c2, d2, e2, a2, b2, X[ 2], 14, k7); + Subround(H, b2, c2, d2, e2, a2, X[10], 13, k7); + Subround(H, a2, b2, c2, d2, e2, X[ 0], 13, k7); + Subround(H, e2, a2, b2, c2, d2, X[ 4], 7, k7); + Subround(H, d2, e2, a2, b2, c2, X[13], 5, k7); + + Subround(G, c2, d2, e2, a2, b2, X[ 8], 15, k8); + Subround(G, b2, c2, d2, e2, a2, X[ 6], 5, k8); + Subround(G, a2, b2, c2, d2, e2, X[ 4], 8, k8); + Subround(G, e2, a2, b2, c2, d2, X[ 1], 11, k8); + Subround(G, d2, e2, a2, b2, c2, X[ 3], 14, k8); + Subround(G, c2, d2, e2, a2, b2, X[11], 14, k8); + Subround(G, b2, c2, d2, e2, a2, X[15], 6, k8); + Subround(G, a2, b2, c2, d2, e2, X[ 0], 14, k8); + Subround(G, e2, a2, b2, c2, d2, X[ 5], 6, k8); + Subround(G, d2, e2, a2, b2, c2, X[12], 9, k8); + Subround(G, c2, d2, e2, a2, b2, X[ 2], 12, k8); + Subround(G, b2, c2, d2, e2, a2, X[13], 9, k8); + Subround(G, a2, b2, c2, d2, e2, X[ 9], 12, k8); + Subround(G, e2, a2, b2, c2, d2, X[ 7], 5, k8); + Subround(G, d2, e2, a2, b2, c2, X[10], 15, k8); + Subround(G, c2, d2, e2, a2, b2, X[14], 8, k8); + + Subround(F, b2, c2, d2, e2, a2, X[12], 8, k9); + Subround(F, a2, b2, c2, d2, e2, X[15], 5, k9); + Subround(F, e2, a2, b2, c2, d2, X[10], 12, k9); + Subround(F, d2, e2, a2, b2, c2, X[ 4], 9, k9); + Subround(F, c2, d2, e2, a2, b2, X[ 1], 12, k9); + Subround(F, b2, c2, d2, e2, a2, X[ 5], 5, k9); + Subround(F, a2, b2, c2, d2, e2, X[ 8], 14, k9); + Subround(F, e2, a2, b2, c2, d2, X[ 7], 6, k9); + Subround(F, d2, e2, a2, b2, c2, X[ 6], 8, k9); + Subround(F, c2, d2, e2, a2, b2, X[ 2], 13, k9); + Subround(F, b2, c2, d2, e2, a2, X[13], 6, k9); + Subround(F, a2, b2, c2, d2, e2, X[14], 5, k9); + Subround(F, e2, a2, b2, c2, d2, X[ 0], 15, k9); + Subround(F, d2, e2, a2, b2, c2, X[ 3], 13, k9); + Subround(F, c2, d2, e2, a2, b2, X[ 9], 11, k9); + Subround(F, b2, c2, d2, e2, a2, X[11], 11, k9); + + c1 = digest[1] + c1 + d2; + digest[1] = digest[2] + d1 + e2; + digest[2] = digest[3] + e1 + a2; + digest[3] = digest[4] + a1 + b2; + digest[4] = digest[0] + b1 + c2; + digest[0] = c1; +} + +#else // TC_MINIMIZE_CODE_SIZE + +/* + Derived from source code of TrueCrypt 7.1a, which is + Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed + by the TrueCrypt License 3.0. + + Modifications and additions to the original source code (contained in this file) + and all other portions of this file are Copyright (c) 2013-2016 IDRIX + and are governed by the Apache License 2.0 the full text of which is + contained in the file License.txt included in VeraCrypt binary and source + code distribution packages. +*/ + +#pragma optimize ("tl", on) + +typedef unsigned __int32 uint32; +typedef unsigned __int8 byte; + +#include <stdlib.h> +#pragma intrinsic (_lrotl) + +static const byte OrderTab[] = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8, + 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12, + 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2, + 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13, + 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, + 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2, + 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13, + 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14, + 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 +}; + +static const byte RolTab[] = { + 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8, + 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12, + 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5, + 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12, + 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6, + 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6, + 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11, + 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5, + 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8, + 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 +}; + +static const uint32 KTab[] = { + 0x00000000UL, + 0x5A827999UL, + 0x6ED9EBA1UL, + 0x8F1BBCDCUL, + 0xA953FD4EUL, + 0x50A28BE6UL, + 0x5C4DD124UL, + 0x6D703EF3UL, + 0x7A6D76E9UL, + 0x00000000UL +}; + + +void RMD160Transform (unsigned __int32 *state, const unsigned __int32 *data) +{ + uint32 a, b, c, d, e; + uint32 a2, b2, c2, d2, e2; + byte pos; + uint32 tmp; + + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + + for (pos = 0; pos < 160; ++pos) + { + tmp = a + data[OrderTab[pos]] + KTab[pos >> 4]; + + switch (pos >> 4) + { + case 0: case 9: tmp += F (b, c, d); break; + case 1: case 8: tmp += G (b, c, d); break; + case 2: case 7: tmp += H (b, c, d); break; + case 3: case 6: tmp += I (b, c, d); break; + case 4: case 5: tmp += J (b, c, d); break; + } + + tmp = _lrotl (tmp, RolTab[pos]) + e; + a = e; + e = d; + d = _lrotl (c, 10); + c = b; + b = tmp; + + if (pos == 79) + { + a2 = a; + b2 = b; + c2 = c; + d2 = d; + e2 = e; + + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + } + } + + tmp = state[1] + c2 + d; + state[1] = state[2] + d2 + e; + state[2] = state[3] + e2 + a; + state[3] = state[4] + a2 + b; + state[4] = state[0] + b2 + c; + state[0] = tmp; +} + +#endif // TC_MINIMIZE_CODE_SIZE diff --git a/src/Crypto/Rmd160.h b/src/Crypto/Rmd160.h index 4dfa38f1..81b5d6f0 100644 --- a/src/Crypto/Rmd160.h +++ b/src/Crypto/Rmd160.h @@ -1,33 +1,33 @@ -#ifndef TC_HEADER_Crypto_Ripemd160
-#define TC_HEADER_Crypto_Ripemd160
-
-#include "Common/Tcdefs.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#define RIPEMD160_BLOCK_LENGTH 64
-
-typedef struct RMD160Context
-{
- unsigned __int32 state[5];
-#ifndef TC_WINDOWS_BOOT
- uint64 count;
-#else
- uint32 count;
-#endif
- unsigned char buffer[RIPEMD160_BLOCK_LENGTH];
-} RMD160_CTX;
-
-void RMD160Init (RMD160_CTX *ctx);
-void RMD160Transform (unsigned __int32 *state, const unsigned __int32 *data);
-void RMD160Update (RMD160_CTX *ctx, const unsigned char *input, unsigned __int32 len);
-void RMD160Final (unsigned char *digest, RMD160_CTX *ctx);
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif // TC_HEADER_Crypto_Ripemd160
+#ifndef TC_HEADER_Crypto_Ripemd160 +#define TC_HEADER_Crypto_Ripemd160 + +#include "Common/Tcdefs.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#define RIPEMD160_BLOCK_LENGTH 64 + +typedef struct RMD160Context +{ + unsigned __int32 state[5]; +#ifndef TC_WINDOWS_BOOT + uint64 count; +#else + uint32 count; +#endif + unsigned char buffer[RIPEMD160_BLOCK_LENGTH]; +} RMD160_CTX; + +void RMD160Init (RMD160_CTX *ctx); +void RMD160Transform (unsigned __int32 *state, const unsigned __int32 *data); +void RMD160Update (RMD160_CTX *ctx, const unsigned char *input, unsigned __int32 len); +void RMD160Final (unsigned char *digest, RMD160_CTX *ctx); + +#if defined(__cplusplus) +} +#endif + +#endif // TC_HEADER_Crypto_Ripemd160 diff --git a/src/Crypto/Serpent.c b/src/Crypto/Serpent.c index 87d710c4..a8c528de 100644 --- a/src/Crypto/Serpent.c +++ b/src/Crypto/Serpent.c @@ -1,938 +1,938 @@ -// serpent.cpp - written and placed in the public domain by Wei Dai
-
-/* Adapted for TrueCrypt */
-/* Adapted for VeraCrypt */
-
-#ifdef TC_WINDOWS_BOOT
-#pragma optimize ("t", on)
-#endif
-
-#include "Serpent.h"
-#include "Common/Endian.h"
-
-#include <memory.h>
-
-#if defined(_WIN32) && !defined(_DEBUG)
-#include <stdlib.h>
-#define rotlFixed _rotl
-#define rotrFixed _rotr
-#else
-#define rotlFixed(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
-#define rotrFixed(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
-#endif
-
-// linear transformation
-#define LT(i,a,b,c,d,e) {\
- a = rotlFixed(a, 13); \
- c = rotlFixed(c, 3); \
- d = rotlFixed(d ^ c ^ (a << 3), 7); \
- b = rotlFixed(b ^ a ^ c, 1); \
- a = rotlFixed(a ^ b ^ d, 5); \
- c = rotlFixed(c ^ d ^ (b << 7), 22);}
-
-// inverse linear transformation
-#define ILT(i,a,b,c,d,e) {\
- c = rotrFixed(c, 22); \
- a = rotrFixed(a, 5); \
- c ^= d ^ (b << 7); \
- a ^= b ^ d; \
- b = rotrFixed(b, 1); \
- d = rotrFixed(d, 7) ^ c ^ (a << 3); \
- b ^= a ^ c; \
- c = rotrFixed(c, 3); \
- a = rotrFixed(a, 13);}
-
-// order of output from S-box functions
-#define beforeS0(f) f(0,a,b,c,d,e)
-#define afterS0(f) f(1,b,e,c,a,d)
-#define afterS1(f) f(2,c,b,a,e,d)
-#define afterS2(f) f(3,a,e,b,d,c)
-#define afterS3(f) f(4,e,b,d,c,a)
-#define afterS4(f) f(5,b,a,e,c,d)
-#define afterS5(f) f(6,a,c,b,e,d)
-#define afterS6(f) f(7,a,c,d,b,e)
-#define afterS7(f) f(8,d,e,b,a,c)
-
-// order of output from inverse S-box functions
-#define beforeI7(f) f(8,a,b,c,d,e)
-#define afterI7(f) f(7,d,a,b,e,c)
-#define afterI6(f) f(6,a,b,c,e,d)
-#define afterI5(f) f(5,b,d,e,c,a)
-#define afterI4(f) f(4,b,c,e,a,d)
-#define afterI3(f) f(3,a,b,e,c,d)
-#define afterI2(f) f(2,b,d,e,c,a)
-#define afterI1(f) f(1,a,b,c,e,d)
-#define afterI0(f) f(0,a,d,b,e,c)
-
-// The instruction sequences for the S-box functions
-// come from Dag Arne Osvik's paper "Speeding up Serpent".
-
-#define S0(i, r0, r1, r2, r3, r4) \
- { \
- r3 ^= r0; \
- r4 = r1; \
- r1 &= r3; \
- r4 ^= r2; \
- r1 ^= r0; \
- r0 |= r3; \
- r0 ^= r4; \
- r4 ^= r3; \
- r3 ^= r2; \
- r2 |= r1; \
- r2 ^= r4; \
- r4 = ~r4; \
- r4 |= r1; \
- r1 ^= r3; \
- r1 ^= r4; \
- r3 |= r0; \
- r1 ^= r3; \
- r4 ^= r3; \
- }
-
-#define I0(i, r0, r1, r2, r3, r4) \
- { \
- r2 = ~r2; \
- r4 = r1; \
- r1 |= r0; \
- r4 = ~r4; \
- r1 ^= r2; \
- r2 |= r4; \
- r1 ^= r3; \
- r0 ^= r4; \
- r2 ^= r0; \
- r0 &= r3; \
- r4 ^= r0; \
- r0 |= r1; \
- r0 ^= r2; \
- r3 ^= r4; \
- r2 ^= r1; \
- r3 ^= r0; \
- r3 ^= r1; \
- r2 &= r3; \
- r4 ^= r2; \
- }
-
-#define S1(i, r0, r1, r2, r3, r4) \
- { \
- r0 = ~r0; \
- r2 = ~r2; \
- r4 = r0; \
- r0 &= r1; \
- r2 ^= r0; \
- r0 |= r3; \
- r3 ^= r2; \
- r1 ^= r0; \
- r0 ^= r4; \
- r4 |= r1; \
- r1 ^= r3; \
- r2 |= r0; \
- r2 &= r4; \
- r0 ^= r1; \
- r1 &= r2; \
- r1 ^= r0; \
- r0 &= r2; \
- r0 ^= r4; \
- }
-
-#define I1(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r1; \
- r1 ^= r3; \
- r3 &= r1; \
- r4 ^= r2; \
- r3 ^= r0; \
- r0 |= r1; \
- r2 ^= r3; \
- r0 ^= r4; \
- r0 |= r2; \
- r1 ^= r3; \
- r0 ^= r1; \
- r1 |= r3; \
- r1 ^= r0; \
- r4 = ~r4; \
- r4 ^= r1; \
- r1 |= r0; \
- r1 ^= r0; \
- r1 |= r4; \
- r3 ^= r1; \
- }
-
-#define S2(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r0; \
- r0 &= r2; \
- r0 ^= r3; \
- r2 ^= r1; \
- r2 ^= r0; \
- r3 |= r4; \
- r3 ^= r1; \
- r4 ^= r2; \
- r1 = r3; \
- r3 |= r4; \
- r3 ^= r0; \
- r0 &= r1; \
- r4 ^= r0; \
- r1 ^= r3; \
- r1 ^= r4; \
- r4 = ~r4; \
- }
-
-#define I2(i, r0, r1, r2, r3, r4) \
- { \
- r2 ^= r3; \
- r3 ^= r0; \
- r4 = r3; \
- r3 &= r2; \
- r3 ^= r1; \
- r1 |= r2; \
- r1 ^= r4; \
- r4 &= r3; \
- r2 ^= r3; \
- r4 &= r0; \
- r4 ^= r2; \
- r2 &= r1; \
- r2 |= r0; \
- r3 = ~r3; \
- r2 ^= r3; \
- r0 ^= r3; \
- r0 &= r1; \
- r3 ^= r4; \
- r3 ^= r0; \
- }
-
-#define S3(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r0; \
- r0 |= r3; \
- r3 ^= r1; \
- r1 &= r4; \
- r4 ^= r2; \
- r2 ^= r3; \
- r3 &= r0; \
- r4 |= r1; \
- r3 ^= r4; \
- r0 ^= r1; \
- r4 &= r0; \
- r1 ^= r3; \
- r4 ^= r2; \
- r1 |= r0; \
- r1 ^= r2; \
- r0 ^= r3; \
- r2 = r1; \
- r1 |= r3; \
- r1 ^= r0; \
- }
-
-#define I3(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r2; \
- r2 ^= r1; \
- r1 &= r2; \
- r1 ^= r0; \
- r0 &= r4; \
- r4 ^= r3; \
- r3 |= r1; \
- r3 ^= r2; \
- r0 ^= r4; \
- r2 ^= r0; \
- r0 |= r3; \
- r0 ^= r1; \
- r4 ^= r2; \
- r2 &= r3; \
- r1 |= r3; \
- r1 ^= r2; \
- r4 ^= r0; \
- r2 ^= r4; \
- }
-
-#define S4(i, r0, r1, r2, r3, r4) \
- { \
- r1 ^= r3; \
- r3 = ~r3; \
- r2 ^= r3; \
- r3 ^= r0; \
- r4 = r1; \
- r1 &= r3; \
- r1 ^= r2; \
- r4 ^= r3; \
- r0 ^= r4; \
- r2 &= r4; \
- r2 ^= r0; \
- r0 &= r1; \
- r3 ^= r0; \
- r4 |= r1; \
- r4 ^= r0; \
- r0 |= r3; \
- r0 ^= r2; \
- r2 &= r3; \
- r0 = ~r0; \
- r4 ^= r2; \
- }
-
-#define I4(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r2; \
- r2 &= r3; \
- r2 ^= r1; \
- r1 |= r3; \
- r1 &= r0; \
- r4 ^= r2; \
- r4 ^= r1; \
- r1 &= r2; \
- r0 = ~r0; \
- r3 ^= r4; \
- r1 ^= r3; \
- r3 &= r0; \
- r3 ^= r2; \
- r0 ^= r1; \
- r2 &= r0; \
- r3 ^= r0; \
- r2 ^= r4; \
- r2 |= r3; \
- r3 ^= r0; \
- r2 ^= r1; \
- }
-
-#define S5(i, r0, r1, r2, r3, r4) \
- { \
- r0 ^= r1; \
- r1 ^= r3; \
- r3 = ~r3; \
- r4 = r1; \
- r1 &= r0; \
- r2 ^= r3; \
- r1 ^= r2; \
- r2 |= r4; \
- r4 ^= r3; \
- r3 &= r1; \
- r3 ^= r0; \
- r4 ^= r1; \
- r4 ^= r2; \
- r2 ^= r0; \
- r0 &= r3; \
- r2 = ~r2; \
- r0 ^= r4; \
- r4 |= r3; \
- r2 ^= r4; \
- }
-
-#define I5(i, r0, r1, r2, r3, r4) \
- { \
- r1 = ~r1; \
- r4 = r3; \
- r2 ^= r1; \
- r3 |= r0; \
- r3 ^= r2; \
- r2 |= r1; \
- r2 &= r0; \
- r4 ^= r3; \
- r2 ^= r4; \
- r4 |= r0; \
- r4 ^= r1; \
- r1 &= r2; \
- r1 ^= r3; \
- r4 ^= r2; \
- r3 &= r4; \
- r4 ^= r1; \
- r3 ^= r0; \
- r3 ^= r4; \
- r4 = ~r4; \
- }
-
-#define S6(i, r0, r1, r2, r3, r4) \
- { \
- r2 = ~r2; \
- r4 = r3; \
- r3 &= r0; \
- r0 ^= r4; \
- r3 ^= r2; \
- r2 |= r4; \
- r1 ^= r3; \
- r2 ^= r0; \
- r0 |= r1; \
- r2 ^= r1; \
- r4 ^= r0; \
- r0 |= r3; \
- r0 ^= r2; \
- r4 ^= r3; \
- r4 ^= r0; \
- r3 = ~r3; \
- r2 &= r4; \
- r2 ^= r3; \
- }
-
-#define I6(i, r0, r1, r2, r3, r4) \
- { \
- r0 ^= r2; \
- r4 = r2; \
- r2 &= r0; \
- r4 ^= r3; \
- r2 = ~r2; \
- r3 ^= r1; \
- r2 ^= r3; \
- r4 |= r0; \
- r0 ^= r2; \
- r3 ^= r4; \
- r4 ^= r1; \
- r1 &= r3; \
- r1 ^= r0; \
- r0 ^= r3; \
- r0 |= r2; \
- r3 ^= r1; \
- r4 ^= r0; \
- }
-
-#define S7(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r2; \
- r2 &= r1; \
- r2 ^= r3; \
- r3 &= r1; \
- r4 ^= r2; \
- r2 ^= r1; \
- r1 ^= r0; \
- r0 |= r4; \
- r0 ^= r2; \
- r3 ^= r1; \
- r2 ^= r3; \
- r3 &= r0; \
- r3 ^= r4; \
- r4 ^= r2; \
- r2 &= r0; \
- r4 = ~r4; \
- r2 ^= r4; \
- r4 &= r0; \
- r1 ^= r3; \
- r4 ^= r1; \
- }
-
-#define I7(i, r0, r1, r2, r3, r4) \
- { \
- r4 = r2; \
- r2 ^= r0; \
- r0 &= r3; \
- r2 = ~r2; \
- r4 |= r3; \
- r3 ^= r1; \
- r1 |= r0; \
- r0 ^= r2; \
- r2 &= r4; \
- r1 ^= r2; \
- r2 ^= r0; \
- r0 |= r2; \
- r3 &= r4; \
- r0 ^= r3; \
- r4 ^= r1; \
- r3 ^= r4; \
- r4 |= r0; \
- r3 ^= r2; \
- r4 ^= r2; \
- }
-
-// key xor
-#define KX(r, a, b, c, d, e) {\
- a ^= k[4 * r + 0]; \
- b ^= k[4 * r + 1]; \
- c ^= k[4 * r + 2]; \
- d ^= k[4 * r + 3];}
-
-
-#ifdef TC_MINIMIZE_CODE_SIZE
-
-static void S0f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r3 ^= *r0;
- *r4 = *r1;
- *r1 &= *r3;
- *r4 ^= *r2;
- *r1 ^= *r0;
- *r0 |= *r3;
- *r0 ^= *r4;
- *r4 ^= *r3;
- *r3 ^= *r2;
- *r2 |= *r1;
- *r2 ^= *r4;
- *r4 = ~*r4;
- *r4 |= *r1;
- *r1 ^= *r3;
- *r1 ^= *r4;
- *r3 |= *r0;
- *r1 ^= *r3;
- *r4 ^= *r3;
-}
-
-static void S1f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r0 = ~*r0;
- *r2 = ~*r2;
- *r4 = *r0;
- *r0 &= *r1;
- *r2 ^= *r0;
- *r0 |= *r3;
- *r3 ^= *r2;
- *r1 ^= *r0;
- *r0 ^= *r4;
- *r4 |= *r1;
- *r1 ^= *r3;
- *r2 |= *r0;
- *r2 &= *r4;
- *r0 ^= *r1;
- *r1 &= *r2;
- *r1 ^= *r0;
- *r0 &= *r2;
- *r0 ^= *r4;
-}
-
-static void S2f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r4 = *r0;
- *r0 &= *r2;
- *r0 ^= *r3;
- *r2 ^= *r1;
- *r2 ^= *r0;
- *r3 |= *r4;
- *r3 ^= *r1;
- *r4 ^= *r2;
- *r1 = *r3;
- *r3 |= *r4;
- *r3 ^= *r0;
- *r0 &= *r1;
- *r4 ^= *r0;
- *r1 ^= *r3;
- *r1 ^= *r4;
- *r4 = ~*r4;
-}
-
-static void S3f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r4 = *r0;
- *r0 |= *r3;
- *r3 ^= *r1;
- *r1 &= *r4;
- *r4 ^= *r2;
- *r2 ^= *r3;
- *r3 &= *r0;
- *r4 |= *r1;
- *r3 ^= *r4;
- *r0 ^= *r1;
- *r4 &= *r0;
- *r1 ^= *r3;
- *r4 ^= *r2;
- *r1 |= *r0;
- *r1 ^= *r2;
- *r0 ^= *r3;
- *r2 = *r1;
- *r1 |= *r3;
- *r1 ^= *r0;
-}
-
-static void S4f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r1 ^= *r3;
- *r3 = ~*r3;
- *r2 ^= *r3;
- *r3 ^= *r0;
- *r4 = *r1;
- *r1 &= *r3;
- *r1 ^= *r2;
- *r4 ^= *r3;
- *r0 ^= *r4;
- *r2 &= *r4;
- *r2 ^= *r0;
- *r0 &= *r1;
- *r3 ^= *r0;
- *r4 |= *r1;
- *r4 ^= *r0;
- *r0 |= *r3;
- *r0 ^= *r2;
- *r2 &= *r3;
- *r0 = ~*r0;
- *r4 ^= *r2;
-}
-
-static void S5f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r0 ^= *r1;
- *r1 ^= *r3;
- *r3 = ~*r3;
- *r4 = *r1;
- *r1 &= *r0;
- *r2 ^= *r3;
- *r1 ^= *r2;
- *r2 |= *r4;
- *r4 ^= *r3;
- *r3 &= *r1;
- *r3 ^= *r0;
- *r4 ^= *r1;
- *r4 ^= *r2;
- *r2 ^= *r0;
- *r0 &= *r3;
- *r2 = ~*r2;
- *r0 ^= *r4;
- *r4 |= *r3;
- *r2 ^= *r4;
-}
-
-static void S6f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r2 = ~*r2;
- *r4 = *r3;
- *r3 &= *r0;
- *r0 ^= *r4;
- *r3 ^= *r2;
- *r2 |= *r4;
- *r1 ^= *r3;
- *r2 ^= *r0;
- *r0 |= *r1;
- *r2 ^= *r1;
- *r4 ^= *r0;
- *r0 |= *r3;
- *r0 ^= *r2;
- *r4 ^= *r3;
- *r4 ^= *r0;
- *r3 = ~*r3;
- *r2 &= *r4;
- *r2 ^= *r3;
-}
-
-static void S7f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4)
-{
- *r4 = *r2;
- *r2 &= *r1;
- *r2 ^= *r3;
- *r3 &= *r1;
- *r4 ^= *r2;
- *r2 ^= *r1;
- *r1 ^= *r0;
- *r0 |= *r4;
- *r0 ^= *r2;
- *r3 ^= *r1;
- *r2 ^= *r3;
- *r3 &= *r0;
- *r3 ^= *r4;
- *r4 ^= *r2;
- *r2 &= *r0;
- *r4 = ~*r4;
- *r2 ^= *r4;
- *r4 &= *r0;
- *r1 ^= *r3;
- *r4 ^= *r1;
-}
-
-static void KXf (const unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d)
-{
- *a ^= k[r];
- *b ^= k[r + 1];
- *c ^= k[r + 2];
- *d ^= k[r + 3];
-}
-
-#endif // TC_MINIMIZE_CODE_SIZE
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-void serpent_set_key(const unsigned __int8 userKey[],unsigned __int8 *ks)
-{
- unsigned __int32 a,b,c,d,e;
- unsigned __int32 *k = (unsigned __int32 *)ks;
- unsigned __int32 t;
- int i;
-
- for (i = 0; i < 8; i++)
- k[i] = LE32(((unsigned __int32*)userKey)[i]);
-
- k += 8;
- t = k[-1];
- for (i = 0; i < 132; ++i)
- k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11);
- k -= 20;
-
-#define LK(r, a, b, c, d, e) {\
- a = k[(8-r)*4 + 0]; \
- b = k[(8-r)*4 + 1]; \
- c = k[(8-r)*4 + 2]; \
- d = k[(8-r)*4 + 3];}
-
-#define SK(r, a, b, c, d, e) {\
- k[(8-r)*4 + 4] = a; \
- k[(8-r)*4 + 5] = b; \
- k[(8-r)*4 + 6] = c; \
- k[(8-r)*4 + 7] = d;} \
-
- for (i=0; i<4; i++)
- {
- afterS2(LK); afterS2(S3); afterS3(SK);
- afterS1(LK); afterS1(S2); afterS2(SK);
- afterS0(LK); afterS0(S1); afterS1(SK);
- beforeS0(LK); beforeS0(S0); afterS0(SK);
- k += 8*4;
- afterS6(LK); afterS6(S7); afterS7(SK);
- afterS5(LK); afterS5(S6); afterS6(SK);
- afterS4(LK); afterS4(S5); afterS5(SK);
- afterS3(LK); afterS3(S4); afterS4(SK);
- }
- afterS2(LK); afterS2(S3); afterS3(SK);
-}
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-static void LKf (unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d)
-{
- *a = k[r];
- *b = k[r + 1];
- *c = k[r + 2];
- *d = k[r + 3];
-}
-
-static void SKf (unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d)
-{
- k[r + 4] = *a;
- k[r + 5] = *b;
- k[r + 6] = *c;
- k[r + 7] = *d;
-}
-
-void serpent_set_key(const unsigned __int8 userKey[], unsigned __int8 *ks)
-{
- unsigned __int32 a,b,c,d,e;
- unsigned __int32 *k = (unsigned __int32 *)ks;
- unsigned __int32 t;
- int i;
-
- for (i = 0; i < 8; i++)
- k[i] = LE32(((unsigned __int32*)userKey)[i]);
-
- k += 8;
- t = k[-1];
- for (i = 0; i < 132; ++i)
- k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11);
- k -= 20;
-
- for (i=0; i<4; i++)
- {
- LKf (k, 20, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); SKf (k, 16, &e, &b, &d, &c);
- LKf (k, 24, &c, &b, &a, &e); S2f (&c, &b, &a, &e, &d); SKf (k, 20, &a, &e, &b, &d);
- LKf (k, 28, &b, &e, &c, &a); S1f (&b, &e, &c, &a, &d); SKf (k, 24, &c, &b, &a, &e);
- LKf (k, 32, &a, &b, &c, &d); S0f (&a, &b, &c, &d, &e); SKf (k, 28, &b, &e, &c, &a);
- k += 8*4;
- LKf (k, 4, &a, &c, &d, &b); S7f (&a, &c, &d, &b, &e); SKf (k, 0, &d, &e, &b, &a);
- LKf (k, 8, &a, &c, &b, &e); S6f (&a, &c, &b, &e, &d); SKf (k, 4, &a, &c, &d, &b);
- LKf (k, 12, &b, &a, &e, &c); S5f (&b, &a, &e, &c, &d); SKf (k, 8, &a, &c, &b, &e);
- LKf (k, 16, &e, &b, &d, &c); S4f (&e, &b, &d, &c, &a); SKf (k, 12, &b, &a, &e, &c);
- }
- LKf (k, 20, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); SKf (k, 16, &e, &b, &d, &c);
-}
-
-#endif // TC_MINIMIZE_CODE_SIZE
-
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
-{
- unsigned __int32 a, b, c, d, e;
- unsigned int i=1;
- const unsigned __int32 *k = (unsigned __int32 *)ks + 8;
- unsigned __int32 *in = (unsigned __int32 *) inBlock;
- unsigned __int32 *out = (unsigned __int32 *) outBlock;
-
- a = LE32(in[0]);
- b = LE32(in[1]);
- c = LE32(in[2]);
- d = LE32(in[3]);
-
- do
- {
- beforeS0(KX); beforeS0(S0); afterS0(LT);
- afterS0(KX); afterS0(S1); afterS1(LT);
- afterS1(KX); afterS1(S2); afterS2(LT);
- afterS2(KX); afterS2(S3); afterS3(LT);
- afterS3(KX); afterS3(S4); afterS4(LT);
- afterS4(KX); afterS4(S5); afterS5(LT);
- afterS5(KX); afterS5(S6); afterS6(LT);
- afterS6(KX); afterS6(S7);
-
- if (i == 4)
- break;
-
- ++i;
- c = b;
- b = e;
- e = d;
- d = a;
- a = e;
- k += 32;
- beforeS0(LT);
- }
- while (1);
-
- afterS7(KX);
-
- out[0] = LE32(d);
- out[1] = LE32(e);
- out[2] = LE32(b);
- out[3] = LE32(a);
-}
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-typedef unsigned __int32 uint32;
-
-static void LTf (uint32 *a, uint32 *b, uint32 *c, uint32 *d)
-{
- *a = rotlFixed(*a, 13);
- *c = rotlFixed(*c, 3);
- *d = rotlFixed(*d ^ *c ^ (*a << 3), 7);
- *b = rotlFixed(*b ^ *a ^ *c, 1);
- *a = rotlFixed(*a ^ *b ^ *d, 5);
- *c = rotlFixed(*c ^ *d ^ (*b << 7), 22);
-}
-
-void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
-{
- unsigned __int32 a, b, c, d, e;
- unsigned int i=1;
- const unsigned __int32 *k = (unsigned __int32 *)ks + 8;
- unsigned __int32 *in = (unsigned __int32 *) inBlock;
- unsigned __int32 *out = (unsigned __int32 *) outBlock;
-
- a = LE32(in[0]);
- b = LE32(in[1]);
- c = LE32(in[2]);
- d = LE32(in[3]);
-
- do
- {
- KXf (k, 0, &a, &b, &c, &d); S0f (&a, &b, &c, &d, &e); LTf (&b, &e, &c, &a);
- KXf (k, 4, &b, &e, &c, &a); S1f (&b, &e, &c, &a, &d); LTf (&c, &b, &a, &e);
- KXf (k, 8, &c, &b, &a, &e); S2f (&c, &b, &a, &e, &d); LTf (&a, &e, &b, &d);
- KXf (k, 12, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); LTf (&e, &b, &d, &c);
- KXf (k, 16, &e, &b, &d, &c); S4f (&e, &b, &d, &c, &a); LTf (&b, &a, &e, &c);
- KXf (k, 20, &b, &a, &e, &c); S5f (&b, &a, &e, &c, &d); LTf (&a, &c, &b, &e);
- KXf (k, 24, &a, &c, &b, &e); S6f (&a, &c, &b, &e, &d); LTf (&a, &c, &d, &b);
- KXf (k, 28, &a, &c, &d, &b); S7f (&a, &c, &d, &b, &e);
-
- if (i == 4)
- break;
-
- ++i;
- c = b;
- b = e;
- e = d;
- d = a;
- a = e;
- k += 32;
- LTf (&a,&b,&c,&d);
- }
- while (1);
-
- KXf (k, 32, &d, &e, &b, &a);
-
- out[0] = LE32(d);
- out[1] = LE32(e);
- out[2] = LE32(b);
- out[3] = LE32(a);
-}
-
-#endif // TC_MINIMIZE_CODE_SIZE
-
-#if !defined (TC_MINIMIZE_CODE_SIZE)
-
-void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
-{
- unsigned __int32 a, b, c, d, e;
- const unsigned __int32 *k = (unsigned __int32 *)ks + 104;
- unsigned int i=4;
- unsigned __int32 *in = (unsigned __int32 *) inBlock;
- unsigned __int32 *out = (unsigned __int32 *) outBlock;
-
- a = LE32(in[0]);
- b = LE32(in[1]);
- c = LE32(in[2]);
- d = LE32(in[3]);
-
- beforeI7(KX);
- goto start;
-
- do
- {
- c = b;
- b = d;
- d = e;
- k -= 32;
- beforeI7(ILT);
-start:
- beforeI7(I7); afterI7(KX);
- afterI7(ILT); afterI7(I6); afterI6(KX);
- afterI6(ILT); afterI6(I5); afterI5(KX);
- afterI5(ILT); afterI5(I4); afterI4(KX);
- afterI4(ILT); afterI4(I3); afterI3(KX);
- afterI3(ILT); afterI3(I2); afterI2(KX);
- afterI2(ILT); afterI2(I1); afterI1(KX);
- afterI1(ILT); afterI1(I0); afterI0(KX);
- }
- while (--i != 0);
-
- out[0] = LE32(a);
- out[1] = LE32(d);
- out[2] = LE32(b);
- out[3] = LE32(e);
-}
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-static void ILTf (uint32 *a, uint32 *b, uint32 *c, uint32 *d)
-{
- *c = rotrFixed(*c, 22);
- *a = rotrFixed(*a, 5);
- *c ^= *d ^ (*b << 7);
- *a ^= *b ^ *d;
- *b = rotrFixed(*b, 1);
- *d = rotrFixed(*d, 7) ^ *c ^ (*a << 3);
- *b ^= *a ^ *c;
- *c = rotrFixed(*c, 3);
- *a = rotrFixed(*a, 13);
-}
-
-void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks)
-{
- unsigned __int32 a, b, c, d, e;
- const unsigned __int32 *k = (unsigned __int32 *)ks + 104;
- unsigned int i=4;
- unsigned __int32 *in = (unsigned __int32 *) inBlock;
- unsigned __int32 *out = (unsigned __int32 *) outBlock;
-
- a = LE32(in[0]);
- b = LE32(in[1]);
- c = LE32(in[2]);
- d = LE32(in[3]);
-
- KXf (k, 32, &a, &b, &c, &d);
- goto start;
-
- do
- {
- c = b;
- b = d;
- d = e;
- k -= 32;
- beforeI7(ILT);
-start:
- beforeI7(I7); KXf (k, 28, &d, &a, &b, &e);
- ILTf (&d, &a, &b, &e); afterI7(I6); KXf (k, 24, &a, &b, &c, &e);
- ILTf (&a, &b, &c, &e); afterI6(I5); KXf (k, 20, &b, &d, &e, &c);
- ILTf (&b, &d, &e, &c); afterI5(I4); KXf (k, 16, &b, &c, &e, &a);
- ILTf (&b, &c, &e, &a); afterI4(I3); KXf (k, 12, &a, &b, &e, &c);
- ILTf (&a, &b, &e, &c); afterI3(I2); KXf (k, 8, &b, &d, &e, &c);
- ILTf (&b, &d, &e, &c); afterI2(I1); KXf (k, 4, &a, &b, &c, &e);
- ILTf (&a, &b, &c, &e); afterI1(I0); KXf (k, 0, &a, &d, &b, &e);
- }
- while (--i != 0);
-
- out[0] = LE32(a);
- out[1] = LE32(d);
- out[2] = LE32(b);
- out[3] = LE32(e);
-}
-
-#endif // TC_MINIMIZE_CODE_SIZE
+// serpent.cpp - written and placed in the public domain by Wei Dai + +/* Adapted for TrueCrypt */ +/* Adapted for VeraCrypt */ + +#ifdef TC_WINDOWS_BOOT +#pragma optimize ("t", on) +#endif + +#include "Serpent.h" +#include "Common/Endian.h" + +#include <memory.h> + +#if defined(_WIN32) && !defined(_DEBUG) +#include <stdlib.h> +#define rotlFixed _rotl +#define rotrFixed _rotr +#else +#define rotlFixed(x,n) (((x) << (n)) | ((x) >> (32 - (n)))) +#define rotrFixed(x,n) (((x) >> (n)) | ((x) << (32 - (n)))) +#endif + +// linear transformation +#define LT(i,a,b,c,d,e) {\ + a = rotlFixed(a, 13); \ + c = rotlFixed(c, 3); \ + d = rotlFixed(d ^ c ^ (a << 3), 7); \ + b = rotlFixed(b ^ a ^ c, 1); \ + a = rotlFixed(a ^ b ^ d, 5); \ + c = rotlFixed(c ^ d ^ (b << 7), 22);} + +// inverse linear transformation +#define ILT(i,a,b,c,d,e) {\ + c = rotrFixed(c, 22); \ + a = rotrFixed(a, 5); \ + c ^= d ^ (b << 7); \ + a ^= b ^ d; \ + b = rotrFixed(b, 1); \ + d = rotrFixed(d, 7) ^ c ^ (a << 3); \ + b ^= a ^ c; \ + c = rotrFixed(c, 3); \ + a = rotrFixed(a, 13);} + +// order of output from S-box functions +#define beforeS0(f) f(0,a,b,c,d,e) +#define afterS0(f) f(1,b,e,c,a,d) +#define afterS1(f) f(2,c,b,a,e,d) +#define afterS2(f) f(3,a,e,b,d,c) +#define afterS3(f) f(4,e,b,d,c,a) +#define afterS4(f) f(5,b,a,e,c,d) +#define afterS5(f) f(6,a,c,b,e,d) +#define afterS6(f) f(7,a,c,d,b,e) +#define afterS7(f) f(8,d,e,b,a,c) + +// order of output from inverse S-box functions +#define beforeI7(f) f(8,a,b,c,d,e) +#define afterI7(f) f(7,d,a,b,e,c) +#define afterI6(f) f(6,a,b,c,e,d) +#define afterI5(f) f(5,b,d,e,c,a) +#define afterI4(f) f(4,b,c,e,a,d) +#define afterI3(f) f(3,a,b,e,c,d) +#define afterI2(f) f(2,b,d,e,c,a) +#define afterI1(f) f(1,a,b,c,e,d) +#define afterI0(f) f(0,a,d,b,e,c) + +// The instruction sequences for the S-box functions +// come from Dag Arne Osvik's paper "Speeding up Serpent". + +#define S0(i, r0, r1, r2, r3, r4) \ + { \ + r3 ^= r0; \ + r4 = r1; \ + r1 &= r3; \ + r4 ^= r2; \ + r1 ^= r0; \ + r0 |= r3; \ + r0 ^= r4; \ + r4 ^= r3; \ + r3 ^= r2; \ + r2 |= r1; \ + r2 ^= r4; \ + r4 = ~r4; \ + r4 |= r1; \ + r1 ^= r3; \ + r1 ^= r4; \ + r3 |= r0; \ + r1 ^= r3; \ + r4 ^= r3; \ + } + +#define I0(i, r0, r1, r2, r3, r4) \ + { \ + r2 = ~r2; \ + r4 = r1; \ + r1 |= r0; \ + r4 = ~r4; \ + r1 ^= r2; \ + r2 |= r4; \ + r1 ^= r3; \ + r0 ^= r4; \ + r2 ^= r0; \ + r0 &= r3; \ + r4 ^= r0; \ + r0 |= r1; \ + r0 ^= r2; \ + r3 ^= r4; \ + r2 ^= r1; \ + r3 ^= r0; \ + r3 ^= r1; \ + r2 &= r3; \ + r4 ^= r2; \ + } + +#define S1(i, r0, r1, r2, r3, r4) \ + { \ + r0 = ~r0; \ + r2 = ~r2; \ + r4 = r0; \ + r0 &= r1; \ + r2 ^= r0; \ + r0 |= r3; \ + r3 ^= r2; \ + r1 ^= r0; \ + r0 ^= r4; \ + r4 |= r1; \ + r1 ^= r3; \ + r2 |= r0; \ + r2 &= r4; \ + r0 ^= r1; \ + r1 &= r2; \ + r1 ^= r0; \ + r0 &= r2; \ + r0 ^= r4; \ + } + +#define I1(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r1; \ + r1 ^= r3; \ + r3 &= r1; \ + r4 ^= r2; \ + r3 ^= r0; \ + r0 |= r1; \ + r2 ^= r3; \ + r0 ^= r4; \ + r0 |= r2; \ + r1 ^= r3; \ + r0 ^= r1; \ + r1 |= r3; \ + r1 ^= r0; \ + r4 = ~r4; \ + r4 ^= r1; \ + r1 |= r0; \ + r1 ^= r0; \ + r1 |= r4; \ + r3 ^= r1; \ + } + +#define S2(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r0; \ + r0 &= r2; \ + r0 ^= r3; \ + r2 ^= r1; \ + r2 ^= r0; \ + r3 |= r4; \ + r3 ^= r1; \ + r4 ^= r2; \ + r1 = r3; \ + r3 |= r4; \ + r3 ^= r0; \ + r0 &= r1; \ + r4 ^= r0; \ + r1 ^= r3; \ + r1 ^= r4; \ + r4 = ~r4; \ + } + +#define I2(i, r0, r1, r2, r3, r4) \ + { \ + r2 ^= r3; \ + r3 ^= r0; \ + r4 = r3; \ + r3 &= r2; \ + r3 ^= r1; \ + r1 |= r2; \ + r1 ^= r4; \ + r4 &= r3; \ + r2 ^= r3; \ + r4 &= r0; \ + r4 ^= r2; \ + r2 &= r1; \ + r2 |= r0; \ + r3 = ~r3; \ + r2 ^= r3; \ + r0 ^= r3; \ + r0 &= r1; \ + r3 ^= r4; \ + r3 ^= r0; \ + } + +#define S3(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r0; \ + r0 |= r3; \ + r3 ^= r1; \ + r1 &= r4; \ + r4 ^= r2; \ + r2 ^= r3; \ + r3 &= r0; \ + r4 |= r1; \ + r3 ^= r4; \ + r0 ^= r1; \ + r4 &= r0; \ + r1 ^= r3; \ + r4 ^= r2; \ + r1 |= r0; \ + r1 ^= r2; \ + r0 ^= r3; \ + r2 = r1; \ + r1 |= r3; \ + r1 ^= r0; \ + } + +#define I3(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r2; \ + r2 ^= r1; \ + r1 &= r2; \ + r1 ^= r0; \ + r0 &= r4; \ + r4 ^= r3; \ + r3 |= r1; \ + r3 ^= r2; \ + r0 ^= r4; \ + r2 ^= r0; \ + r0 |= r3; \ + r0 ^= r1; \ + r4 ^= r2; \ + r2 &= r3; \ + r1 |= r3; \ + r1 ^= r2; \ + r4 ^= r0; \ + r2 ^= r4; \ + } + +#define S4(i, r0, r1, r2, r3, r4) \ + { \ + r1 ^= r3; \ + r3 = ~r3; \ + r2 ^= r3; \ + r3 ^= r0; \ + r4 = r1; \ + r1 &= r3; \ + r1 ^= r2; \ + r4 ^= r3; \ + r0 ^= r4; \ + r2 &= r4; \ + r2 ^= r0; \ + r0 &= r1; \ + r3 ^= r0; \ + r4 |= r1; \ + r4 ^= r0; \ + r0 |= r3; \ + r0 ^= r2; \ + r2 &= r3; \ + r0 = ~r0; \ + r4 ^= r2; \ + } + +#define I4(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r2; \ + r2 &= r3; \ + r2 ^= r1; \ + r1 |= r3; \ + r1 &= r0; \ + r4 ^= r2; \ + r4 ^= r1; \ + r1 &= r2; \ + r0 = ~r0; \ + r3 ^= r4; \ + r1 ^= r3; \ + r3 &= r0; \ + r3 ^= r2; \ + r0 ^= r1; \ + r2 &= r0; \ + r3 ^= r0; \ + r2 ^= r4; \ + r2 |= r3; \ + r3 ^= r0; \ + r2 ^= r1; \ + } + +#define S5(i, r0, r1, r2, r3, r4) \ + { \ + r0 ^= r1; \ + r1 ^= r3; \ + r3 = ~r3; \ + r4 = r1; \ + r1 &= r0; \ + r2 ^= r3; \ + r1 ^= r2; \ + r2 |= r4; \ + r4 ^= r3; \ + r3 &= r1; \ + r3 ^= r0; \ + r4 ^= r1; \ + r4 ^= r2; \ + r2 ^= r0; \ + r0 &= r3; \ + r2 = ~r2; \ + r0 ^= r4; \ + r4 |= r3; \ + r2 ^= r4; \ + } + +#define I5(i, r0, r1, r2, r3, r4) \ + { \ + r1 = ~r1; \ + r4 = r3; \ + r2 ^= r1; \ + r3 |= r0; \ + r3 ^= r2; \ + r2 |= r1; \ + r2 &= r0; \ + r4 ^= r3; \ + r2 ^= r4; \ + r4 |= r0; \ + r4 ^= r1; \ + r1 &= r2; \ + r1 ^= r3; \ + r4 ^= r2; \ + r3 &= r4; \ + r4 ^= r1; \ + r3 ^= r0; \ + r3 ^= r4; \ + r4 = ~r4; \ + } + +#define S6(i, r0, r1, r2, r3, r4) \ + { \ + r2 = ~r2; \ + r4 = r3; \ + r3 &= r0; \ + r0 ^= r4; \ + r3 ^= r2; \ + r2 |= r4; \ + r1 ^= r3; \ + r2 ^= r0; \ + r0 |= r1; \ + r2 ^= r1; \ + r4 ^= r0; \ + r0 |= r3; \ + r0 ^= r2; \ + r4 ^= r3; \ + r4 ^= r0; \ + r3 = ~r3; \ + r2 &= r4; \ + r2 ^= r3; \ + } + +#define I6(i, r0, r1, r2, r3, r4) \ + { \ + r0 ^= r2; \ + r4 = r2; \ + r2 &= r0; \ + r4 ^= r3; \ + r2 = ~r2; \ + r3 ^= r1; \ + r2 ^= r3; \ + r4 |= r0; \ + r0 ^= r2; \ + r3 ^= r4; \ + r4 ^= r1; \ + r1 &= r3; \ + r1 ^= r0; \ + r0 ^= r3; \ + r0 |= r2; \ + r3 ^= r1; \ + r4 ^= r0; \ + } + +#define S7(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r2; \ + r2 &= r1; \ + r2 ^= r3; \ + r3 &= r1; \ + r4 ^= r2; \ + r2 ^= r1; \ + r1 ^= r0; \ + r0 |= r4; \ + r0 ^= r2; \ + r3 ^= r1; \ + r2 ^= r3; \ + r3 &= r0; \ + r3 ^= r4; \ + r4 ^= r2; \ + r2 &= r0; \ + r4 = ~r4; \ + r2 ^= r4; \ + r4 &= r0; \ + r1 ^= r3; \ + r4 ^= r1; \ + } + +#define I7(i, r0, r1, r2, r3, r4) \ + { \ + r4 = r2; \ + r2 ^= r0; \ + r0 &= r3; \ + r2 = ~r2; \ + r4 |= r3; \ + r3 ^= r1; \ + r1 |= r0; \ + r0 ^= r2; \ + r2 &= r4; \ + r1 ^= r2; \ + r2 ^= r0; \ + r0 |= r2; \ + r3 &= r4; \ + r0 ^= r3; \ + r4 ^= r1; \ + r3 ^= r4; \ + r4 |= r0; \ + r3 ^= r2; \ + r4 ^= r2; \ + } + +// key xor +#define KX(r, a, b, c, d, e) {\ + a ^= k[4 * r + 0]; \ + b ^= k[4 * r + 1]; \ + c ^= k[4 * r + 2]; \ + d ^= k[4 * r + 3];} + + +#ifdef TC_MINIMIZE_CODE_SIZE + +static void S0f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r3 ^= *r0; + *r4 = *r1; + *r1 &= *r3; + *r4 ^= *r2; + *r1 ^= *r0; + *r0 |= *r3; + *r0 ^= *r4; + *r4 ^= *r3; + *r3 ^= *r2; + *r2 |= *r1; + *r2 ^= *r4; + *r4 = ~*r4; + *r4 |= *r1; + *r1 ^= *r3; + *r1 ^= *r4; + *r3 |= *r0; + *r1 ^= *r3; + *r4 ^= *r3; +} + +static void S1f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r0 = ~*r0; + *r2 = ~*r2; + *r4 = *r0; + *r0 &= *r1; + *r2 ^= *r0; + *r0 |= *r3; + *r3 ^= *r2; + *r1 ^= *r0; + *r0 ^= *r4; + *r4 |= *r1; + *r1 ^= *r3; + *r2 |= *r0; + *r2 &= *r4; + *r0 ^= *r1; + *r1 &= *r2; + *r1 ^= *r0; + *r0 &= *r2; + *r0 ^= *r4; +} + +static void S2f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r4 = *r0; + *r0 &= *r2; + *r0 ^= *r3; + *r2 ^= *r1; + *r2 ^= *r0; + *r3 |= *r4; + *r3 ^= *r1; + *r4 ^= *r2; + *r1 = *r3; + *r3 |= *r4; + *r3 ^= *r0; + *r0 &= *r1; + *r4 ^= *r0; + *r1 ^= *r3; + *r1 ^= *r4; + *r4 = ~*r4; +} + +static void S3f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r4 = *r0; + *r0 |= *r3; + *r3 ^= *r1; + *r1 &= *r4; + *r4 ^= *r2; + *r2 ^= *r3; + *r3 &= *r0; + *r4 |= *r1; + *r3 ^= *r4; + *r0 ^= *r1; + *r4 &= *r0; + *r1 ^= *r3; + *r4 ^= *r2; + *r1 |= *r0; + *r1 ^= *r2; + *r0 ^= *r3; + *r2 = *r1; + *r1 |= *r3; + *r1 ^= *r0; +} + +static void S4f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r1 ^= *r3; + *r3 = ~*r3; + *r2 ^= *r3; + *r3 ^= *r0; + *r4 = *r1; + *r1 &= *r3; + *r1 ^= *r2; + *r4 ^= *r3; + *r0 ^= *r4; + *r2 &= *r4; + *r2 ^= *r0; + *r0 &= *r1; + *r3 ^= *r0; + *r4 |= *r1; + *r4 ^= *r0; + *r0 |= *r3; + *r0 ^= *r2; + *r2 &= *r3; + *r0 = ~*r0; + *r4 ^= *r2; +} + +static void S5f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r0 ^= *r1; + *r1 ^= *r3; + *r3 = ~*r3; + *r4 = *r1; + *r1 &= *r0; + *r2 ^= *r3; + *r1 ^= *r2; + *r2 |= *r4; + *r4 ^= *r3; + *r3 &= *r1; + *r3 ^= *r0; + *r4 ^= *r1; + *r4 ^= *r2; + *r2 ^= *r0; + *r0 &= *r3; + *r2 = ~*r2; + *r0 ^= *r4; + *r4 |= *r3; + *r2 ^= *r4; +} + +static void S6f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r2 = ~*r2; + *r4 = *r3; + *r3 &= *r0; + *r0 ^= *r4; + *r3 ^= *r2; + *r2 |= *r4; + *r1 ^= *r3; + *r2 ^= *r0; + *r0 |= *r1; + *r2 ^= *r1; + *r4 ^= *r0; + *r0 |= *r3; + *r0 ^= *r2; + *r4 ^= *r3; + *r4 ^= *r0; + *r3 = ~*r3; + *r2 &= *r4; + *r2 ^= *r3; +} + +static void S7f (unsigned __int32 *r0, unsigned __int32 *r1, unsigned __int32 *r2, unsigned __int32 *r3, unsigned __int32 *r4) +{ + *r4 = *r2; + *r2 &= *r1; + *r2 ^= *r3; + *r3 &= *r1; + *r4 ^= *r2; + *r2 ^= *r1; + *r1 ^= *r0; + *r0 |= *r4; + *r0 ^= *r2; + *r3 ^= *r1; + *r2 ^= *r3; + *r3 &= *r0; + *r3 ^= *r4; + *r4 ^= *r2; + *r2 &= *r0; + *r4 = ~*r4; + *r2 ^= *r4; + *r4 &= *r0; + *r1 ^= *r3; + *r4 ^= *r1; +} + +static void KXf (const unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d) +{ + *a ^= k[r]; + *b ^= k[r + 1]; + *c ^= k[r + 2]; + *d ^= k[r + 3]; +} + +#endif // TC_MINIMIZE_CODE_SIZE + +#ifndef TC_MINIMIZE_CODE_SIZE + +void serpent_set_key(const unsigned __int8 userKey[],unsigned __int8 *ks) +{ + unsigned __int32 a,b,c,d,e; + unsigned __int32 *k = (unsigned __int32 *)ks; + unsigned __int32 t; + int i; + + for (i = 0; i < 8; i++) + k[i] = LE32(((unsigned __int32*)userKey)[i]); + + k += 8; + t = k[-1]; + for (i = 0; i < 132; ++i) + k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11); + k -= 20; + +#define LK(r, a, b, c, d, e) {\ + a = k[(8-r)*4 + 0]; \ + b = k[(8-r)*4 + 1]; \ + c = k[(8-r)*4 + 2]; \ + d = k[(8-r)*4 + 3];} + +#define SK(r, a, b, c, d, e) {\ + k[(8-r)*4 + 4] = a; \ + k[(8-r)*4 + 5] = b; \ + k[(8-r)*4 + 6] = c; \ + k[(8-r)*4 + 7] = d;} \ + + for (i=0; i<4; i++) + { + afterS2(LK); afterS2(S3); afterS3(SK); + afterS1(LK); afterS1(S2); afterS2(SK); + afterS0(LK); afterS0(S1); afterS1(SK); + beforeS0(LK); beforeS0(S0); afterS0(SK); + k += 8*4; + afterS6(LK); afterS6(S7); afterS7(SK); + afterS5(LK); afterS5(S6); afterS6(SK); + afterS4(LK); afterS4(S5); afterS5(SK); + afterS3(LK); afterS3(S4); afterS4(SK); + } + afterS2(LK); afterS2(S3); afterS3(SK); +} + +#else // TC_MINIMIZE_CODE_SIZE + +static void LKf (unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d) +{ + *a = k[r]; + *b = k[r + 1]; + *c = k[r + 2]; + *d = k[r + 3]; +} + +static void SKf (unsigned __int32 *k, unsigned int r, unsigned __int32 *a, unsigned __int32 *b, unsigned __int32 *c, unsigned __int32 *d) +{ + k[r + 4] = *a; + k[r + 5] = *b; + k[r + 6] = *c; + k[r + 7] = *d; +} + +void serpent_set_key(const unsigned __int8 userKey[], unsigned __int8 *ks) +{ + unsigned __int32 a,b,c,d,e; + unsigned __int32 *k = (unsigned __int32 *)ks; + unsigned __int32 t; + int i; + + for (i = 0; i < 8; i++) + k[i] = LE32(((unsigned __int32*)userKey)[i]); + + k += 8; + t = k[-1]; + for (i = 0; i < 132; ++i) + k[i] = t = rotlFixed(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11); + k -= 20; + + for (i=0; i<4; i++) + { + LKf (k, 20, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); SKf (k, 16, &e, &b, &d, &c); + LKf (k, 24, &c, &b, &a, &e); S2f (&c, &b, &a, &e, &d); SKf (k, 20, &a, &e, &b, &d); + LKf (k, 28, &b, &e, &c, &a); S1f (&b, &e, &c, &a, &d); SKf (k, 24, &c, &b, &a, &e); + LKf (k, 32, &a, &b, &c, &d); S0f (&a, &b, &c, &d, &e); SKf (k, 28, &b, &e, &c, &a); + k += 8*4; + LKf (k, 4, &a, &c, &d, &b); S7f (&a, &c, &d, &b, &e); SKf (k, 0, &d, &e, &b, &a); + LKf (k, 8, &a, &c, &b, &e); S6f (&a, &c, &b, &e, &d); SKf (k, 4, &a, &c, &d, &b); + LKf (k, 12, &b, &a, &e, &c); S5f (&b, &a, &e, &c, &d); SKf (k, 8, &a, &c, &b, &e); + LKf (k, 16, &e, &b, &d, &c); S4f (&e, &b, &d, &c, &a); SKf (k, 12, &b, &a, &e, &c); + } + LKf (k, 20, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); SKf (k, 16, &e, &b, &d, &c); +} + +#endif // TC_MINIMIZE_CODE_SIZE + + +#ifndef TC_MINIMIZE_CODE_SIZE + +void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks) +{ + unsigned __int32 a, b, c, d, e; + unsigned int i=1; + const unsigned __int32 *k = (unsigned __int32 *)ks + 8; + unsigned __int32 *in = (unsigned __int32 *) inBlock; + unsigned __int32 *out = (unsigned __int32 *) outBlock; + + a = LE32(in[0]); + b = LE32(in[1]); + c = LE32(in[2]); + d = LE32(in[3]); + + do + { + beforeS0(KX); beforeS0(S0); afterS0(LT); + afterS0(KX); afterS0(S1); afterS1(LT); + afterS1(KX); afterS1(S2); afterS2(LT); + afterS2(KX); afterS2(S3); afterS3(LT); + afterS3(KX); afterS3(S4); afterS4(LT); + afterS4(KX); afterS4(S5); afterS5(LT); + afterS5(KX); afterS5(S6); afterS6(LT); + afterS6(KX); afterS6(S7); + + if (i == 4) + break; + + ++i; + c = b; + b = e; + e = d; + d = a; + a = e; + k += 32; + beforeS0(LT); + } + while (1); + + afterS7(KX); + + out[0] = LE32(d); + out[1] = LE32(e); + out[2] = LE32(b); + out[3] = LE32(a); +} + +#else // TC_MINIMIZE_CODE_SIZE + +typedef unsigned __int32 uint32; + +static void LTf (uint32 *a, uint32 *b, uint32 *c, uint32 *d) +{ + *a = rotlFixed(*a, 13); + *c = rotlFixed(*c, 3); + *d = rotlFixed(*d ^ *c ^ (*a << 3), 7); + *b = rotlFixed(*b ^ *a ^ *c, 1); + *a = rotlFixed(*a ^ *b ^ *d, 5); + *c = rotlFixed(*c ^ *d ^ (*b << 7), 22); +} + +void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks) +{ + unsigned __int32 a, b, c, d, e; + unsigned int i=1; + const unsigned __int32 *k = (unsigned __int32 *)ks + 8; + unsigned __int32 *in = (unsigned __int32 *) inBlock; + unsigned __int32 *out = (unsigned __int32 *) outBlock; + + a = LE32(in[0]); + b = LE32(in[1]); + c = LE32(in[2]); + d = LE32(in[3]); + + do + { + KXf (k, 0, &a, &b, &c, &d); S0f (&a, &b, &c, &d, &e); LTf (&b, &e, &c, &a); + KXf (k, 4, &b, &e, &c, &a); S1f (&b, &e, &c, &a, &d); LTf (&c, &b, &a, &e); + KXf (k, 8, &c, &b, &a, &e); S2f (&c, &b, &a, &e, &d); LTf (&a, &e, &b, &d); + KXf (k, 12, &a, &e, &b, &d); S3f (&a, &e, &b, &d, &c); LTf (&e, &b, &d, &c); + KXf (k, 16, &e, &b, &d, &c); S4f (&e, &b, &d, &c, &a); LTf (&b, &a, &e, &c); + KXf (k, 20, &b, &a, &e, &c); S5f (&b, &a, &e, &c, &d); LTf (&a, &c, &b, &e); + KXf (k, 24, &a, &c, &b, &e); S6f (&a, &c, &b, &e, &d); LTf (&a, &c, &d, &b); + KXf (k, 28, &a, &c, &d, &b); S7f (&a, &c, &d, &b, &e); + + if (i == 4) + break; + + ++i; + c = b; + b = e; + e = d; + d = a; + a = e; + k += 32; + LTf (&a,&b,&c,&d); + } + while (1); + + KXf (k, 32, &d, &e, &b, &a); + + out[0] = LE32(d); + out[1] = LE32(e); + out[2] = LE32(b); + out[3] = LE32(a); +} + +#endif // TC_MINIMIZE_CODE_SIZE + +#if !defined (TC_MINIMIZE_CODE_SIZE) + +void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks) +{ + unsigned __int32 a, b, c, d, e; + const unsigned __int32 *k = (unsigned __int32 *)ks + 104; + unsigned int i=4; + unsigned __int32 *in = (unsigned __int32 *) inBlock; + unsigned __int32 *out = (unsigned __int32 *) outBlock; + + a = LE32(in[0]); + b = LE32(in[1]); + c = LE32(in[2]); + d = LE32(in[3]); + + beforeI7(KX); + goto start; + + do + { + c = b; + b = d; + d = e; + k -= 32; + beforeI7(ILT); +start: + beforeI7(I7); afterI7(KX); + afterI7(ILT); afterI7(I6); afterI6(KX); + afterI6(ILT); afterI6(I5); afterI5(KX); + afterI5(ILT); afterI5(I4); afterI4(KX); + afterI4(ILT); afterI4(I3); afterI3(KX); + afterI3(ILT); afterI3(I2); afterI2(KX); + afterI2(ILT); afterI2(I1); afterI1(KX); + afterI1(ILT); afterI1(I0); afterI0(KX); + } + while (--i != 0); + + out[0] = LE32(a); + out[1] = LE32(d); + out[2] = LE32(b); + out[3] = LE32(e); +} + +#else // TC_MINIMIZE_CODE_SIZE + +static void ILTf (uint32 *a, uint32 *b, uint32 *c, uint32 *d) +{ + *c = rotrFixed(*c, 22); + *a = rotrFixed(*a, 5); + *c ^= *d ^ (*b << 7); + *a ^= *b ^ *d; + *b = rotrFixed(*b, 1); + *d = rotrFixed(*d, 7) ^ *c ^ (*a << 3); + *b ^= *a ^ *c; + *c = rotrFixed(*c, 3); + *a = rotrFixed(*a, 13); +} + +void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks) +{ + unsigned __int32 a, b, c, d, e; + const unsigned __int32 *k = (unsigned __int32 *)ks + 104; + unsigned int i=4; + unsigned __int32 *in = (unsigned __int32 *) inBlock; + unsigned __int32 *out = (unsigned __int32 *) outBlock; + + a = LE32(in[0]); + b = LE32(in[1]); + c = LE32(in[2]); + d = LE32(in[3]); + + KXf (k, 32, &a, &b, &c, &d); + goto start; + + do + { + c = b; + b = d; + d = e; + k -= 32; + beforeI7(ILT); +start: + beforeI7(I7); KXf (k, 28, &d, &a, &b, &e); + ILTf (&d, &a, &b, &e); afterI7(I6); KXf (k, 24, &a, &b, &c, &e); + ILTf (&a, &b, &c, &e); afterI6(I5); KXf (k, 20, &b, &d, &e, &c); + ILTf (&b, &d, &e, &c); afterI5(I4); KXf (k, 16, &b, &c, &e, &a); + ILTf (&b, &c, &e, &a); afterI4(I3); KXf (k, 12, &a, &b, &e, &c); + ILTf (&a, &b, &e, &c); afterI3(I2); KXf (k, 8, &b, &d, &e, &c); + ILTf (&b, &d, &e, &c); afterI2(I1); KXf (k, 4, &a, &b, &c, &e); + ILTf (&a, &b, &c, &e); afterI1(I0); KXf (k, 0, &a, &d, &b, &e); + } + while (--i != 0); + + out[0] = LE32(a); + out[1] = LE32(d); + out[2] = LE32(b); + out[3] = LE32(e); +} + +#endif // TC_MINIMIZE_CODE_SIZE diff --git a/src/Crypto/Serpent.h b/src/Crypto/Serpent.h index b88ddc4d..0f4ab787 100644 --- a/src/Crypto/Serpent.h +++ b/src/Crypto/Serpent.h @@ -1,20 +1,20 @@ -#ifndef HEADER_Crypto_Serpent
-#define HEADER_Crypto_Serpent
-
-#include "Common/Tcdefs.h"
-
-#ifdef __cplusplus
-extern "C"
-{
-#endif
-
-/* userKey is always 32-bytes long */
-void serpent_set_key(const unsigned __int8 userKey[], unsigned __int8 *ks);
-void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks);
-void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif // HEADER_Crypto_Serpent
+#ifndef HEADER_Crypto_Serpent +#define HEADER_Crypto_Serpent + +#include "Common/Tcdefs.h" + +#ifdef __cplusplus +extern "C" +{ +#endif + +/* userKey is always 32-bytes long */ +void serpent_set_key(const unsigned __int8 userKey[], unsigned __int8 *ks); +void serpent_encrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks); +void serpent_decrypt(const unsigned __int8 *inBlock, unsigned __int8 *outBlock, unsigned __int8 *ks); + +#ifdef __cplusplus +} +#endif + +#endif // HEADER_Crypto_Serpent diff --git a/src/Crypto/Sha2.c b/src/Crypto/Sha2.c index f1a9850a..02680eb5 100644 --- a/src/Crypto/Sha2.c +++ b/src/Crypto/Sha2.c @@ -1,753 +1,753 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 01/08/2005
-
- This is a byte oriented version of SHA2 that operates on arrays of bytes
- stored in memory. This code implements sha256, sha384 and sha512 but the
- latter two functions rely on efficient 64-bit integer operations that
- may not be very efficient on 32-bit machines
-
- The sha256 functions use a type 'sha256_ctx' to hold details of the
- current hash state and uses the following three calls:
-
- void sha256_begin(sha256_ctx ctx[1])
- void sha256_hash(const unsigned char data[],
- unsigned long len, sha256_ctx ctx[1])
- void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
-
- The first subroutine initialises a hash computation by setting up the
- context in the sha256_ctx context. The second subroutine hashes 8-bit
- bytes from array data[] into the hash state withinh sha256_ctx context,
- the number of bytes to be hashed being given by the the unsigned long
- integer len. The third subroutine completes the hash calculation and
- places the resulting digest value in the array of 8-bit bytes hval[].
-
- The sha384 and sha512 functions are similar and use the interfaces:
-
- void sha384_begin(sha384_ctx ctx[1]);
- void sha384_hash(const unsigned char data[],
- unsigned long len, sha384_ctx ctx[1]);
- void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
-
- void sha512_begin(sha512_ctx ctx[1]);
- void sha512_hash(const unsigned char data[],
- unsigned long len, sha512_ctx ctx[1]);
- void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
-
- In addition there is a function sha2 that can be used to call all these
- functions using a call with a hash length parameter as follows:
-
- int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
- void sha2_hash(const unsigned char data[],
- unsigned long len, sha2_ctx ctx[1]);
- void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
-
- My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
- on big-endian systems and for his assistance with corrections
-*/
-
-#include "Common/Endian.h"
-#include "Crypto/misc.h"
-#define PLATFORM_BYTE_ORDER BYTE_ORDER
-#define IS_LITTLE_ENDIAN LITTLE_ENDIAN
-
-#if 0
-#define UNROLL_SHA2 /* for SHA2 loop unroll */
-#endif
-
-#include <string.h> /* for memcpy() etc. */
-
-#include "Sha2.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
-#pragma intrinsic(memcpy)
-#endif
-
-#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
-#define SWAP_BYTES
-#else
-#undef SWAP_BYTES
-#endif
-
-#if 0
-
-#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
-#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
-
-#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
-
-#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
-#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
-
-#endif
-
-/* round transforms for SHA256 and SHA512 compression functions */
-
-#define vf(n,i) v[(n - i) & 7]
-
-#define hf(i) (p[i & 15] += \
- g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
-
-#define v_cycle(i,j) \
- vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
- + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
- vf(3,i) += vf(7,i); \
- vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
-
-#if defined(SHA_224) || defined(SHA_256)
-
-#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
-
-#if defined(SWAP_BYTES)
-#define bsw_32(p,n) \
- { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
-#else
-#define bsw_32(p,n)
-#endif
-
-#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
-#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
-#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
-#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
-#define k_0 k256
-
-/* rotated SHA256 round definition. Rather than swapping variables as in */
-/* FIPS-180, different variables are 'rotated' on each round, returning */
-/* to their starting positions every eight rounds */
-
-#define q(n) v##n
-
-#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
- q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
- q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
-
-/* SHA256 mixing data */
-
-const uint_32t k256[64] =
-{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
- 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
- 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
- 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
- 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
- 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
- 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
- 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
- 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
- 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
- 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
- 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
- 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
- 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
- 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
- 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
-};
-
-/* Compile 64 bytes of hash data into SHA256 digest value */
-/* NOTE: this routine assumes that the byte order in the */
-/* ctx->wbuf[] at this point is such that low address bytes */
-/* in the ORIGINAL byte stream will go into the high end of */
-/* words on BOTH big and little endian systems */
-
-VOID_RETURN sha256_compile(sha256_ctx ctx[1])
-{
-#if !defined(UNROLL_SHA2)
-
- uint_32t j, *p = ctx->wbuf, v[8];
-
- memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
-
- for(j = 0; j < 64; j += 16)
- {
- v_cycle( 0, j); v_cycle( 1, j);
- v_cycle( 2, j); v_cycle( 3, j);
- v_cycle( 4, j); v_cycle( 5, j);
- v_cycle( 6, j); v_cycle( 7, j);
- v_cycle( 8, j); v_cycle( 9, j);
- v_cycle(10, j); v_cycle(11, j);
- v_cycle(12, j); v_cycle(13, j);
- v_cycle(14, j); v_cycle(15, j);
- }
-
- ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
- ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
- ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
- ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
-
-#else
-
- uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
-
- v0 = ctx->hash[0]; v1 = ctx->hash[1];
- v2 = ctx->hash[2]; v3 = ctx->hash[3];
- v4 = ctx->hash[4]; v5 = ctx->hash[5];
- v6 = ctx->hash[6]; v7 = ctx->hash[7];
-
- one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
- one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
- one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
- one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
- one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
- one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
- one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
- one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
- one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
- one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
- one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
- one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
- one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
- one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
- one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
- one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
-
- one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
-
- one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
-
- one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
- one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
- one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
- one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
- one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
- one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
- one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
- one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
- one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
- one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
- one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
- one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
- one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
- one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
- one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
- one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
-
- ctx->hash[0] += v0; ctx->hash[1] += v1;
- ctx->hash[2] += v2; ctx->hash[3] += v3;
- ctx->hash[4] += v4; ctx->hash[5] += v5;
- ctx->hash[6] += v6; ctx->hash[7] += v7;
-#endif
-}
-
-/* SHA256 hash data in an array of bytes into hash buffer */
-/* and call the hash_compile function as required. */
-
-VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
-{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK),
- space = SHA256_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
-
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
-
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0;
- bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2)
- sha256_compile(ctx);
- }
-
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
-}
-
-/* SHA256 Final padding and digest calculation */
-
-static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
-{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK);
-
- /* put bytes in the buffer in an order in which references to */
- /* 32-bit words will put bytes with lower addresses into the */
- /* top of 32 bit words on BOTH big and little endian machines */
- bsw_32(ctx->wbuf, (i + 3) >> 2)
-
- /* we now need to mask valid bytes and add the padding which is */
- /* a single 1 bit and as many zero bits as necessary. Note that */
- /* we can always add the first padding byte here because the */
- /* buffer always has at least one empty slot */
- ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
- ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
-
- /* we need 9 or more empty positions, one for the padding byte */
- /* (above) and eight for the length count. If there is not */
- /* enough space pad and empty the buffer */
- if(i > SHA256_BLOCK_SIZE - 9)
- {
- if(i < 60) ctx->wbuf[15] = 0;
- sha256_compile(ctx);
- i = 0;
- }
- else /* compute a word index for the empty buffer positions */
- i = (i >> 2) + 1;
-
- while(i < 14) /* and zero pad all but last two positions */
- ctx->wbuf[i++] = 0;
-
- /* the following 32-bit length fields are assembled in the */
- /* wrong byte order on little endian machines but this is */
- /* corrected later since they are only ever used as 32-bit */
- /* word values. */
- ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
- ctx->wbuf[15] = ctx->count[0] << 3;
- sha256_compile(ctx);
-
- /* extract the hash value as bytes in case the hash buffer is */
- /* mislaigned for 32-bit words */
- for(i = 0; i < hlen; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
-}
-
-#endif
-
-#if defined(SHA_224)
-
-const uint_32t i224[8] =
-{
- 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
- 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
-};
-
-VOID_RETURN sha224_begin(sha224_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
-}
-
-VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
-{
- sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
-}
-
-VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha224_ctx cx[1];
-
- sha224_begin(cx);
- sha224_hash(data, len, cx);
- sha_end1(hval, cx, SHA224_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_256)
-
-const uint_32t i256[8] =
-{
- 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
- 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
-};
-
-VOID_RETURN sha256_begin(sha256_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
-}
-
-VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
-{
- sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
-}
-
-VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha256_ctx cx[1];
-
- sha256_begin(cx);
- sha256_hash(data, len, cx);
- sha_end1(hval, cx, SHA256_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_384) || defined(SHA_512)
-
-#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
-
-#if defined(SWAP_BYTES)
-#define bsw_64(p,n) \
- { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
-#else
-#define bsw_64(p,n)
-#endif
-
-/* SHA512 mixing function definitions */
-
-#ifdef s_0
-# undef s_0
-# undef s_1
-# undef g_0
-# undef g_1
-# undef k_0
-#endif
-
-#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
-#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
-#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
-#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
-#define k_0 k512
-
-/* SHA384/SHA512 mixing data */
-
-const uint_64t k512[80] =
-{
- li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
- li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
- li_64(3956c25bf348b538), li_64(59f111f1b605d019),
- li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
- li_64(d807aa98a3030242), li_64(12835b0145706fbe),
- li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
- li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
- li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
- li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
- li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
- li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
- li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
- li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
- li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
- li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
- li_64(06ca6351e003826f), li_64(142929670a0e6e70),
- li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
- li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
- li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
- li_64(81c2c92e47edaee6), li_64(92722c851482353b),
- li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
- li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
- li_64(d192e819d6ef5218), li_64(d69906245565a910),
- li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
- li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
- li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
- li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
- li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
- li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
- li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
- li_64(90befffa23631e28), li_64(a4506cebde82bde9),
- li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
- li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
- li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
- li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
- li_64(113f9804bef90dae), li_64(1b710b35131c471b),
- li_64(28db77f523047d84), li_64(32caab7b40c72493),
- li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
- li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
- li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
-};
-
-/* Compile 128 bytes of hash data into SHA384/512 digest */
-/* NOTE: this routine assumes that the byte order in the */
-/* ctx->wbuf[] at this point is such that low address bytes */
-/* in the ORIGINAL byte stream will go into the high end of */
-/* words on BOTH big and little endian systems */
-
-VOID_RETURN sha512_compile(sha512_ctx ctx[1])
-{ uint_64t v[8], *p = ctx->wbuf;
- uint_32t j;
-
- memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
-
- for(j = 0; j < 80; j += 16)
- {
- v_cycle( 0, j); v_cycle( 1, j);
- v_cycle( 2, j); v_cycle( 3, j);
- v_cycle( 4, j); v_cycle( 5, j);
- v_cycle( 6, j); v_cycle( 7, j);
- v_cycle( 8, j); v_cycle( 9, j);
- v_cycle(10, j); v_cycle(11, j);
- v_cycle(12, j); v_cycle(13, j);
- v_cycle(14, j); v_cycle(15, j);
- }
-
- ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
- ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
- ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
- ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
-}
-
-/* Compile 128 bytes of hash data into SHA256 digest value */
-/* NOTE: this routine assumes that the byte order in the */
-/* ctx->wbuf[] at this point is in such an order that low */
-/* address bytes in the ORIGINAL byte stream placed in this */
-/* buffer will now go to the high end of words on BOTH big */
-/* and little endian systems */
-
-VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
-{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK),
- space = SHA512_BLOCK_SIZE - pos;
- const unsigned char *sp = data;
-
- if((ctx->count[0] += len) < len)
- ++(ctx->count[1]);
-
- while(len >= space) /* tranfer whole blocks while possible */
- {
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
- sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0;
- bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3);
- sha512_compile(ctx);
- }
-
- memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
-}
-
-/* SHA384/512 Final padding and digest calculation */
-
-static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
-{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK);
-
- /* put bytes in the buffer in an order in which references to */
- /* 32-bit words will put bytes with lower addresses into the */
- /* top of 32 bit words on BOTH big and little endian machines */
- bsw_64(ctx->wbuf, (i + 7) >> 3);
-
- /* we now need to mask valid bytes and add the padding which is */
- /* a single 1 bit and as many zero bits as necessary. Note that */
- /* we can always add the first padding byte here because the */
- /* buffer always has at least one empty slot */
- ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7);
- ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7);
-
- /* we need 17 or more empty byte positions, one for the padding */
- /* byte (above) and sixteen for the length count. If there is */
- /* not enough space pad and empty the buffer */
- if(i > SHA512_BLOCK_SIZE - 17)
- {
- if(i < 120) ctx->wbuf[15] = 0;
- sha512_compile(ctx);
- i = 0;
- }
- else
- i = (i >> 3) + 1;
-
- while(i < 14)
- ctx->wbuf[i++] = 0;
-
- /* the following 64-bit length fields are assembled in the */
- /* wrong byte order on little endian machines but this is */
- /* corrected later since they are only ever used as 64-bit */
- /* word values. */
- ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61);
- ctx->wbuf[15] = ctx->count[0] << 3;
- sha512_compile(ctx);
-
- /* extract the hash value as bytes in case the hash buffer is */
- /* misaligned for 32-bit words */
- for(i = 0; i < hlen; ++i)
- hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
-}
-
-#endif
-
-#if defined(SHA_384)
-
-/* SHA384 initialisation data */
-
-const uint_64t i384[80] =
-{
- li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
- li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
- li_64(67332667ffc00b31), li_64(8eb44a8768581511),
- li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
-};
-
-VOID_RETURN sha384_begin(sha384_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
-}
-
-VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
-{
- sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
-}
-
-VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha384_ctx cx[1];
-
- sha384_begin(cx);
- sha384_hash(data, len, cx);
- sha_end2(hval, cx, SHA384_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_512)
-
-/* SHA512 initialisation data */
-
-const uint_64t i512[80] =
-{
- li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
- li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
- li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
- li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
-};
-
-VOID_RETURN sha512_begin(sha512_ctx ctx[1])
-{
- ctx->count[0] = ctx->count[1] = 0;
- memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
-}
-
-VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
-{
- sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
-}
-
-VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
-{ sha512_ctx cx[1];
-
- sha512_begin(cx);
- sha512_hash(data, len, cx);
- sha_end2(hval, cx, SHA512_DIGEST_SIZE);
-}
-
-#endif
-
-#if defined(SHA_2)
-
-#define CTX_224(x) ((x)->uu->ctx256)
-#define CTX_256(x) ((x)->uu->ctx256)
-#define CTX_384(x) ((x)->uu->ctx512)
-#define CTX_512(x) ((x)->uu->ctx512)
-
-/* SHA2 initialisation */
-
-INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
-{
- switch(len)
- {
-#if defined(SHA_224)
- case 224:
- case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
- memcpy(CTX_256(ctx)->hash, i224, 32);
- ctx->sha2_len = 28; return EXIT_SUCCESS;
-#endif
-#if defined(SHA_256)
- case 256:
- case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
- memcpy(CTX_256(ctx)->hash, i256, 32);
- ctx->sha2_len = 32; return EXIT_SUCCESS;
-#endif
-#if defined(SHA_384)
- case 384:
- case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
- memcpy(CTX_384(ctx)->hash, i384, 64);
- ctx->sha2_len = 48; return EXIT_SUCCESS;
-#endif
-#if defined(SHA_512)
- case 512:
- case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
- memcpy(CTX_512(ctx)->hash, i512, 64);
- ctx->sha2_len = 64; return EXIT_SUCCESS;
-#endif
- default: return EXIT_FAILURE;
- }
-}
-
-VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
-{
- switch(ctx->sha2_len)
- {
-#if defined(SHA_224)
- case 28: sha224_hash(data, len, CTX_224(ctx)); return;
-#endif
-#if defined(SHA_256)
- case 32: sha256_hash(data, len, CTX_256(ctx)); return;
-#endif
-#if defined(SHA_384)
- case 48: sha384_hash(data, len, CTX_384(ctx)); return;
-#endif
-#if defined(SHA_512)
- case 64: sha512_hash(data, len, CTX_512(ctx)); return;
-#endif
- }
-}
-
-VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
-{
- switch(ctx->sha2_len)
- {
-#if defined(SHA_224)
- case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
-#endif
-#if defined(SHA_256)
- case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
-#endif
-#if defined(SHA_384)
- case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
-#endif
-#if defined(SHA_512)
- case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
-#endif
- }
-}
-
-INT_RETURN sha2(unsigned char hval[], unsigned long size,
- const unsigned char data[], unsigned long len)
-{ sha2_ctx cx[1];
-
- if(sha2_begin(size, cx) == EXIT_SUCCESS)
- {
- sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
- }
- else
- return EXIT_FAILURE;
-}
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 + + This is a byte oriented version of SHA2 that operates on arrays of bytes + stored in memory. This code implements sha256, sha384 and sha512 but the + latter two functions rely on efficient 64-bit integer operations that + may not be very efficient on 32-bit machines + + The sha256 functions use a type 'sha256_ctx' to hold details of the + current hash state and uses the following three calls: + + void sha256_begin(sha256_ctx ctx[1]) + void sha256_hash(const unsigned char data[], + unsigned long len, sha256_ctx ctx[1]) + void sha_end1(unsigned char hval[], sha256_ctx ctx[1]) + + The first subroutine initialises a hash computation by setting up the + context in the sha256_ctx context. The second subroutine hashes 8-bit + bytes from array data[] into the hash state withinh sha256_ctx context, + the number of bytes to be hashed being given by the the unsigned long + integer len. The third subroutine completes the hash calculation and + places the resulting digest value in the array of 8-bit bytes hval[]. + + The sha384 and sha512 functions are similar and use the interfaces: + + void sha384_begin(sha384_ctx ctx[1]); + void sha384_hash(const unsigned char data[], + unsigned long len, sha384_ctx ctx[1]); + void sha384_end(unsigned char hval[], sha384_ctx ctx[1]); + + void sha512_begin(sha512_ctx ctx[1]); + void sha512_hash(const unsigned char data[], + unsigned long len, sha512_ctx ctx[1]); + void sha512_end(unsigned char hval[], sha512_ctx ctx[1]); + + In addition there is a function sha2 that can be used to call all these + functions using a call with a hash length parameter as follows: + + int sha2_begin(unsigned long len, sha2_ctx ctx[1]); + void sha2_hash(const unsigned char data[], + unsigned long len, sha2_ctx ctx[1]); + void sha2_end(unsigned char hval[], sha2_ctx ctx[1]); + + My thanks to Erik Andersen <andersen@codepoet.org> for testing this code + on big-endian systems and for his assistance with corrections +*/ + +#include "Common/Endian.h" +#include "Crypto/misc.h" +#define PLATFORM_BYTE_ORDER BYTE_ORDER +#define IS_LITTLE_ENDIAN LITTLE_ENDIAN + +#if 0 +#define UNROLL_SHA2 /* for SHA2 loop unroll */ +#endif + +#include <string.h> /* for memcpy() etc. */ + +#include "Sha2.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#if defined( _MSC_VER ) && ( _MSC_VER > 800 ) +#pragma intrinsic(memcpy) +#endif + +#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN) +#define SWAP_BYTES +#else +#undef SWAP_BYTES +#endif + +#if 0 + +#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z))) +#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */ + +#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z)))) +#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y)))) + +#endif + +/* round transforms for SHA256 and SHA512 compression functions */ + +#define vf(n,i) v[(n - i) & 7] + +#define hf(i) (p[i & 15] += \ + g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15])) + +#define v_cycle(i,j) \ + vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \ + + s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \ + vf(3,i) += vf(7,i); \ + vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i)) + +#if defined(SHA_224) || defined(SHA_256) + +#define SHA256_MASK (SHA256_BLOCK_SIZE - 1) + +#if defined(SWAP_BYTES) +#define bsw_32(p,n) \ + { int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); } +#else +#define bsw_32(p,n) +#endif + +#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22)) +#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25)) +#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3)) +#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10)) +#define k_0 k256 + +/* rotated SHA256 round definition. Rather than swapping variables as in */ +/* FIPS-180, different variables are 'rotated' on each round, returning */ +/* to their starting positions every eight rounds */ + +#define q(n) v##n + +#define one_cycle(a,b,c,d,e,f,g,h,k,w) \ + q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \ + q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c)) + +/* SHA256 mixing data */ + +const uint_32t k256[64] = +{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul, + 0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul, + 0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul, + 0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul, + 0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul, + 0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul, + 0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul, + 0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul, + 0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul, + 0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul, + 0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul, + 0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul, + 0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul, + 0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul, + 0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul, + 0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul, +}; + +/* Compile 64 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha256_compile(sha256_ctx ctx[1]) +{ +#if !defined(UNROLL_SHA2) + + uint_32t j, *p = ctx->wbuf, v[8]; + + memcpy(v, ctx->hash, 8 * sizeof(uint_32t)); + + for(j = 0; j < 64; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; + +#else + + uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7; + + v0 = ctx->hash[0]; v1 = ctx->hash[1]; + v2 = ctx->hash[2]; v3 = ctx->hash[3]; + v4 = ctx->hash[4]; v5 = ctx->hash[5]; + v6 = ctx->hash[6]; v7 = ctx->hash[7]; + + one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]); + one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]); + one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]); + one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]); + one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]); + one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]); + one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]); + one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]); + one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]); + one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]); + one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]); + one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]); + one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]); + one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]); + one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]); + + one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15)); + + one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0)); + one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1)); + one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2)); + one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3)); + one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4)); + one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5)); + one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6)); + one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7)); + one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8)); + one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9)); + one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10)); + one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11)); + one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12)); + one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13)); + one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14)); + one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15)); + + ctx->hash[0] += v0; ctx->hash[1] += v1; + ctx->hash[2] += v2; ctx->hash[3] += v3; + ctx->hash[4] += v4; ctx->hash[5] += v5; + ctx->hash[6] += v6; ctx->hash[7] += v7; +#endif +} + +/* SHA256 hash data in an array of bytes into hash buffer */ +/* and call the hash_compile function as required. */ + +VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA256_MASK), + space = SHA256_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks while possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA256_BLOCK_SIZE; pos = 0; + bsw_32(ctx->wbuf, SHA256_BLOCK_SIZE >> 2) + sha256_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA256 Final padding and digest calculation */ + +static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA256_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_32(ctx->wbuf, (i + 3) >> 2) + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3); + ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3); + + /* we need 9 or more empty positions, one for the padding byte */ + /* (above) and eight for the length count. If there is not */ + /* enough space pad and empty the buffer */ + if(i > SHA256_BLOCK_SIZE - 9) + { + if(i < 60) ctx->wbuf[15] = 0; + sha256_compile(ctx); + i = 0; + } + else /* compute a word index for the empty buffer positions */ + i = (i >> 2) + 1; + + while(i < 14) /* and zero pad all but last two positions */ + ctx->wbuf[i++] = 0; + + /* the following 32-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 32-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29); + ctx->wbuf[15] = ctx->count[0] << 3; + sha256_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* mislaigned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3))); +} + +#endif + +#if defined(SHA_224) + +const uint_32t i224[8] = +{ + 0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul, + 0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul +}; + +VOID_RETURN sha224_begin(sha224_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i224, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA224_DIGEST_SIZE); +} + +VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha224_ctx cx[1]; + + sha224_begin(cx); + sha224_hash(data, len, cx); + sha_end1(hval, cx, SHA224_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_256) + +const uint_32t i256[8] = +{ + 0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul, + 0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul +}; + +VOID_RETURN sha256_begin(sha256_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i256, 8 * sizeof(uint_32t)); +} + +VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]) +{ + sha_end1(hval, ctx, SHA256_DIGEST_SIZE); +} + +VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha256_ctx cx[1]; + + sha256_begin(cx); + sha256_hash(data, len, cx); + sha_end1(hval, cx, SHA256_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_384) || defined(SHA_512) + +#define SHA512_MASK (SHA512_BLOCK_SIZE - 1) + +#if defined(SWAP_BYTES) +#define bsw_64(p,n) \ + { int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); } +#else +#define bsw_64(p,n) +#endif + +/* SHA512 mixing function definitions */ + +#ifdef s_0 +# undef s_0 +# undef s_1 +# undef g_0 +# undef g_1 +# undef k_0 +#endif + +#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) +#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) +#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) +#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) +#define k_0 k512 + +/* SHA384/SHA512 mixing data */ + +const uint_64t k512[80] = +{ + li_64(428a2f98d728ae22), li_64(7137449123ef65cd), + li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc), + li_64(3956c25bf348b538), li_64(59f111f1b605d019), + li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118), + li_64(d807aa98a3030242), li_64(12835b0145706fbe), + li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2), + li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1), + li_64(9bdc06a725c71235), li_64(c19bf174cf692694), + li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3), + li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65), + li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483), + li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5), + li_64(983e5152ee66dfab), li_64(a831c66d2db43210), + li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4), + li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725), + li_64(06ca6351e003826f), li_64(142929670a0e6e70), + li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926), + li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df), + li_64(650a73548baf63de), li_64(766a0abb3c77b2a8), + li_64(81c2c92e47edaee6), li_64(92722c851482353b), + li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001), + li_64(c24b8b70d0f89791), li_64(c76c51a30654be30), + li_64(d192e819d6ef5218), li_64(d69906245565a910), + li_64(f40e35855771202a), li_64(106aa07032bbd1b8), + li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53), + li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8), + li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb), + li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3), + li_64(748f82ee5defb2fc), li_64(78a5636f43172f60), + li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec), + li_64(90befffa23631e28), li_64(a4506cebde82bde9), + li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b), + li_64(ca273eceea26619c), li_64(d186b8c721c0c207), + li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178), + li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6), + li_64(113f9804bef90dae), li_64(1b710b35131c471b), + li_64(28db77f523047d84), li_64(32caab7b40c72493), + li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c), + li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a), + li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817) +}; + +/* Compile 128 bytes of hash data into SHA384/512 digest */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is such that low address bytes */ +/* in the ORIGINAL byte stream will go into the high end of */ +/* words on BOTH big and little endian systems */ + +VOID_RETURN sha512_compile(sha512_ctx ctx[1]) +{ uint_64t v[8], *p = ctx->wbuf; + uint_32t j; + + memcpy(v, ctx->hash, 8 * sizeof(uint_64t)); + + for(j = 0; j < 80; j += 16) + { + v_cycle( 0, j); v_cycle( 1, j); + v_cycle( 2, j); v_cycle( 3, j); + v_cycle( 4, j); v_cycle( 5, j); + v_cycle( 6, j); v_cycle( 7, j); + v_cycle( 8, j); v_cycle( 9, j); + v_cycle(10, j); v_cycle(11, j); + v_cycle(12, j); v_cycle(13, j); + v_cycle(14, j); v_cycle(15, j); + } + + ctx->hash[0] += v[0]; ctx->hash[1] += v[1]; + ctx->hash[2] += v[2]; ctx->hash[3] += v[3]; + ctx->hash[4] += v[4]; ctx->hash[5] += v[5]; + ctx->hash[6] += v[6]; ctx->hash[7] += v[7]; +} + +/* Compile 128 bytes of hash data into SHA256 digest value */ +/* NOTE: this routine assumes that the byte order in the */ +/* ctx->wbuf[] at this point is in such an order that low */ +/* address bytes in the ORIGINAL byte stream placed in this */ +/* buffer will now go to the high end of words on BOTH big */ +/* and little endian systems */ + +VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]) +{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA512_MASK), + space = SHA512_BLOCK_SIZE - pos; + const unsigned char *sp = data; + + if((ctx->count[0] += len) < len) + ++(ctx->count[1]); + + while(len >= space) /* tranfer whole blocks while possible */ + { + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space); + sp += space; len -= space; space = SHA512_BLOCK_SIZE; pos = 0; + bsw_64(ctx->wbuf, SHA512_BLOCK_SIZE >> 3); + sha512_compile(ctx); + } + + memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len); +} + +/* SHA384/512 Final padding and digest calculation */ + +static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen) +{ uint_32t i = (uint_32t)(ctx->count[0] & SHA512_MASK); + + /* put bytes in the buffer in an order in which references to */ + /* 32-bit words will put bytes with lower addresses into the */ + /* top of 32 bit words on BOTH big and little endian machines */ + bsw_64(ctx->wbuf, (i + 7) >> 3); + + /* we now need to mask valid bytes and add the padding which is */ + /* a single 1 bit and as many zero bits as necessary. Note that */ + /* we can always add the first padding byte here because the */ + /* buffer always has at least one empty slot */ + ctx->wbuf[i >> 3] &= li_64(ffffffffffffff00) << 8 * (~i & 7); + ctx->wbuf[i >> 3] |= li_64(0000000000000080) << 8 * (~i & 7); + + /* we need 17 or more empty byte positions, one for the padding */ + /* byte (above) and sixteen for the length count. If there is */ + /* not enough space pad and empty the buffer */ + if(i > SHA512_BLOCK_SIZE - 17) + { + if(i < 120) ctx->wbuf[15] = 0; + sha512_compile(ctx); + i = 0; + } + else + i = (i >> 3) + 1; + + while(i < 14) + ctx->wbuf[i++] = 0; + + /* the following 64-bit length fields are assembled in the */ + /* wrong byte order on little endian machines but this is */ + /* corrected later since they are only ever used as 64-bit */ + /* word values. */ + ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 61); + ctx->wbuf[15] = ctx->count[0] << 3; + sha512_compile(ctx); + + /* extract the hash value as bytes in case the hash buffer is */ + /* misaligned for 32-bit words */ + for(i = 0; i < hlen; ++i) + hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7))); +} + +#endif + +#if defined(SHA_384) + +/* SHA384 initialisation data */ + +const uint_64t i384[80] = +{ + li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507), + li_64(9159015a3070dd17), li_64(152fecd8f70e5939), + li_64(67332667ffc00b31), li_64(8eb44a8768581511), + li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4) +}; + +VOID_RETURN sha384_begin(sha384_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i384, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA384_DIGEST_SIZE); +} + +VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha384_ctx cx[1]; + + sha384_begin(cx); + sha384_hash(data, len, cx); + sha_end2(hval, cx, SHA384_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_512) + +/* SHA512 initialisation data */ + +const uint_64t i512[80] = +{ + li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b), + li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1), + li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f), + li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179) +}; + +VOID_RETURN sha512_begin(sha512_ctx ctx[1]) +{ + ctx->count[0] = ctx->count[1] = 0; + memcpy(ctx->hash, i512, 8 * sizeof(uint_64t)); +} + +VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]) +{ + sha_end2(hval, ctx, SHA512_DIGEST_SIZE); +} + +VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len) +{ sha512_ctx cx[1]; + + sha512_begin(cx); + sha512_hash(data, len, cx); + sha_end2(hval, cx, SHA512_DIGEST_SIZE); +} + +#endif + +#if defined(SHA_2) + +#define CTX_224(x) ((x)->uu->ctx256) +#define CTX_256(x) ((x)->uu->ctx256) +#define CTX_384(x) ((x)->uu->ctx512) +#define CTX_512(x) ((x)->uu->ctx512) + +/* SHA2 initialisation */ + +INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1]) +{ + switch(len) + { +#if defined(SHA_224) + case 224: + case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i224, 32); + ctx->sha2_len = 28; return EXIT_SUCCESS; +#endif +#if defined(SHA_256) + case 256: + case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0; + memcpy(CTX_256(ctx)->hash, i256, 32); + ctx->sha2_len = 32; return EXIT_SUCCESS; +#endif +#if defined(SHA_384) + case 384: + case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0; + memcpy(CTX_384(ctx)->hash, i384, 64); + ctx->sha2_len = 48; return EXIT_SUCCESS; +#endif +#if defined(SHA_512) + case 512: + case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0; + memcpy(CTX_512(ctx)->hash, i512, 64); + ctx->sha2_len = 64; return EXIT_SUCCESS; +#endif + default: return EXIT_FAILURE; + } +} + +VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha224_hash(data, len, CTX_224(ctx)); return; +#endif +#if defined(SHA_256) + case 32: sha256_hash(data, len, CTX_256(ctx)); return; +#endif +#if defined(SHA_384) + case 48: sha384_hash(data, len, CTX_384(ctx)); return; +#endif +#if defined(SHA_512) + case 64: sha512_hash(data, len, CTX_512(ctx)); return; +#endif + } +} + +VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]) +{ + switch(ctx->sha2_len) + { +#if defined(SHA_224) + case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return; +#endif +#if defined(SHA_256) + case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return; +#endif +#if defined(SHA_384) + case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return; +#endif +#if defined(SHA_512) + case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return; +#endif + } +} + +INT_RETURN sha2(unsigned char hval[], unsigned long size, + const unsigned char data[], unsigned long len) +{ sha2_ctx cx[1]; + + if(sha2_begin(size, cx) == EXIT_SUCCESS) + { + sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS; + } + else + return EXIT_FAILURE; +} + +#endif + +#if defined(__cplusplus) +} +#endif diff --git a/src/Crypto/Sha2.h b/src/Crypto/Sha2.h index 64379d17..6d0aeb0f 100644 --- a/src/Crypto/Sha2.h +++ b/src/Crypto/Sha2.h @@ -1,155 +1,155 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 01/08/2005
-*/
-
-#ifndef _SHA2_H
-#define _SHA2_H
-
-#include "Common/Tcdefs.h"
-#include "Common/Endian.h"
-
-#define SHA_64BIT
-
-/* define the hash functions that you need */
-#define SHA_2 /* for dynamic hash length */
-#define SHA_224
-#define SHA_256
-#ifdef SHA_64BIT
-# define SHA_384
-# define SHA_512
-# define NEED_UINT_64T
-#endif
-
-#ifndef EXIT_SUCCESS
-#define EXIT_SUCCESS 0
-#define EXIT_FAILURE 1
-#endif
-
-#define li_64(h) 0x##h##ull
-
-#define VOID_RETURN void
-#define INT_RETURN int
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-/* Note that the following function prototypes are the same */
-/* for both the bit and byte oriented implementations. But */
-/* the length fields are in bytes or bits as is appropriate */
-/* for the version used. Bit sequences are arrays of bytes */
-/* in which bit sequence indexes increase from the most to */
-/* the least significant end of each byte */
-
-#define SHA224_DIGEST_SIZE 28
-#define SHA224_BLOCK_SIZE 64
-#define SHA256_DIGEST_SIZE 32
-#define SHA256_BLOCK_SIZE 64
-
-/* type to hold the SHA256 (and SHA224) context */
-
-typedef struct
-{ uint_32t count[2];
- uint_32t hash[8];
- uint_32t wbuf[16];
-} sha256_ctx;
-
-typedef sha256_ctx sha224_ctx;
-
-VOID_RETURN sha256_compile(sha256_ctx ctx[1]);
-
-VOID_RETURN sha224_begin(sha224_ctx ctx[1]);
-#define sha224_hash sha256_hash
-VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]);
-VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len);
-
-VOID_RETURN sha256_begin(sha256_ctx ctx[1]);
-VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]);
-VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]);
-VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len);
-
-#ifndef SHA_64BIT
-
-typedef struct
-{ union
- { sha256_ctx ctx256[1];
- } uu[1];
- uint_32t sha2_len;
-} sha2_ctx;
-
-#define SHA2_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE
-
-#else
-
-#define SHA384_DIGEST_SIZE 48
-#define SHA384_BLOCK_SIZE 128
-#define SHA512_DIGEST_SIZE 64
-#define SHA512_BLOCK_SIZE 128
-#define SHA2_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE
-
-/* type to hold the SHA384 (and SHA512) context */
-
-typedef struct
-{ uint_64t count[2];
- uint_64t hash[8];
- uint_64t wbuf[16];
-} sha512_ctx;
-
-typedef sha512_ctx sha384_ctx;
-
-typedef struct
-{ union
- { sha256_ctx ctx256[1];
- sha512_ctx ctx512[1];
- } uu[1];
- uint_32t sha2_len;
-} sha2_ctx;
-
-VOID_RETURN sha512_compile(sha512_ctx ctx[1]);
-
-VOID_RETURN sha384_begin(sha384_ctx ctx[1]);
-#define sha384_hash sha512_hash
-VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
-VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len);
-
-VOID_RETURN sha512_begin(sha512_ctx ctx[1]);
-VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]);
-VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
-VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len);
-
-INT_RETURN sha2_begin(unsigned long size, sha2_ctx ctx[1]);
-VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]);
-VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
-INT_RETURN sha2(unsigned char hval[], unsigned long size, const unsigned char data[], unsigned long len);
-
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 01/08/2005 +*/ + +#ifndef _SHA2_H +#define _SHA2_H + +#include "Common/Tcdefs.h" +#include "Common/Endian.h" + +#define SHA_64BIT + +/* define the hash functions that you need */ +#define SHA_2 /* for dynamic hash length */ +#define SHA_224 +#define SHA_256 +#ifdef SHA_64BIT +# define SHA_384 +# define SHA_512 +# define NEED_UINT_64T +#endif + +#ifndef EXIT_SUCCESS +#define EXIT_SUCCESS 0 +#define EXIT_FAILURE 1 +#endif + +#define li_64(h) 0x##h##ull + +#define VOID_RETURN void +#define INT_RETURN int + +#if defined(__cplusplus) +extern "C" +{ +#endif + +/* Note that the following function prototypes are the same */ +/* for both the bit and byte oriented implementations. But */ +/* the length fields are in bytes or bits as is appropriate */ +/* for the version used. Bit sequences are arrays of bytes */ +/* in which bit sequence indexes increase from the most to */ +/* the least significant end of each byte */ + +#define SHA224_DIGEST_SIZE 28 +#define SHA224_BLOCK_SIZE 64 +#define SHA256_DIGEST_SIZE 32 +#define SHA256_BLOCK_SIZE 64 + +/* type to hold the SHA256 (and SHA224) context */ + +typedef struct +{ uint_32t count[2]; + uint_32t hash[8]; + uint_32t wbuf[16]; +} sha256_ctx; + +typedef sha256_ctx sha224_ctx; + +VOID_RETURN sha256_compile(sha256_ctx ctx[1]); + +VOID_RETURN sha224_begin(sha224_ctx ctx[1]); +#define sha224_hash sha256_hash +VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1]); +VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len); + +VOID_RETURN sha256_begin(sha256_ctx ctx[1]); +VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1]); +VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1]); +VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len); + +#ifndef SHA_64BIT + +typedef struct +{ union + { sha256_ctx ctx256[1]; + } uu[1]; + uint_32t sha2_len; +} sha2_ctx; + +#define SHA2_MAX_DIGEST_SIZE SHA256_DIGEST_SIZE + +#else + +#define SHA384_DIGEST_SIZE 48 +#define SHA384_BLOCK_SIZE 128 +#define SHA512_DIGEST_SIZE 64 +#define SHA512_BLOCK_SIZE 128 +#define SHA2_MAX_DIGEST_SIZE SHA512_DIGEST_SIZE + +/* type to hold the SHA384 (and SHA512) context */ + +typedef struct +{ uint_64t count[2]; + uint_64t hash[8]; + uint_64t wbuf[16]; +} sha512_ctx; + +typedef sha512_ctx sha384_ctx; + +typedef struct +{ union + { sha256_ctx ctx256[1]; + sha512_ctx ctx512[1]; + } uu[1]; + uint_32t sha2_len; +} sha2_ctx; + +VOID_RETURN sha512_compile(sha512_ctx ctx[1]); + +VOID_RETURN sha384_begin(sha384_ctx ctx[1]); +#define sha384_hash sha512_hash +VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1]); +VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len); + +VOID_RETURN sha512_begin(sha512_ctx ctx[1]); +VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1]); +VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1]); +VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len); + +INT_RETURN sha2_begin(unsigned long size, sha2_ctx ctx[1]); +VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1]); +VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1]); +INT_RETURN sha2(unsigned char hval[], unsigned long size, const unsigned char data[], unsigned long len); + +#endif + +#if defined(__cplusplus) +} +#endif + +#endif diff --git a/src/Crypto/Sha2Small.c b/src/Crypto/Sha2Small.c index 9acd1b83..539ff05d 100644 --- a/src/Crypto/Sha2Small.c +++ b/src/Crypto/Sha2Small.c @@ -10,237 +10,237 @@ * */ -/* Adapted for VeraCrypt */
-
-#include <memory.h>
-#include "Common/Tcdefs.h"
-#include "Common/Endian.h"
-#include "Sha2Small.h"
-
-#pragma optimize ("tl", on)
-
-typedef unsigned __int32 uint32;
-typedef unsigned __int8 byte;
-
-#include <stdlib.h>
-#pragma intrinsic(_lrotr)
-#define RORc(x,n) _lrotr(x,n)
-
-/******************************************************************************/
-
-/*
- The K array
- */
-
-static const uint32 K[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
- 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
- 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
- 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
- 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
- 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
- 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
- 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
- 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
- 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
-};
-
-/*
- Various logical functions
- */
-#define Ch(x,y,z) (z ^ (x & (y ^ z)))
-#define Maj(x,y,z) (((x | y) & z) | (x & y))
-#define S(x, n) RORc((x),(n))
-#define R(x, n) ((x)>>(n))
-#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
-#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
-#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
-#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
-
-#define STORE32H(x, y, i) { \
-(y)[i] = (unsigned char)(((x)>>24)); \
-(y)[i+1] = (unsigned char)(((x)>>16)); \
-(y)[i+2] = (unsigned char)(((x)>>8)); \
-(y)[i+3] = (unsigned char)((x)); \
-}
-
-#define LOAD32H(x, y, i) { \
-x = ((unsigned long)((y)[i])<<24) | \
-((unsigned long)((y)[i+1])<<16) | \
-((unsigned long)((y)[i+2])<<8) | \
-((unsigned long)((y)[i+3])); \
-}
-
-/*
- compress 512-bits
- */
-static void sha256_compress(sha256_ctx * ctx, unsigned char *buf)
-{
-
- uint32 S[8], W[64], t0, t1;
- uint32 t, w2, w15;
- int i;
-
-/*
- copy state into S
- */
- for (i = 0; i < 8; i++) {
- S[i] = ctx->state[i];
- }
-
-/*
- copy the state into 512-bits into W[0..15]
- */
- for (i = 0; i < 16; i++) {
- LOAD32H(W[i], buf , (4*i));
- }
-
-/*
- fill W[16..63]
- */
- for (i = 16; i < 64; i++) {
- w2 = W[i - 2];
- w15 = W[i - 15];
- W[i] = Gamma1(w2) + W[i - 7] + Gamma0(w15) + W[i - 16];
- }
-
-/*
- Compress
- */
-
-#define RND(a,b,c,d,e,f,g,h,i) \
- t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
- t1 = Sigma0(a) + Maj(a, b, c); \
- d += t0; \
- h = t0 + t1;
-
- for (i = 0; i < 64; ++i) {
- RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
- t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
- S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
- }
-
-/*
- feedback
- */
- for (i = 0; i < 8; i++) {
- ctx->state[i] += S[i];
- }
-
-}
-
-/*
- init the sha256 state
- */
-VOID_RETURN sha256_begin(sha256_ctx* ctx)
-{
- ctx->curlen = 0;
- ctx->state[0] = 0x6A09E667UL;
- ctx->state[1] = 0xBB67AE85UL;
- ctx->state[2] = 0x3C6EF372UL;
- ctx->state[3] = 0xA54FF53AUL;
- ctx->state[4] = 0x510E527FUL;
- ctx->state[5] = 0x9B05688CUL;
- ctx->state[6] = 0x1F83D9ABUL;
- ctx->state[7] = 0x5BE0CD19UL;
- ctx->highLength = 0;
- ctx->lowLength = 0;
-}
-
-VOID_RETURN sha256_hash(unsigned char* data, unsigned int len, sha256_ctx* ctx)
-{
- uint32 n;
- while (len > 0) {
- if (ctx->curlen == 0 && len >= 64) {
- sha256_compress(ctx, (unsigned char *)data);
-
- n = ctx->lowLength + 512;
- if (n < ctx->lowLength) {
- ctx->highLength++;
- }
- ctx->lowLength = n;
- data += 64;
- len -= 64;
- } else {
- n = min(len, 64 - ctx->curlen);
- memcpy(ctx->buf + ctx->curlen, data, (size_t)n);
- ctx->curlen += (unsigned int) n;
- data += (unsigned int) n;
- len -= (unsigned int) n;
-
- if (ctx->curlen == 64) {
- sha256_compress (ctx, ctx->buf);
-
- n = ctx->lowLength + 512;
- if (n < ctx->lowLength) {
- ctx->highLength++;
- }
- ctx->lowLength = n;
- ctx->curlen = 0;
- }
- }
- }
- return;
-}
-
-VOID_RETURN sha256_end(unsigned char* hval, sha256_ctx* ctx)
-{
- int i;
- uint32 n;
-
-/*
- increase the length of the message
- */
-
- n = ctx->lowLength + (ctx->curlen << 3);
- if (n < ctx->lowLength) {
- ctx->highLength++;
- }
- ctx->highLength += (ctx->curlen >> 29);
- ctx->lowLength = n;
-
-/*
- append the '1' bit
- */
- ctx->buf[ctx->curlen++] = (unsigned char)0x80;
-
-/*
- if the length is currently above 56 bytes we append zeros then compress.
- Then we can fall back to padding zeros and length encoding like normal.
- */
- if (ctx->curlen > 56) {
- while (ctx->curlen < 64) {
- ctx->buf[ctx->curlen++] = (unsigned char)0;
- }
- sha256_compress(ctx, ctx->buf);
- ctx->curlen = 0;
- }
-
-/*
- pad upto 56 bytes of zeroes
- */
- while (ctx->curlen < 56) {
- ctx->buf[ctx->curlen++] = (unsigned char)0;
- }
-
-/*
- store length
- */
-
- STORE32H(ctx->highLength, ctx->buf, 56);
- STORE32H(ctx->lowLength, ctx->buf, 60);
-
- sha256_compress(ctx, ctx->buf);
-
-/*
- copy output
- */
- for (i = 0; i < 8; i++) {
- STORE32H(ctx->state[i], hval, (4*i));
- }
-}
-
-/******************************************************************************/
+/* Adapted for VeraCrypt */ + +#include <memory.h> +#include "Common/Tcdefs.h" +#include "Common/Endian.h" +#include "Sha2Small.h" + +#pragma optimize ("tl", on) + +typedef unsigned __int32 uint32; +typedef unsigned __int8 byte; + +#include <stdlib.h> +#pragma intrinsic(_lrotr) +#define RORc(x,n) _lrotr(x,n) + +/******************************************************************************/ + +/* + The K array + */ + +static const uint32 K[64] = { + 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, + 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, + 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, + 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, + 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, + 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, + 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, + 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, + 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, + 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, + 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, + 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, + 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL +}; + +/* + Various logical functions + */ +#define Ch(x,y,z) (z ^ (x & (y ^ z))) +#define Maj(x,y,z) (((x | y) & z) | (x & y)) +#define S(x, n) RORc((x),(n)) +#define R(x, n) ((x)>>(n)) +#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) +#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) +#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) +#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) + +#define STORE32H(x, y, i) { \ +(y)[i] = (unsigned char)(((x)>>24)); \ +(y)[i+1] = (unsigned char)(((x)>>16)); \ +(y)[i+2] = (unsigned char)(((x)>>8)); \ +(y)[i+3] = (unsigned char)((x)); \ +} + +#define LOAD32H(x, y, i) { \ +x = ((unsigned long)((y)[i])<<24) | \ +((unsigned long)((y)[i+1])<<16) | \ +((unsigned long)((y)[i+2])<<8) | \ +((unsigned long)((y)[i+3])); \ +} + +/* + compress 512-bits + */ +static void sha256_compress(sha256_ctx * ctx, unsigned char *buf) +{ + + uint32 S[8], W[64], t0, t1; + uint32 t, w2, w15; + int i; + +/* + copy state into S + */ + for (i = 0; i < 8; i++) { + S[i] = ctx->state[i]; + } + +/* + copy the state into 512-bits into W[0..15] + */ + for (i = 0; i < 16; i++) { + LOAD32H(W[i], buf , (4*i)); + } + +/* + fill W[16..63] + */ + for (i = 16; i < 64; i++) { + w2 = W[i - 2]; + w15 = W[i - 15]; + W[i] = Gamma1(w2) + W[i - 7] + Gamma0(w15) + W[i - 16]; + } + +/* + Compress + */ + +#define RND(a,b,c,d,e,f,g,h,i) \ + t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ + t1 = Sigma0(a) + Maj(a, b, c); \ + d += t0; \ + h = t0 + t1; + + for (i = 0; i < 64; ++i) { + RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); + t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; + S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; + } + +/* + feedback + */ + for (i = 0; i < 8; i++) { + ctx->state[i] += S[i]; + } + +} + +/* + init the sha256 state + */ +VOID_RETURN sha256_begin(sha256_ctx* ctx) +{ + ctx->curlen = 0; + ctx->state[0] = 0x6A09E667UL; + ctx->state[1] = 0xBB67AE85UL; + ctx->state[2] = 0x3C6EF372UL; + ctx->state[3] = 0xA54FF53AUL; + ctx->state[4] = 0x510E527FUL; + ctx->state[5] = 0x9B05688CUL; + ctx->state[6] = 0x1F83D9ABUL; + ctx->state[7] = 0x5BE0CD19UL; + ctx->highLength = 0; + ctx->lowLength = 0; +} + +VOID_RETURN sha256_hash(unsigned char* data, unsigned int len, sha256_ctx* ctx) +{ + uint32 n; + while (len > 0) { + if (ctx->curlen == 0 && len >= 64) { + sha256_compress(ctx, (unsigned char *)data); + + n = ctx->lowLength + 512; + if (n < ctx->lowLength) { + ctx->highLength++; + } + ctx->lowLength = n; + data += 64; + len -= 64; + } else { + n = min(len, 64 - ctx->curlen); + memcpy(ctx->buf + ctx->curlen, data, (size_t)n); + ctx->curlen += (unsigned int) n; + data += (unsigned int) n; + len -= (unsigned int) n; + + if (ctx->curlen == 64) { + sha256_compress (ctx, ctx->buf); + + n = ctx->lowLength + 512; + if (n < ctx->lowLength) { + ctx->highLength++; + } + ctx->lowLength = n; + ctx->curlen = 0; + } + } + } + return; +} + +VOID_RETURN sha256_end(unsigned char* hval, sha256_ctx* ctx) +{ + int i; + uint32 n; + +/* + increase the length of the message + */ + + n = ctx->lowLength + (ctx->curlen << 3); + if (n < ctx->lowLength) { + ctx->highLength++; + } + ctx->highLength += (ctx->curlen >> 29); + ctx->lowLength = n; + +/* + append the '1' bit + */ + ctx->buf[ctx->curlen++] = (unsigned char)0x80; + +/* + if the length is currently above 56 bytes we append zeros then compress. + Then we can fall back to padding zeros and length encoding like normal. + */ + if (ctx->curlen > 56) { + while (ctx->curlen < 64) { + ctx->buf[ctx->curlen++] = (unsigned char)0; + } + sha256_compress(ctx, ctx->buf); + ctx->curlen = 0; + } + +/* + pad upto 56 bytes of zeroes + */ + while (ctx->curlen < 56) { + ctx->buf[ctx->curlen++] = (unsigned char)0; + } + +/* + store length + */ + + STORE32H(ctx->highLength, ctx->buf, 56); + STORE32H(ctx->lowLength, ctx->buf, 60); + + sha256_compress(ctx, ctx->buf); + +/* + copy output + */ + for (i = 0; i < 8; i++) { + STORE32H(ctx->state[i], hval, (4*i)); + } +} + +/******************************************************************************/ diff --git a/src/Crypto/Sha2Small.h b/src/Crypto/Sha2Small.h index 2b79eaf4..1b5c106e 100644 --- a/src/Crypto/Sha2Small.h +++ b/src/Crypto/Sha2Small.h @@ -12,21 +12,21 @@ /* Adapted for VeraCrypt */ -#ifndef _SHA2_SMALL_H
+#ifndef _SHA2_SMALL_H #define _SHA2_SMALL_H -#include "Common/Tcdefs.h"
+#include "Common/Tcdefs.h" #include "Common/Endian.h" -#define SHA256_DIGEST_SIZE 32
+#define SHA256_DIGEST_SIZE 32 #define SHA256_BLOCK_SIZE 64 -#define VOID_RETURN void
-#define INT_RETURN int
-
-#if defined(__cplusplus)
-extern "C"
-{
+#define VOID_RETURN void +#define INT_RETURN int + +#if defined(__cplusplus) +extern "C" +{ #endif typedef struct { @@ -40,12 +40,12 @@ typedef struct { /******************************************************************************/ -VOID_RETURN sha256_begin(sha256_ctx* ctx);
-VOID_RETURN sha256_hash(unsigned char* data, unsigned int len, sha256_ctx* ctx);
+VOID_RETURN sha256_begin(sha256_ctx* ctx); +VOID_RETURN sha256_hash(unsigned char* data, unsigned int len, sha256_ctx* ctx); VOID_RETURN sha256_end(unsigned char* hval, sha256_ctx* ctx); -#if defined(__cplusplus)
-}
+#if defined(__cplusplus) +} #endif /******************************************************************************/ diff --git a/src/Crypto/Sources b/src/Crypto/Sources index 9b1b988c..6eb7b7b4 100644 --- a/src/Crypto/Sources +++ b/src/Crypto/Sources @@ -1,20 +1,20 @@ -TARGETNAME=Crypto
-TARGETTYPE=DRIVER_LIBRARY
-
-INCLUDES = ..
-
-NTTARGETFILES = \
- "$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).obj" \
- "$(OBJ_PATH)\$(O)\Aes_hw_cpu.obj"
-
-SOURCES = \
- Aes_$(TC_ARCH).asm \
- Aes_hw_cpu.asm \
- Aeskey.c \
- Aestab.c \
- cpu.c \
- Rmd160.c \
- Serpent.c \
- Sha2.c \
- Twofish.c \
- Whirlpool.c
+TARGETNAME=Crypto +TARGETTYPE=DRIVER_LIBRARY + +INCLUDES = .. + +NTTARGETFILES = \ + "$(OBJ_PATH)\$(O)\Aes_$(TC_ARCH).obj" \ + "$(OBJ_PATH)\$(O)\Aes_hw_cpu.obj" + +SOURCES = \ + Aes_$(TC_ARCH).asm \ + Aes_hw_cpu.asm \ + Aeskey.c \ + Aestab.c \ + cpu.c \ + Rmd160.c \ + Serpent.c \ + Sha2.c \ + Twofish.c \ + Whirlpool.c diff --git a/src/Crypto/Twofish.c b/src/Crypto/Twofish.c index 2273ac5e..7c58c91e 100644 --- a/src/Crypto/Twofish.c +++ b/src/Crypto/Twofish.c @@ -1,549 +1,549 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1999, Dr Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
-
- My thanks to Doug Whiting and Niels Ferguson for comments that led
- to improvements in this implementation.
-
- Issue Date: 14th January 1999
-*/
-
-/* Adapted for TrueCrypt */
-/* Adapted for VeraCrypt */
-
-
-#ifdef TC_WINDOWS_BOOT
-#pragma optimize ("tl", on)
-#endif
-
-#include "Twofish.h"
-#include "Common/Endian.h"
-
-#define Q_TABLES
-#define M_TABLE
-
-#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH)
-# define MK_TABLE
-# define ONE_STEP
-#endif
-
-/* finite field arithmetic for GF(2**8) with the modular */
-/* polynomial x^8 + x^6 + x^5 + x^3 + 1 (0x169) */
-
-#define G_M 0x0169
-
-static u1byte tab_5b[4] = { 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) };
-static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };
-
-#define ffm_01(x) (x)
-#define ffm_5b(x) ((x) ^ ((x) >> 2) ^ tab_5b[(x) & 3])
-#define ffm_ef(x) ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef[(x) & 3])
-
-static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 };
-static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 };
-
-static u1byte qt0[2][16] =
-{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },
- { 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
-};
-
-static u1byte qt1[2][16] =
-{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 },
- { 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
-};
-
-static u1byte qt2[2][16] =
-{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },
- { 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
-};
-
-static u1byte qt3[2][16] =
-{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },
- { 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
-};
-
-static u1byte qp(const u4byte n, const u1byte x)
-{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4;
-
- a0 = x >> 4; b0 = x & 15;
- a1 = a0 ^ b0; b1 = ror4[b0] ^ ashx[a0];
- a2 = qt0[n][a1]; b2 = qt1[n][b1];
- a3 = a2 ^ b2; b3 = ror4[b2] ^ ashx[a2];
- a4 = qt2[n][a3]; b4 = qt3[n][b3];
- return (b4 << 4) | a4;
-};
-
-#ifdef Q_TABLES
-
-static u4byte qt_gen = 0;
-static u1byte q_tab[2][256];
-
-#define q(n,x) q_tab[n][x]
-
-static void gen_qtab(void)
-{ u4byte i;
-
- for(i = 0; i < 256; ++i)
- {
- q(0,i) = qp(0, (u1byte)i);
- q(1,i) = qp(1, (u1byte)i);
- }
-};
-
-#else
-
-#define q(n,x) qp(n, x)
-
-#endif
-
-#ifdef M_TABLE
-
-static u4byte mt_gen = 0;
-static u4byte m_tab[4][256];
-
-static void gen_mtab(void)
-{ u4byte i, f01, f5b, fef;
-
- for(i = 0; i < 256; ++i)
- {
- f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
- m_tab[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24);
- m_tab[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24);
-
- f01 = q(0,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
- m_tab[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24);
- m_tab[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24);
- }
-};
-
-#define mds(n,x) m_tab[n][x]
-
-#else
-
-#define fm_00 ffm_01
-#define fm_10 ffm_5b
-#define fm_20 ffm_ef
-#define fm_30 ffm_ef
-#define q_0(x) q(1,x)
-
-#define fm_01 ffm_ef
-#define fm_11 ffm_ef
-#define fm_21 ffm_5b
-#define fm_31 ffm_01
-#define q_1(x) q(0,x)
-
-#define fm_02 ffm_5b
-#define fm_12 ffm_ef
-#define fm_22 ffm_01
-#define fm_32 ffm_ef
-#define q_2(x) q(1,x)
-
-#define fm_03 ffm_5b
-#define fm_13 ffm_01
-#define fm_23 ffm_ef
-#define fm_33 ffm_5b
-#define q_3(x) q(0,x)
-
-#define f_0(n,x) ((u4byte)fm_0##n(x))
-#define f_1(n,x) ((u4byte)fm_1##n(x) << 8)
-#define f_2(n,x) ((u4byte)fm_2##n(x) << 16)
-#define f_3(n,x) ((u4byte)fm_3##n(x) << 24)
-
-#define mds(n,x) f_0(n,q_##n(x)) ^ f_1(n,q_##n(x)) ^ f_2(n,q_##n(x)) ^ f_3(n,q_##n(x))
-
-#endif
-
-static u4byte h_fun(TwofishInstance *instance, const u4byte x, const u4byte key[])
-{ u4byte b0, b1, b2, b3;
-
-#ifndef M_TABLE
- u4byte m5b_b0, m5b_b1, m5b_b2, m5b_b3;
- u4byte mef_b0, mef_b1, mef_b2, mef_b3;
-#endif
-
- b0 = extract_byte(x, 0); b1 = extract_byte(x, 1); b2 = extract_byte(x, 2); b3 = extract_byte(x, 3);
-
- switch(instance->k_len)
- {
- case 4: b0 = q(1, (u1byte) b0) ^ extract_byte(key[3],0);
- b1 = q(0, (u1byte) b1) ^ extract_byte(key[3],1);
- b2 = q(0, (u1byte) b2) ^ extract_byte(key[3],2);
- b3 = q(1, (u1byte) b3) ^ extract_byte(key[3],3);
- case 3: b0 = q(1, (u1byte) b0) ^ extract_byte(key[2],0);
- b1 = q(1, (u1byte) b1) ^ extract_byte(key[2],1);
- b2 = q(0, (u1byte) b2) ^ extract_byte(key[2],2);
- b3 = q(0, (u1byte) b3) ^ extract_byte(key[2],3);
- case 2: b0 = q(0, (u1byte) (q(0, (u1byte) b0) ^ extract_byte(key[1],0))) ^ extract_byte(key[0],0);
- b1 = q(0, (u1byte) (q(1, (u1byte) b1) ^ extract_byte(key[1],1))) ^ extract_byte(key[0],1);
- b2 = q(1, (u1byte) (q(0, (u1byte) b2) ^ extract_byte(key[1],2))) ^ extract_byte(key[0],2);
- b3 = q(1, (u1byte) (q(1, (u1byte) b3) ^ extract_byte(key[1],3))) ^ extract_byte(key[0],3);
- }
-#ifdef M_TABLE
-
- return mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3);
-
-#else
-
- b0 = q(1, (u1byte) b0); b1 = q(0, (u1byte) b1); b2 = q(1, (u1byte) b2); b3 = q(0, (u1byte) b3);
- m5b_b0 = ffm_5b(b0); m5b_b1 = ffm_5b(b1); m5b_b2 = ffm_5b(b2); m5b_b3 = ffm_5b(b3);
- mef_b0 = ffm_ef(b0); mef_b1 = ffm_ef(b1); mef_b2 = ffm_ef(b2); mef_b3 = ffm_ef(b3);
- b0 ^= mef_b1 ^ m5b_b2 ^ m5b_b3; b3 ^= m5b_b0 ^ mef_b1 ^ mef_b2;
- b2 ^= mef_b0 ^ m5b_b1 ^ mef_b3; b1 ^= mef_b0 ^ mef_b2 ^ m5b_b3;
-
- return b0 | (b3 << 8) | (b2 << 16) | (b1 << 24);
-
-#endif
-};
-
-#ifdef MK_TABLE
-
-#ifdef ONE_STEP
-//u4byte mk_tab[4][256];
-#else
-static u1byte sb[4][256];
-#endif
-
-#define q20(x) q(0,q(0,x) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
-#define q21(x) q(0,q(1,x) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
-#define q22(x) q(1,q(0,x) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
-#define q23(x) q(1,q(1,x) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
-
-#define q30(x) q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
-#define q31(x) q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
-#define q32(x) q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
-#define q33(x) q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
-
-#define q40(x) q(0,q(0,q(1, q(1, x) ^ extract_byte(key[3],0)) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
-#define q41(x) q(0,q(1,q(1, q(0, x) ^ extract_byte(key[3],1)) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
-#define q42(x) q(1,q(0,q(0, q(0, x) ^ extract_byte(key[3],2)) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
-#define q43(x) q(1,q(1,q(0, q(1, x) ^ extract_byte(key[3],3)) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)
-
-static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
-{ u4byte i;
- u1byte by;
-
- u4byte *mk_tab = instance->mk_tab;
-
- switch(instance->k_len)
- {
- case 2: for(i = 0; i < 256; ++i)
- {
- by = (u1byte)i;
-#ifdef ONE_STEP
- mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by));
- mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by));
-#else
- sb[0][i] = q20(by); sb[1][i] = q21(by);
- sb[2][i] = q22(by); sb[3][i] = q23(by);
-#endif
- }
- break;
-
- case 3: for(i = 0; i < 256; ++i)
- {
- by = (u1byte)i;
-#ifdef ONE_STEP
- mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by));
- mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by));
-#else
- sb[0][i] = q30(by); sb[1][i] = q31(by);
- sb[2][i] = q32(by); sb[3][i] = q33(by);
-#endif
- }
- break;
-
- case 4: for(i = 0; i < 256; ++i)
- {
- by = (u1byte)i;
-#ifdef ONE_STEP
- mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by));
- mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by));
-#else
- sb[0][i] = q40(by); sb[1][i] = q41(by);
- sb[2][i] = q42(by); sb[3][i] = q43(by);
-#endif
- }
- }
-};
-
-# ifdef ONE_STEP
-# define g0_fun(x) ( mk_tab[0 + 4*extract_byte(x,0)] ^ mk_tab[1 + 4*extract_byte(x,1)] \
- ^ mk_tab[2 + 4*extract_byte(x,2)] ^ mk_tab[3 + 4*extract_byte(x,3)] )
-# define g1_fun(x) ( mk_tab[0 + 4*extract_byte(x,3)] ^ mk_tab[1 + 4*extract_byte(x,0)] \
- ^ mk_tab[2 + 4*extract_byte(x,1)] ^ mk_tab[3 + 4*extract_byte(x,2)] )
-
-
-# else
-# define g0_fun(x) ( mds(0, sb[0][extract_byte(x,0)]) ^ mds(1, sb[1][extract_byte(x,1)]) \
- ^ mds(2, sb[2][extract_byte(x,2)]) ^ mds(3, sb[3][extract_byte(x,3)]) )
-# define g1_fun(x) ( mds(0, sb[0][extract_byte(x,3)]) ^ mds(1, sb[1][extract_byte(x,0)]) \
- ^ mds(2, sb[2][extract_byte(x,1)]) ^ mds(3, sb[3][extract_byte(x,2)]) )
-# endif
-
-#else
-
-#define g0_fun(x) h_fun(instance, x, instance->s_key)
-#define g1_fun(x) h_fun(instance, rotl(x,8), instance->s_key)
-
-#endif
-
-/* The (12,8) Reed Soloman code has the generator polynomial
-
- g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1
-
-where the coefficients are in the finite field GF(2^8) with a
-modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the
-remainder we have to start with a 12th order polynomial with our
-eight input bytes as the coefficients of the 4th to 11th terms.
-That is:
-
- m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
-
-We then multiply the generator polynomial by m[7] * x^7 and subtract
-it - xor in GF(2^8) - from the above to eliminate the x^7 term (the
-artihmetic on the coefficients is done in GF(2^8). We then multiply
-the generator polynomial by x^6 * coeff(x^10) and use this to remove
-the x^10 term. We carry on in this way until the x^4 term is removed
-so that we are left with:
-
- r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]
-
-which give the resulting 4 bytes of the remainder. This is equivalent
-to the matrix multiplication in the Twofish description but much faster
-to implement.
-
-*/
-
-#define G_MOD 0x0000014d
-
-static u4byte mds_rem(u4byte p0, u4byte p1)
-{ u4byte i, t, u;
-
- for(i = 0; i < 8; ++i)
- {
- t = p1 >> 24; // get most significant coefficient
-
- p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up
-
- // multiply t by a (the primitive element - i.e. left shift)
-
- u = (t << 1);
-
- if(t & 0x80) // subtract modular polynomial on overflow
-
- u ^= G_MOD;
-
- p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1)
-
- u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a);
-
- if(t & 0x01) // add the modular polynomial on underflow
-
- u ^= G_MOD >> 1;
-
- p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)
- }
-
- return p1;
-};
-
-/* initialise the key schedule from the user supplied key */
-
-u4byte *twofish_set_key(TwofishInstance *instance, const u4byte in_key[])
-{ u4byte i, a, b, me_key[4], mo_key[4];
- u4byte *l_key, *s_key;
-
- l_key = instance->l_key;
- s_key = instance->s_key;
-
-#ifdef Q_TABLES
- if(!qt_gen)
- {
- gen_qtab(); qt_gen = 1;
- }
-#endif
-
-#ifdef M_TABLE
- if(!mt_gen)
- {
- gen_mtab(); mt_gen = 1;
- }
-#endif
-
- instance->k_len = 4;
-
- for(i = 0; i < instance->k_len; ++i)
- {
- a = LE32(in_key[i + i]); me_key[i] = a;
- b = LE32(in_key[i + i + 1]); mo_key[i] = b;
- s_key[instance->k_len - i - 1] = mds_rem(a, b);
- }
-
- for(i = 0; i < 40; i += 2)
- {
- a = 0x01010101 * i; b = a + 0x01010101;
- a = h_fun(instance, a, me_key);
- b = rotl(h_fun(instance, b, mo_key), 8);
- l_key[i] = a + b;
- l_key[i + 1] = rotl(a + 2 * b, 9);
- }
-
-#ifdef MK_TABLE
- gen_mk_tab(instance, s_key);
-#endif
-
- return l_key;
-};
-
-/* encrypt a block of text */
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-#define f_rnd(i) \
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \
- blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); \
- blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); \
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \
- blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); \
- blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11])
-
-void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
- u4byte *mk_tab = instance->mk_tab;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[0];
- blk[1] = LE32(in_blk[1]) ^ l_key[1];
- blk[2] = LE32(in_blk[2]) ^ l_key[2];
- blk[3] = LE32(in_blk[3]) ^ l_key[3];
-
- f_rnd(0); f_rnd(1); f_rnd(2); f_rnd(3);
- f_rnd(4); f_rnd(5); f_rnd(6); f_rnd(7);
-
- out_blk[0] = LE32(blk[2] ^ l_key[4]);
- out_blk[1] = LE32(blk[3] ^ l_key[5]);
- out_blk[2] = LE32(blk[0] ^ l_key[6]);
- out_blk[3] = LE32(blk[1] ^ l_key[7]);
-};
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
-#ifdef TC_WINDOWS_BOOT_TWOFISH
- u4byte *mk_tab = instance->mk_tab;
-#endif
- int i;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[0];
- blk[1] = LE32(in_blk[1]) ^ l_key[1];
- blk[2] = LE32(in_blk[2]) ^ l_key[2];
- blk[3] = LE32(in_blk[3]) ^ l_key[3];
-
- for (i = 0; i <= 7; ++i)
- {
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
- blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1);
- blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]);
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
- blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1);
- blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]);
- }
-
- out_blk[0] = LE32(blk[2] ^ l_key[4]);
- out_blk[1] = LE32(blk[3] ^ l_key[5]);
- out_blk[2] = LE32(blk[0] ^ l_key[6]);
- out_blk[3] = LE32(blk[1] ^ l_key[7]);
-};
-
-#endif // TC_MINIMIZE_CODE_SIZE
-
-/* decrypt a block of text */
-
-#ifndef TC_MINIMIZE_CODE_SIZE
-
-#define i_rnd(i) \
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \
- blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); \
- blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); \
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \
- blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); \
- blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1)
-
-void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
- u4byte *mk_tab = instance->mk_tab;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[4];
- blk[1] = LE32(in_blk[1]) ^ l_key[5];
- blk[2] = LE32(in_blk[2]) ^ l_key[6];
- blk[3] = LE32(in_blk[3]) ^ l_key[7];
-
- i_rnd(7); i_rnd(6); i_rnd(5); i_rnd(4);
- i_rnd(3); i_rnd(2); i_rnd(1); i_rnd(0);
-
- out_blk[0] = LE32(blk[2] ^ l_key[0]);
- out_blk[1] = LE32(blk[3] ^ l_key[1]);
- out_blk[2] = LE32(blk[0] ^ l_key[2]);
- out_blk[3] = LE32(blk[1] ^ l_key[3]);
-};
-
-#else // TC_MINIMIZE_CODE_SIZE
-
-void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
-{ u4byte t0, t1, blk[4];
-
- u4byte *l_key = instance->l_key;
-#ifdef TC_WINDOWS_BOOT_TWOFISH
- u4byte *mk_tab = instance->mk_tab;
-#endif
- int i;
-
- blk[0] = LE32(in_blk[0]) ^ l_key[4];
- blk[1] = LE32(in_blk[1]) ^ l_key[5];
- blk[2] = LE32(in_blk[2]) ^ l_key[6];
- blk[3] = LE32(in_blk[3]) ^ l_key[7];
-
- for (i = 7; i >= 0; --i)
- {
- t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
- blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]);
- blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1);
- t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
- blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]);
- blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1);
- }
-
- out_blk[0] = LE32(blk[2] ^ l_key[0]);
- out_blk[1] = LE32(blk[3] ^ l_key[1]);
- out_blk[2] = LE32(blk[0] ^ l_key[2]);
- out_blk[3] = LE32(blk[1] ^ l_key[3]);
-};
-
-#endif // TC_MINIMIZE_CODE_SIZE
+/* + --------------------------------------------------------------------------- + Copyright (c) 1999, Dr Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + + My thanks to Doug Whiting and Niels Ferguson for comments that led + to improvements in this implementation. + + Issue Date: 14th January 1999 +*/ + +/* Adapted for TrueCrypt */ +/* Adapted for VeraCrypt */ + + +#ifdef TC_WINDOWS_BOOT +#pragma optimize ("tl", on) +#endif + +#include "Twofish.h" +#include "Common/Endian.h" + +#define Q_TABLES +#define M_TABLE + +#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH) +# define MK_TABLE +# define ONE_STEP +#endif + +/* finite field arithmetic for GF(2**8) with the modular */ +/* polynomial x^8 + x^6 + x^5 + x^3 + 1 (0x169) */ + +#define G_M 0x0169 + +static u1byte tab_5b[4] = { 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) }; +static u1byte tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 }; + +#define ffm_01(x) (x) +#define ffm_5b(x) ((x) ^ ((x) >> 2) ^ tab_5b[(x) & 3]) +#define ffm_ef(x) ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef[(x) & 3]) + +static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 }; +static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 }; + +static u1byte qt0[2][16] = +{ { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 }, + { 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 } +}; + +static u1byte qt1[2][16] = +{ { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 }, + { 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 } +}; + +static u1byte qt2[2][16] = +{ { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 }, + { 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 } +}; + +static u1byte qt3[2][16] = +{ { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 }, + { 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 } +}; + +static u1byte qp(const u4byte n, const u1byte x) +{ u1byte a0, a1, a2, a3, a4, b0, b1, b2, b3, b4; + + a0 = x >> 4; b0 = x & 15; + a1 = a0 ^ b0; b1 = ror4[b0] ^ ashx[a0]; + a2 = qt0[n][a1]; b2 = qt1[n][b1]; + a3 = a2 ^ b2; b3 = ror4[b2] ^ ashx[a2]; + a4 = qt2[n][a3]; b4 = qt3[n][b3]; + return (b4 << 4) | a4; +}; + +#ifdef Q_TABLES + +static u4byte qt_gen = 0; +static u1byte q_tab[2][256]; + +#define q(n,x) q_tab[n][x] + +static void gen_qtab(void) +{ u4byte i; + + for(i = 0; i < 256; ++i) + { + q(0,i) = qp(0, (u1byte)i); + q(1,i) = qp(1, (u1byte)i); + } +}; + +#else + +#define q(n,x) qp(n, x) + +#endif + +#ifdef M_TABLE + +static u4byte mt_gen = 0; +static u4byte m_tab[4][256]; + +static void gen_mtab(void) +{ u4byte i, f01, f5b, fef; + + for(i = 0; i < 256; ++i) + { + f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01); + m_tab[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24); + m_tab[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24); + + f01 = q(0,i); f5b = ffm_5b(f01); fef = ffm_ef(f01); + m_tab[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24); + m_tab[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24); + } +}; + +#define mds(n,x) m_tab[n][x] + +#else + +#define fm_00 ffm_01 +#define fm_10 ffm_5b +#define fm_20 ffm_ef +#define fm_30 ffm_ef +#define q_0(x) q(1,x) + +#define fm_01 ffm_ef +#define fm_11 ffm_ef +#define fm_21 ffm_5b +#define fm_31 ffm_01 +#define q_1(x) q(0,x) + +#define fm_02 ffm_5b +#define fm_12 ffm_ef +#define fm_22 ffm_01 +#define fm_32 ffm_ef +#define q_2(x) q(1,x) + +#define fm_03 ffm_5b +#define fm_13 ffm_01 +#define fm_23 ffm_ef +#define fm_33 ffm_5b +#define q_3(x) q(0,x) + +#define f_0(n,x) ((u4byte)fm_0##n(x)) +#define f_1(n,x) ((u4byte)fm_1##n(x) << 8) +#define f_2(n,x) ((u4byte)fm_2##n(x) << 16) +#define f_3(n,x) ((u4byte)fm_3##n(x) << 24) + +#define mds(n,x) f_0(n,q_##n(x)) ^ f_1(n,q_##n(x)) ^ f_2(n,q_##n(x)) ^ f_3(n,q_##n(x)) + +#endif + +static u4byte h_fun(TwofishInstance *instance, const u4byte x, const u4byte key[]) +{ u4byte b0, b1, b2, b3; + +#ifndef M_TABLE + u4byte m5b_b0, m5b_b1, m5b_b2, m5b_b3; + u4byte mef_b0, mef_b1, mef_b2, mef_b3; +#endif + + b0 = extract_byte(x, 0); b1 = extract_byte(x, 1); b2 = extract_byte(x, 2); b3 = extract_byte(x, 3); + + switch(instance->k_len) + { + case 4: b0 = q(1, (u1byte) b0) ^ extract_byte(key[3],0); + b1 = q(0, (u1byte) b1) ^ extract_byte(key[3],1); + b2 = q(0, (u1byte) b2) ^ extract_byte(key[3],2); + b3 = q(1, (u1byte) b3) ^ extract_byte(key[3],3); + case 3: b0 = q(1, (u1byte) b0) ^ extract_byte(key[2],0); + b1 = q(1, (u1byte) b1) ^ extract_byte(key[2],1); + b2 = q(0, (u1byte) b2) ^ extract_byte(key[2],2); + b3 = q(0, (u1byte) b3) ^ extract_byte(key[2],3); + case 2: b0 = q(0, (u1byte) (q(0, (u1byte) b0) ^ extract_byte(key[1],0))) ^ extract_byte(key[0],0); + b1 = q(0, (u1byte) (q(1, (u1byte) b1) ^ extract_byte(key[1],1))) ^ extract_byte(key[0],1); + b2 = q(1, (u1byte) (q(0, (u1byte) b2) ^ extract_byte(key[1],2))) ^ extract_byte(key[0],2); + b3 = q(1, (u1byte) (q(1, (u1byte) b3) ^ extract_byte(key[1],3))) ^ extract_byte(key[0],3); + } +#ifdef M_TABLE + + return mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3); + +#else + + b0 = q(1, (u1byte) b0); b1 = q(0, (u1byte) b1); b2 = q(1, (u1byte) b2); b3 = q(0, (u1byte) b3); + m5b_b0 = ffm_5b(b0); m5b_b1 = ffm_5b(b1); m5b_b2 = ffm_5b(b2); m5b_b3 = ffm_5b(b3); + mef_b0 = ffm_ef(b0); mef_b1 = ffm_ef(b1); mef_b2 = ffm_ef(b2); mef_b3 = ffm_ef(b3); + b0 ^= mef_b1 ^ m5b_b2 ^ m5b_b3; b3 ^= m5b_b0 ^ mef_b1 ^ mef_b2; + b2 ^= mef_b0 ^ m5b_b1 ^ mef_b3; b1 ^= mef_b0 ^ mef_b2 ^ m5b_b3; + + return b0 | (b3 << 8) | (b2 << 16) | (b1 << 24); + +#endif +}; + +#ifdef MK_TABLE + +#ifdef ONE_STEP +//u4byte mk_tab[4][256]; +#else +static u1byte sb[4][256]; +#endif + +#define q20(x) q(0,q(0,x) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0) +#define q21(x) q(0,q(1,x) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1) +#define q22(x) q(1,q(0,x) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2) +#define q23(x) q(1,q(1,x) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3) + +#define q30(x) q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0) +#define q31(x) q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1) +#define q32(x) q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2) +#define q33(x) q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3) + +#define q40(x) q(0,q(0,q(1, q(1, x) ^ extract_byte(key[3],0)) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0) +#define q41(x) q(0,q(1,q(1, q(0, x) ^ extract_byte(key[3],1)) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1) +#define q42(x) q(1,q(0,q(0, q(0, x) ^ extract_byte(key[3],2)) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2) +#define q43(x) q(1,q(1,q(0, q(1, x) ^ extract_byte(key[3],3)) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3) + +static void gen_mk_tab(TwofishInstance *instance, u4byte key[]) +{ u4byte i; + u1byte by; + + u4byte *mk_tab = instance->mk_tab; + + switch(instance->k_len) + { + case 2: for(i = 0; i < 256; ++i) + { + by = (u1byte)i; +#ifdef ONE_STEP + mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by)); + mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by)); +#else + sb[0][i] = q20(by); sb[1][i] = q21(by); + sb[2][i] = q22(by); sb[3][i] = q23(by); +#endif + } + break; + + case 3: for(i = 0; i < 256; ++i) + { + by = (u1byte)i; +#ifdef ONE_STEP + mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by)); + mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by)); +#else + sb[0][i] = q30(by); sb[1][i] = q31(by); + sb[2][i] = q32(by); sb[3][i] = q33(by); +#endif + } + break; + + case 4: for(i = 0; i < 256; ++i) + { + by = (u1byte)i; +#ifdef ONE_STEP + mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by)); + mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by)); +#else + sb[0][i] = q40(by); sb[1][i] = q41(by); + sb[2][i] = q42(by); sb[3][i] = q43(by); +#endif + } + } +}; + +# ifdef ONE_STEP +# define g0_fun(x) ( mk_tab[0 + 4*extract_byte(x,0)] ^ mk_tab[1 + 4*extract_byte(x,1)] \ + ^ mk_tab[2 + 4*extract_byte(x,2)] ^ mk_tab[3 + 4*extract_byte(x,3)] ) +# define g1_fun(x) ( mk_tab[0 + 4*extract_byte(x,3)] ^ mk_tab[1 + 4*extract_byte(x,0)] \ + ^ mk_tab[2 + 4*extract_byte(x,1)] ^ mk_tab[3 + 4*extract_byte(x,2)] ) + + +# else +# define g0_fun(x) ( mds(0, sb[0][extract_byte(x,0)]) ^ mds(1, sb[1][extract_byte(x,1)]) \ + ^ mds(2, sb[2][extract_byte(x,2)]) ^ mds(3, sb[3][extract_byte(x,3)]) ) +# define g1_fun(x) ( mds(0, sb[0][extract_byte(x,3)]) ^ mds(1, sb[1][extract_byte(x,0)]) \ + ^ mds(2, sb[2][extract_byte(x,1)]) ^ mds(3, sb[3][extract_byte(x,2)]) ) +# endif + +#else + +#define g0_fun(x) h_fun(instance, x, instance->s_key) +#define g1_fun(x) h_fun(instance, rotl(x,8), instance->s_key) + +#endif + +/* The (12,8) Reed Soloman code has the generator polynomial + + g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1 + +where the coefficients are in the finite field GF(2^8) with a +modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the +remainder we have to start with a 12th order polynomial with our +eight input bytes as the coefficients of the 4th to 11th terms. +That is: + + m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0 + +We then multiply the generator polynomial by m[7] * x^7 and subtract +it - xor in GF(2^8) - from the above to eliminate the x^7 term (the +artihmetic on the coefficients is done in GF(2^8). We then multiply +the generator polynomial by x^6 * coeff(x^10) and use this to remove +the x^10 term. We carry on in this way until the x^4 term is removed +so that we are left with: + + r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0] + +which give the resulting 4 bytes of the remainder. This is equivalent +to the matrix multiplication in the Twofish description but much faster +to implement. + +*/ + +#define G_MOD 0x0000014d + +static u4byte mds_rem(u4byte p0, u4byte p1) +{ u4byte i, t, u; + + for(i = 0; i < 8; ++i) + { + t = p1 >> 24; // get most significant coefficient + + p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8; // shift others up + + // multiply t by a (the primitive element - i.e. left shift) + + u = (t << 1); + + if(t & 0x80) // subtract modular polynomial on overflow + + u ^= G_MOD; + + p1 ^= t ^ (u << 16); // remove t * (a * x^2 + 1) + + u ^= (t >> 1); // form u = a * t + t / a = t * (a + 1 / a); + + if(t & 0x01) // add the modular polynomial on underflow + + u ^= G_MOD >> 1; + + p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x) + } + + return p1; +}; + +/* initialise the key schedule from the user supplied key */ + +u4byte *twofish_set_key(TwofishInstance *instance, const u4byte in_key[]) +{ u4byte i, a, b, me_key[4], mo_key[4]; + u4byte *l_key, *s_key; + + l_key = instance->l_key; + s_key = instance->s_key; + +#ifdef Q_TABLES + if(!qt_gen) + { + gen_qtab(); qt_gen = 1; + } +#endif + +#ifdef M_TABLE + if(!mt_gen) + { + gen_mtab(); mt_gen = 1; + } +#endif + + instance->k_len = 4; + + for(i = 0; i < instance->k_len; ++i) + { + a = LE32(in_key[i + i]); me_key[i] = a; + b = LE32(in_key[i + i + 1]); mo_key[i] = b; + s_key[instance->k_len - i - 1] = mds_rem(a, b); + } + + for(i = 0; i < 40; i += 2) + { + a = 0x01010101 * i; b = a + 0x01010101; + a = h_fun(instance, a, me_key); + b = rotl(h_fun(instance, b, mo_key), 8); + l_key[i] = a + b; + l_key[i + 1] = rotl(a + 2 * b, 9); + } + +#ifdef MK_TABLE + gen_mk_tab(instance, s_key); +#endif + + return l_key; +}; + +/* encrypt a block of text */ + +#ifndef TC_MINIMIZE_CODE_SIZE + +#define f_rnd(i) \ + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \ + blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); \ + blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); \ + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \ + blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); \ + blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]) + +void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; + u4byte *mk_tab = instance->mk_tab; + + blk[0] = LE32(in_blk[0]) ^ l_key[0]; + blk[1] = LE32(in_blk[1]) ^ l_key[1]; + blk[2] = LE32(in_blk[2]) ^ l_key[2]; + blk[3] = LE32(in_blk[3]) ^ l_key[3]; + + f_rnd(0); f_rnd(1); f_rnd(2); f_rnd(3); + f_rnd(4); f_rnd(5); f_rnd(6); f_rnd(7); + + out_blk[0] = LE32(blk[2] ^ l_key[4]); + out_blk[1] = LE32(blk[3] ^ l_key[5]); + out_blk[2] = LE32(blk[0] ^ l_key[6]); + out_blk[3] = LE32(blk[1] ^ l_key[7]); +}; + +#else // TC_MINIMIZE_CODE_SIZE + +void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; +#ifdef TC_WINDOWS_BOOT_TWOFISH + u4byte *mk_tab = instance->mk_tab; +#endif + int i; + + blk[0] = LE32(in_blk[0]) ^ l_key[0]; + blk[1] = LE32(in_blk[1]) ^ l_key[1]; + blk[2] = LE32(in_blk[2]) ^ l_key[2]; + blk[3] = LE32(in_blk[3]) ^ l_key[3]; + + for (i = 0; i <= 7; ++i) + { + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); + blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1); + blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]); + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); + blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1); + blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]); + } + + out_blk[0] = LE32(blk[2] ^ l_key[4]); + out_blk[1] = LE32(blk[3] ^ l_key[5]); + out_blk[2] = LE32(blk[0] ^ l_key[6]); + out_blk[3] = LE32(blk[1] ^ l_key[7]); +}; + +#endif // TC_MINIMIZE_CODE_SIZE + +/* decrypt a block of text */ + +#ifndef TC_MINIMIZE_CODE_SIZE + +#define i_rnd(i) \ + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); \ + blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); \ + blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); \ + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); \ + blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); \ + blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1) + +void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; + u4byte *mk_tab = instance->mk_tab; + + blk[0] = LE32(in_blk[0]) ^ l_key[4]; + blk[1] = LE32(in_blk[1]) ^ l_key[5]; + blk[2] = LE32(in_blk[2]) ^ l_key[6]; + blk[3] = LE32(in_blk[3]) ^ l_key[7]; + + i_rnd(7); i_rnd(6); i_rnd(5); i_rnd(4); + i_rnd(3); i_rnd(2); i_rnd(1); i_rnd(0); + + out_blk[0] = LE32(blk[2] ^ l_key[0]); + out_blk[1] = LE32(blk[3] ^ l_key[1]); + out_blk[2] = LE32(blk[0] ^ l_key[2]); + out_blk[3] = LE32(blk[1] ^ l_key[3]); +}; + +#else // TC_MINIMIZE_CODE_SIZE + +void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]) +{ u4byte t0, t1, blk[4]; + + u4byte *l_key = instance->l_key; +#ifdef TC_WINDOWS_BOOT_TWOFISH + u4byte *mk_tab = instance->mk_tab; +#endif + int i; + + blk[0] = LE32(in_blk[0]) ^ l_key[4]; + blk[1] = LE32(in_blk[1]) ^ l_key[5]; + blk[2] = LE32(in_blk[2]) ^ l_key[6]; + blk[3] = LE32(in_blk[3]) ^ l_key[7]; + + for (i = 7; i >= 0; --i) + { + t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]); + blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]); + blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); + t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]); + blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) + 8]); + blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]), 1); + } + + out_blk[0] = LE32(blk[2] ^ l_key[0]); + out_blk[1] = LE32(blk[3] ^ l_key[1]); + out_blk[2] = LE32(blk[0] ^ l_key[2]); + out_blk[3] = LE32(blk[1] ^ l_key[3]); +}; + +#endif // TC_MINIMIZE_CODE_SIZE diff --git a/src/Crypto/Twofish.h b/src/Crypto/Twofish.h index ed400257..1011608e 100644 --- a/src/Crypto/Twofish.h +++ b/src/Crypto/Twofish.h @@ -1,56 +1,56 @@ -#ifndef TWOFISH_H
-#define TWOFISH_H
-
-#include "Common/Tcdefs.h"
-
-#if defined(__cplusplus)
-extern "C"
-{
-#endif
-
-#ifndef u4byte
-#define u4byte unsigned __int32
-#endif
-#ifndef u1byte
-#define u1byte unsigned char
-#endif
-
-#ifndef extract_byte
-#define extract_byte(x,n) ((u1byte)((x) >> (8 * n)))
-#endif
-
-#ifndef rotl
-
-#ifdef _WIN32
-#include <stdlib.h>
-#pragma intrinsic(_lrotr,_lrotl)
-#define rotr(x,n) _lrotr(x,n)
-#define rotl(x,n) _lrotl(x,n)
-#else
-#define rotr(x,n) (((x)>>(n))|((x)<<(32-(n))))
-#define rotl(x,n) (((x)<<(n))|((x)>>(32-(n))))
-#endif
-
-#endif
-typedef struct
-{
- u4byte l_key[40];
- u4byte s_key[4];
-#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH)
- u4byte mk_tab[4 * 256];
-#endif
- u4byte k_len;
-} TwofishInstance;
-
-#define TWOFISH_KS sizeof(TwofishInstance)
-
-/* in_key must be 32-bytes long */
-u4byte * twofish_set_key(TwofishInstance *instance, const u4byte in_key[]);
-void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]);
-void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]);
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif // TWOFISH_H
+#ifndef TWOFISH_H +#define TWOFISH_H + +#include "Common/Tcdefs.h" + +#if defined(__cplusplus) +extern "C" +{ +#endif + +#ifndef u4byte +#define u4byte unsigned __int32 +#endif +#ifndef u1byte +#define u1byte unsigned char +#endif + +#ifndef extract_byte +#define extract_byte(x,n) ((u1byte)((x) >> (8 * n))) +#endif + +#ifndef rotl + +#ifdef _WIN32 +#include <stdlib.h> +#pragma intrinsic(_lrotr,_lrotl) +#define rotr(x,n) _lrotr(x,n) +#define rotl(x,n) _lrotl(x,n) +#else +#define rotr(x,n) (((x)>>(n))|((x)<<(32-(n)))) +#define rotl(x,n) (((x)<<(n))|((x)>>(32-(n)))) +#endif + +#endif +typedef struct +{ + u4byte l_key[40]; + u4byte s_key[4]; +#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH) + u4byte mk_tab[4 * 256]; +#endif + u4byte k_len; +} TwofishInstance; + +#define TWOFISH_KS sizeof(TwofishInstance) + +/* in_key must be 32-bytes long */ +u4byte * twofish_set_key(TwofishInstance *instance, const u4byte in_key[]); +void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[]); +void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4]); + +#if defined(__cplusplus) +} +#endif + +#endif // TWOFISH_H diff --git a/src/Crypto/Whirlpool.h b/src/Crypto/Whirlpool.h index df8aa7ac..9e771935 100644 --- a/src/Crypto/Whirlpool.h +++ b/src/Crypto/Whirlpool.h @@ -1,27 +1,27 @@ -#ifndef WHIRLPOOL_H
-#define WHIRLPOOL_H 1
-
-#include "Common/Tcdefs.h"
-#include "config.h"
-
-typedef struct WHIRLPOOL_CTX {
- uint64 countLo;
- uint64 countHi;
- CRYPTOPP_ALIGN_DATA(16) uint64 data[8];
- CRYPTOPP_ALIGN_DATA(16) uint64 state[8];
-} WHIRLPOOL_CTX;
-
-// -------------
-#if defined(__cplusplus)
-extern "C" {
-#endif
-
-void WHIRLPOOL_add(const unsigned char * source, unsigned __int32 sourceBits, WHIRLPOOL_CTX * const ctx);
-void WHIRLPOOL_finalize(WHIRLPOOL_CTX* const ctx, unsigned char * result);
-void WHIRLPOOL_init(WHIRLPOOL_CTX* const ctx);
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif /* WHIRLPOOL_H */
+#ifndef WHIRLPOOL_H +#define WHIRLPOOL_H 1 + +#include "Common/Tcdefs.h" +#include "config.h" + +typedef struct WHIRLPOOL_CTX { + uint64 countLo; + uint64 countHi; + CRYPTOPP_ALIGN_DATA(16) uint64 data[8]; + CRYPTOPP_ALIGN_DATA(16) uint64 state[8]; +} WHIRLPOOL_CTX; + +// ------------- +#if defined(__cplusplus) +extern "C" { +#endif + +void WHIRLPOOL_add(const unsigned char * source, unsigned __int32 sourceBits, WHIRLPOOL_CTX * const ctx); +void WHIRLPOOL_finalize(WHIRLPOOL_CTX* const ctx, unsigned char * result); +void WHIRLPOOL_init(WHIRLPOOL_CTX* const ctx); + +#if defined(__cplusplus) +} +#endif + +#endif /* WHIRLPOOL_H */ diff --git a/src/Crypto/cpu.c b/src/Crypto/cpu.c index 58a131af..4274a8ae 100644 --- a/src/Crypto/cpu.c +++ b/src/Crypto/cpu.c @@ -1,231 +1,231 @@ -/* cpu.c - written and placed in the public domain by Wei Dai */
-
-#include "cpu.h"
-#include "misc.h"
-
-#ifndef EXCEPTION_EXECUTE_HANDLER
-#define EXCEPTION_EXECUTE_HANDLER 1
-#endif
-
-#ifndef CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
-#include <signal.h>
-#include <setjmp.h>
-#endif
-
-#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
-#include <emmintrin.h>
-#endif
-
-#ifdef CRYPTOPP_CPUID_AVAILABLE
-
-#if _MSC_VER >= 1400 && CRYPTOPP_BOOL_X64
-
-int CpuId(uint32 input, uint32 output[4])
-{
- __cpuid((int *)output, input);
- return 1;
-}
-
-#else
-
-#ifndef CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
-
-#if defined(__cplusplus)
-extern "C" {
-#endif
-
-typedef void (*SigHandler)(int);
-
-static jmp_buf s_jmpNoCPUID;
-static void SigIllHandlerCPUID(int p)
-{
- longjmp(s_jmpNoCPUID, 1);
-}
-
-#if CRYPTOPP_BOOL_X64 == 0
-static jmp_buf s_jmpNoSSE2;
-static void SigIllHandlerSSE2(int p)
-{
- longjmp(s_jmpNoSSE2, 1);
-}
-#endif
-
-#if defined(__cplusplus)
-}
-#endif
-#endif
-
-int CpuId(uint32 input, uint32 output[4])
-{
-#ifdef CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
- __try
- {
- __asm
- {
- mov eax, input
- mov ecx, 0
- cpuid
- mov edi, output
- mov [edi], eax
- mov [edi+4], ebx
- mov [edi+8], ecx
- mov [edi+12], edx
- }
- }
- __except (EXCEPTION_EXECUTE_HANDLER)
- {
- return 0;
- }
-
- // function 0 returns the highest basic function understood in EAX
- if(input == 0)
- return !!output[0]? 1 : 0;
-
- return 1;
-#else
- // longjmp and clobber warnings. Volatile is required.
- // http://github.com/weidai11/cryptopp/issues/24
- // http://stackoverflow.com/q/7721854
- volatile int result = 1;
-
- SigHandler oldHandler = signal(SIGILL, SigIllHandlerCPUID);
- if (oldHandler == SIG_ERR)
- result = 0;
-
- if (setjmp(s_jmpNoCPUID))
- result = 0;
- else
- {
- asm volatile
- (
- // save ebx in case -fPIC is being used
- // TODO: this might need an early clobber on EDI.
-#if CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
- "pushq %%rbx; cpuid; mov %%ebx, %%edi; popq %%rbx"
-#else
- "push %%ebx; cpuid; mov %%ebx, %%edi; pop %%ebx"
-#endif
- : "=a" (output[0]), "=D" (output[1]), "=c" (output[2]), "=d" (output[3])
- : "a" (input), "c" (0)
- );
- }
-
- signal(SIGILL, oldHandler);
- return result;
-#endif
-}
-
-#endif
-
-static int TrySSE2()
-{
-#if CRYPTOPP_BOOL_X64
- return 1;
-#elif defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
- __try
- {
-#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
- AS2(por xmm0, xmm0) // executing SSE2 instruction
-#elif CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
- __m128i x = _mm_setzero_si128();
- return _mm_cvtsi128_si32(x) == 0 ? 1 : 0;
-#endif
- }
- __except (EXCEPTION_EXECUTE_HANDLER)
- {
- return 0;
- }
- return 1;
-#else
- // longjmp and clobber warnings. Volatile is required.
- // http://github.com/weidai11/cryptopp/issues/24
- // http://stackoverflow.com/q/7721854
- volatile int result = 1;
-
- SigHandler oldHandler = signal(SIGILL, SigIllHandlerSSE2);
- if (oldHandler == SIG_ERR)
- return 0;
-
- if (setjmp(s_jmpNoSSE2))
- result = 1;
- else
- {
-#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
- __asm __volatile ("por %xmm0, %xmm0");
-#elif CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
- __m128i x = _mm_setzero_si128();
- result = _mm_cvtsi128_si32(x) == 0? 1 : 0;
-#endif
- }
-
- signal(SIGILL, oldHandler);
- return result;
-#endif
-}
-
-int g_x86DetectionDone = 0;
-int g_hasISSE = 0, g_hasSSE2 = 0, g_hasSSSE3 = 0, g_hasMMX = 0, g_hasAESNI = 0, g_hasCLMUL = 0, g_isP4 = 0;
-uint32 g_cacheLineSize = CRYPTOPP_L1_CACHE_LINE_SIZE;
-
-VC_INLINE int IsIntel(const uint32 output[4])
-{
- // This is the "GenuineIntel" string
- return (output[1] /*EBX*/ == 0x756e6547) &&
- (output[2] /*ECX*/ == 0x6c65746e) &&
- (output[3] /*EDX*/ == 0x49656e69);
-}
-
-VC_INLINE int IsAMD(const uint32 output[4])
-{
- // This is the "AuthenticAMD" string
- return (output[1] /*EBX*/ == 0x68747541) &&
- (output[2] /*ECX*/ == 0x69746E65) &&
- (output[3] /*EDX*/ == 0x444D4163);
-}
-
-void DetectX86Features()
-{
- uint32 cpuid[4], cpuid1[4];
- if (!CpuId(0, cpuid))
- return;
- if (!CpuId(1, cpuid1))
- return;
-
- g_hasMMX = (cpuid1[3] & (1 << 23)) != 0;
- if ((cpuid1[3] & (1 << 26)) != 0)
- g_hasSSE2 = TrySSE2();
- g_hasSSSE3 = g_hasSSE2 && (cpuid1[2] & (1<<9));
- g_hasAESNI = g_hasSSE2 && (cpuid1[2] & (1<<25));
- g_hasCLMUL = g_hasSSE2 && (cpuid1[2] & (1<<1));
-
- if ((cpuid1[3] & (1 << 25)) != 0)
- g_hasISSE = 1;
- else
- {
- uint32 cpuid2[4];
- CpuId(0x080000000, cpuid2);
- if (cpuid2[0] >= 0x080000001)
- {
- CpuId(0x080000001, cpuid2);
- g_hasISSE = (cpuid2[3] & (1 << 22)) != 0;
- }
- }
-
- if (IsIntel(cpuid))
- {
- g_isP4 = ((cpuid1[0] >> 8) & 0xf) == 0xf;
- g_cacheLineSize = 8 * GETBYTE(cpuid1[1], 1);
- }
- else if (IsAMD(cpuid))
- {
- CpuId(0x80000005, cpuid);
- g_cacheLineSize = GETBYTE(cpuid[2], 0);
- }
-
- if (!g_cacheLineSize)
- g_cacheLineSize = CRYPTOPP_L1_CACHE_LINE_SIZE;
-
- *((volatile int*)&g_x86DetectionDone) = 1;
-}
-
-#endif
+/* cpu.c - written and placed in the public domain by Wei Dai */ + +#include "cpu.h" +#include "misc.h" + +#ifndef EXCEPTION_EXECUTE_HANDLER +#define EXCEPTION_EXECUTE_HANDLER 1 +#endif + +#ifndef CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY +#include <signal.h> +#include <setjmp.h> +#endif + +#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE +#include <emmintrin.h> +#endif + +#ifdef CRYPTOPP_CPUID_AVAILABLE + +#if _MSC_VER >= 1400 && CRYPTOPP_BOOL_X64 + +int CpuId(uint32 input, uint32 output[4]) +{ + __cpuid((int *)output, input); + return 1; +} + +#else + +#ifndef CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY + +#if defined(__cplusplus) +extern "C" { +#endif + +typedef void (*SigHandler)(int); + +static jmp_buf s_jmpNoCPUID; +static void SigIllHandlerCPUID(int p) +{ + longjmp(s_jmpNoCPUID, 1); +} + +#if CRYPTOPP_BOOL_X64 == 0 +static jmp_buf s_jmpNoSSE2; +static void SigIllHandlerSSE2(int p) +{ + longjmp(s_jmpNoSSE2, 1); +} +#endif + +#if defined(__cplusplus) +} +#endif +#endif + +int CpuId(uint32 input, uint32 output[4]) +{ +#ifdef CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY + __try + { + __asm + { + mov eax, input + mov ecx, 0 + cpuid + mov edi, output + mov [edi], eax + mov [edi+4], ebx + mov [edi+8], ecx + mov [edi+12], edx + } + } + __except (EXCEPTION_EXECUTE_HANDLER) + { + return 0; + } + + // function 0 returns the highest basic function understood in EAX + if(input == 0) + return !!output[0]? 1 : 0; + + return 1; +#else + // longjmp and clobber warnings. Volatile is required. + // http://github.com/weidai11/cryptopp/issues/24 + // http://stackoverflow.com/q/7721854 + volatile int result = 1; + + SigHandler oldHandler = signal(SIGILL, SigIllHandlerCPUID); + if (oldHandler == SIG_ERR) + result = 0; + + if (setjmp(s_jmpNoCPUID)) + result = 0; + else + { + asm volatile + ( + // save ebx in case -fPIC is being used + // TODO: this might need an early clobber on EDI. +#if CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 + "pushq %%rbx; cpuid; mov %%ebx, %%edi; popq %%rbx" +#else + "push %%ebx; cpuid; mov %%ebx, %%edi; pop %%ebx" +#endif + : "=a" (output[0]), "=D" (output[1]), "=c" (output[2]), "=d" (output[3]) + : "a" (input), "c" (0) + ); + } + + signal(SIGILL, oldHandler); + return result; +#endif +} + +#endif + +static int TrySSE2() +{ +#if CRYPTOPP_BOOL_X64 + return 1; +#elif defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY) + __try + { +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE + AS2(por xmm0, xmm0) // executing SSE2 instruction +#elif CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE + __m128i x = _mm_setzero_si128(); + return _mm_cvtsi128_si32(x) == 0 ? 1 : 0; +#endif + } + __except (EXCEPTION_EXECUTE_HANDLER) + { + return 0; + } + return 1; +#else + // longjmp and clobber warnings. Volatile is required. + // http://github.com/weidai11/cryptopp/issues/24 + // http://stackoverflow.com/q/7721854 + volatile int result = 1; + + SigHandler oldHandler = signal(SIGILL, SigIllHandlerSSE2); + if (oldHandler == SIG_ERR) + return 0; + + if (setjmp(s_jmpNoSSE2)) + result = 1; + else + { +#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE + __asm __volatile ("por %xmm0, %xmm0"); +#elif CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE + __m128i x = _mm_setzero_si128(); + result = _mm_cvtsi128_si32(x) == 0? 1 : 0; +#endif + } + + signal(SIGILL, oldHandler); + return result; +#endif +} + +int g_x86DetectionDone = 0; +int g_hasISSE = 0, g_hasSSE2 = 0, g_hasSSSE3 = 0, g_hasMMX = 0, g_hasAESNI = 0, g_hasCLMUL = 0, g_isP4 = 0; +uint32 g_cacheLineSize = CRYPTOPP_L1_CACHE_LINE_SIZE; + +VC_INLINE int IsIntel(const uint32 output[4]) +{ + // This is the "GenuineIntel" string + return (output[1] /*EBX*/ == 0x756e6547) && + (output[2] /*ECX*/ == 0x6c65746e) && + (output[3] /*EDX*/ == 0x49656e69); +} + +VC_INLINE int IsAMD(const uint32 output[4]) +{ + // This is the "AuthenticAMD" string + return (output[1] /*EBX*/ == 0x68747541) && + (output[2] /*ECX*/ == 0x69746E65) && + (output[3] /*EDX*/ == 0x444D4163); +} + +void DetectX86Features() +{ + uint32 cpuid[4], cpuid1[4]; + if (!CpuId(0, cpuid)) + return; + if (!CpuId(1, cpuid1)) + return; + + g_hasMMX = (cpuid1[3] & (1 << 23)) != 0; + if ((cpuid1[3] & (1 << 26)) != 0) + g_hasSSE2 = TrySSE2(); + g_hasSSSE3 = g_hasSSE2 && (cpuid1[2] & (1<<9)); + g_hasAESNI = g_hasSSE2 && (cpuid1[2] & (1<<25)); + g_hasCLMUL = g_hasSSE2 && (cpuid1[2] & (1<<1)); + + if ((cpuid1[3] & (1 << 25)) != 0) + g_hasISSE = 1; + else + { + uint32 cpuid2[4]; + CpuId(0x080000000, cpuid2); + if (cpuid2[0] >= 0x080000001) + { + CpuId(0x080000001, cpuid2); + g_hasISSE = (cpuid2[3] & (1 << 22)) != 0; + } + } + + if (IsIntel(cpuid)) + { + g_isP4 = ((cpuid1[0] >> 8) & 0xf) == 0xf; + g_cacheLineSize = 8 * GETBYTE(cpuid1[1], 1); + } + else if (IsAMD(cpuid)) + { + CpuId(0x80000005, cpuid); + g_cacheLineSize = GETBYTE(cpuid[2], 0); + } + + if (!g_cacheLineSize) + g_cacheLineSize = CRYPTOPP_L1_CACHE_LINE_SIZE; + + *((volatile int*)&g_x86DetectionDone) = 1; +} + +#endif diff --git a/src/Crypto/cpu.h b/src/Crypto/cpu.h index da8d14cb..7ef509ec 100644 --- a/src/Crypto/cpu.h +++ b/src/Crypto/cpu.h @@ -1,308 +1,308 @@ -#ifndef CRYPTOPP_CPU_H
-#define CRYPTOPP_CPU_H
-
-#include "Common/Tcdefs.h"
-#include "config.h"
-
-#ifdef CRYPTOPP_GENERATE_X64_MASM
-
-#define CRYPTOPP_X86_ASM_AVAILABLE
-#define CRYPTOPP_BOOL_X64 1
-#define CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE 1
-
-#else
-
-#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
-#include <emmintrin.h>
-#endif
-
-#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE
-#if defined(__SSSE3__) || defined(__INTEL_COMPILER)
-#ifdef TC_WINDOWS_DRIVER
-extern __m128i _mm_shuffle_epi8 (__m128i a, __m128i b);
-#else
-#include <tmmintrin.h>
-#endif
-#endif
-
-#if defined(__SSE4_1__) || defined(__INTEL_COMPILER)
-#ifdef TC_WINDOWS_DRIVER
-extern int _mm_extract_epi32(__m128i src, const int ndx);
-extern __m128i _mm_insert_epi32(__m128i dst, int s, const int ndx);
-#else
-#include <smmintrin.h>
-#endif
-#endif
-
-#if (defined(__AES__) && defined(__PCLMUL__)) || defined(__INTEL_COMPILER)
-#ifdef TC_WINDOWS_DRIVER
-extern __m128i _mm_clmulepi64_si128(__m128i v1, __m128i v2,
- const int imm8);
-extern __m128i _mm_aeskeygenassist_si128(__m128i ckey, const int rcon);
-extern __m128i _mm_aesimc_si128(__m128i v);
-extern __m128i _mm_aesenc_si128(__m128i v, __m128i rkey);
-extern __m128i _mm_aesenclast_si128(__m128i v, __m128i rkey);
-extern __m128i _mm_aesdec_si128(__m128i v, __m128i rkey);
-extern __m128i _mm_aesdeclast_si128(__m128i v, __m128i rkey);
-#else
-#include <wmmintrin.h>
-#endif
-#endif
-#endif
-
-#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
-
-#define CRYPTOPP_CPUID_AVAILABLE
-
-#if defined(__cplusplus)
-extern "C" {
-#endif
-
-// these should not be used directly
-extern int g_x86DetectionDone;
-extern int g_hasSSSE3;
-extern int g_hasAESNI;
-extern int g_hasCLMUL;
-extern int g_isP4;
-extern uint32 g_cacheLineSize;
-void DetectX86Features(); // must be called at the start of the program/driver
-int CpuId(uint32 input, uint32 *output);
-
-#if CRYPTOPP_BOOL_X64
-#define HasSSE2() 1
-#define HasISSE() 1
-#define HasMMX() 1
-#else
-
-extern int g_hasSSE2;
-extern int g_hasISSE;
-extern int g_hasMMX;
-
-#define HasSSE2() g_hasSSE2
-#define HasISSE() g_hasISSE
-#define HasMMX() g_hasMMX
-
-#endif
-
-#define HasSSSE3() g_hasSSSE3
-#define HasAESNI() g_hasAESNI
-#define HasCLMUL() g_hasCLMUL
-#define IsP4() g_isP4
-#define GetCacheLineSize() g_cacheLineSize
-
-#if defined(__cplusplus)
-}
-#endif
-
-#else
-
-#define GetCacheLineSize() CRYPTOPP_L1_CACHE_LINE_SIZE
-
-#endif
-
-#endif
-
-#ifdef CRYPTOPP_GENERATE_X64_MASM
- #define AS1(x) x*newline*
- #define AS2(x, y) x, y*newline*
- #define AS3(x, y, z) x, y, z*newline*
- #define ASS(x, y, a, b, c, d) x, y, a*64+b*16+c*4+d*newline*
- #define ASL(x) label##x:*newline*
- #define ASJ(x, y, z) x label##y*newline*
- #define ASC(x, y) x label##y*newline*
- #define AS_HEX(y) 0##y##h
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
- #define CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
- #define AS1(x) __asm {x}
- #define AS2(x, y) __asm {x, y}
- #define AS3(x, y, z) __asm {x, y, z}
- #define ASS(x, y, a, b, c, d) __asm {x, y, (a)*64+(b)*16+(c)*4+(d)}
- #define ASL(x) __asm {label##x:}
- #define ASJ(x, y, z) __asm {x label##y}
- #define ASC(x, y) __asm {x label##y}
- #define CRYPTOPP_NAKED __declspec(naked)
- #define AS_HEX(y) 0x##y
-#else
- #define CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
-
- #if defined(CRYPTOPP_CLANG_VERSION) || defined(CRYPTOPP_APPLE_CLANG_VERSION)
- #define NEW_LINE "\n"
- #define INTEL_PREFIX ".intel_syntax;"
- #define INTEL_NOPREFIX ".intel_syntax;"
- #define ATT_PREFIX ".att_syntax;"
- #define ATT_NOPREFIX ".att_syntax;"
- #else
- #define NEW_LINE
- #define INTEL_PREFIX ".intel_syntax prefix;"
- #define INTEL_NOPREFIX ".intel_syntax noprefix;"
- #define ATT_PREFIX ".att_syntax prefix;"
- #define ATT_NOPREFIX ".att_syntax noprefix;"
- #endif
-
- // define these in two steps to allow arguments to be expanded
- #define GNU_AS1(x) #x ";" NEW_LINE
- #define GNU_AS2(x, y) #x ", " #y ";" NEW_LINE
- #define GNU_AS3(x, y, z) #x ", " #y ", " #z ";" NEW_LINE
- #define GNU_ASL(x) "\n" #x ":" NEW_LINE
- #define GNU_ASJ(x, y, z) #x " " #y #z ";" NEW_LINE
- #define AS1(x) GNU_AS1(x)
- #define AS2(x, y) GNU_AS2(x, y)
- #define AS3(x, y, z) GNU_AS3(x, y, z)
- #define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";"
- #define ASL(x) GNU_ASL(x)
- #define ASJ(x, y, z) GNU_ASJ(x, y, z)
- #define ASC(x, y) #x " " #y ";"
- #define CRYPTOPP_NAKED
- #define AS_HEX(y) 0x##y
-#endif
-
-#define IF0(y)
-#define IF1(y) y
-
-// Should be confined to GCC, but its used to help manage Clang 3.4 compiler error.
-// Also see LLVM Bug 24232, http://llvm.org/bugs/show_bug.cgi?id=24232 .
-#ifndef INTEL_PREFIX
-#define INTEL_PREFIX
-#endif
-#ifndef INTEL_NOPREFIX
-#define INTEL_NOPREFIX
-#endif
-#ifndef ATT_PREFIX
-#define ATT_PREFIX
-#endif
-#ifndef ATT_NOPREFIX
-#define ATT_NOPREFIX
-#endif
-
-#ifdef CRYPTOPP_GENERATE_X64_MASM
-#define ASM_MOD(x, y) ((x) MOD (y))
-#define XMMWORD_PTR XMMWORD PTR
-#else
-// GNU assembler doesn't seem to have mod operator
-#define ASM_MOD(x, y) ((x)-((x)/(y))*(y))
-// GAS 2.15 doesn't support XMMWORD PTR. it seems necessary only for MASM
-#define XMMWORD_PTR
-#endif
-
-#if CRYPTOPP_BOOL_X86
- #define AS_REG_1 ecx
- #define AS_REG_2 edx
- #define AS_REG_3 esi
- #define AS_REG_4 edi
- #define AS_REG_5 eax
- #define AS_REG_6 ebx
- #define AS_REG_7 ebp
- #define AS_REG_1d ecx
- #define AS_REG_2d edx
- #define AS_REG_3d esi
- #define AS_REG_4d edi
- #define AS_REG_5d eax
- #define AS_REG_6d ebx
- #define AS_REG_7d ebp
- #define WORD_SZ 4
- #define WORD_REG(x) e##x
- #define WORD_PTR DWORD PTR
- #define AS_PUSH_IF86(x) AS1(push e##x)
- #define AS_POP_IF86(x) AS1(pop e##x)
- #define AS_JCXZ jecxz
-#elif CRYPTOPP_BOOL_X32
- #define AS_REG_1 ecx
- #define AS_REG_2 edx
- #define AS_REG_3 r8d
- #define AS_REG_4 r9d
- #define AS_REG_5 eax
- #define AS_REG_6 r10d
- #define AS_REG_7 r11d
- #define AS_REG_1d ecx
- #define AS_REG_2d edx
- #define AS_REG_3d r8d
- #define AS_REG_4d r9d
- #define AS_REG_5d eax
- #define AS_REG_6d r10d
- #define AS_REG_7d r11d
- #define WORD_SZ 4
- #define WORD_REG(x) e##x
- #define WORD_PTR DWORD PTR
- #define AS_PUSH_IF86(x) AS1(push r##x)
- #define AS_POP_IF86(x) AS1(pop r##x)
- #define AS_JCXZ jecxz
-#elif CRYPTOPP_BOOL_X64
- #ifdef CRYPTOPP_GENERATE_X64_MASM
- #define AS_REG_1 rcx
- #define AS_REG_2 rdx
- #define AS_REG_3 r8
- #define AS_REG_4 r9
- #define AS_REG_5 rax
- #define AS_REG_6 r10
- #define AS_REG_7 r11
- #define AS_REG_1d ecx
- #define AS_REG_2d edx
- #define AS_REG_3d r8d
- #define AS_REG_4d r9d
- #define AS_REG_5d eax
- #define AS_REG_6d r10d
- #define AS_REG_7d r11d
- #else
- #define AS_REG_1 rdi
- #define AS_REG_2 rsi
- #define AS_REG_3 rdx
- #define AS_REG_4 rcx
- #define AS_REG_5 r8
- #define AS_REG_6 r9
- #define AS_REG_7 r10
- #define AS_REG_1d edi
- #define AS_REG_2d esi
- #define AS_REG_3d edx
- #define AS_REG_4d ecx
- #define AS_REG_5d r8d
- #define AS_REG_6d r9d
- #define AS_REG_7d r10d
- #endif
- #define WORD_SZ 8
- #define WORD_REG(x) r##x
- #define WORD_PTR QWORD PTR
- #define AS_PUSH_IF86(x)
- #define AS_POP_IF86(x)
- #define AS_JCXZ jrcxz
-#endif
-
-// helper macro for stream cipher output
-#define AS_XMM_OUTPUT4(labelPrefix, inputPtr, outputPtr, x0, x1, x2, x3, t, p0, p1, p2, p3, increment)\
- AS2( test inputPtr, inputPtr)\
- ASC( jz, labelPrefix##3)\
- AS2( test inputPtr, 15)\
- ASC( jnz, labelPrefix##7)\
- AS2( pxor xmm##x0, [inputPtr+p0*16])\
- AS2( pxor xmm##x1, [inputPtr+p1*16])\
- AS2( pxor xmm##x2, [inputPtr+p2*16])\
- AS2( pxor xmm##x3, [inputPtr+p3*16])\
- AS2( add inputPtr, increment*16)\
- ASC( jmp, labelPrefix##3)\
- ASL(labelPrefix##7)\
- AS2( movdqu xmm##t, [inputPtr+p0*16])\
- AS2( pxor xmm##x0, xmm##t)\
- AS2( movdqu xmm##t, [inputPtr+p1*16])\
- AS2( pxor xmm##x1, xmm##t)\
- AS2( movdqu xmm##t, [inputPtr+p2*16])\
- AS2( pxor xmm##x2, xmm##t)\
- AS2( movdqu xmm##t, [inputPtr+p3*16])\
- AS2( pxor xmm##x3, xmm##t)\
- AS2( add inputPtr, increment*16)\
- ASL(labelPrefix##3)\
- AS2( test outputPtr, 15)\
- ASC( jnz, labelPrefix##8)\
- AS2( movdqa [outputPtr+p0*16], xmm##x0)\
- AS2( movdqa [outputPtr+p1*16], xmm##x1)\
- AS2( movdqa [outputPtr+p2*16], xmm##x2)\
- AS2( movdqa [outputPtr+p3*16], xmm##x3)\
- ASC( jmp, labelPrefix##9)\
- ASL(labelPrefix##8)\
- AS2( movdqu [outputPtr+p0*16], xmm##x0)\
- AS2( movdqu [outputPtr+p1*16], xmm##x1)\
- AS2( movdqu [outputPtr+p2*16], xmm##x2)\
- AS2( movdqu [outputPtr+p3*16], xmm##x3)\
- ASL(labelPrefix##9)\
- AS2( add outputPtr, increment*16)
-
-
-#endif
+#ifndef CRYPTOPP_CPU_H +#define CRYPTOPP_CPU_H + +#include "Common/Tcdefs.h" +#include "config.h" + +#ifdef CRYPTOPP_GENERATE_X64_MASM + +#define CRYPTOPP_X86_ASM_AVAILABLE +#define CRYPTOPP_BOOL_X64 1 +#define CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE 1 + +#else + +#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE +#include <emmintrin.h> +#endif + +#if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE +#if defined(__SSSE3__) || defined(__INTEL_COMPILER) +#ifdef TC_WINDOWS_DRIVER +extern __m128i _mm_shuffle_epi8 (__m128i a, __m128i b); +#else +#include <tmmintrin.h> +#endif +#endif + +#if defined(__SSE4_1__) || defined(__INTEL_COMPILER) +#ifdef TC_WINDOWS_DRIVER +extern int _mm_extract_epi32(__m128i src, const int ndx); +extern __m128i _mm_insert_epi32(__m128i dst, int s, const int ndx); +#else +#include <smmintrin.h> +#endif +#endif + +#if (defined(__AES__) && defined(__PCLMUL__)) || defined(__INTEL_COMPILER) +#ifdef TC_WINDOWS_DRIVER +extern __m128i _mm_clmulepi64_si128(__m128i v1, __m128i v2, + const int imm8); +extern __m128i _mm_aeskeygenassist_si128(__m128i ckey, const int rcon); +extern __m128i _mm_aesimc_si128(__m128i v); +extern __m128i _mm_aesenc_si128(__m128i v, __m128i rkey); +extern __m128i _mm_aesenclast_si128(__m128i v, __m128i rkey); +extern __m128i _mm_aesdec_si128(__m128i v, __m128i rkey); +extern __m128i _mm_aesdeclast_si128(__m128i v, __m128i rkey); +#else +#include <wmmintrin.h> +#endif +#endif +#endif + +#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 + +#define CRYPTOPP_CPUID_AVAILABLE + +#if defined(__cplusplus) +extern "C" { +#endif + +// these should not be used directly +extern int g_x86DetectionDone; +extern int g_hasSSSE3; +extern int g_hasAESNI; +extern int g_hasCLMUL; +extern int g_isP4; +extern uint32 g_cacheLineSize; +void DetectX86Features(); // must be called at the start of the program/driver +int CpuId(uint32 input, uint32 *output); + +#if CRYPTOPP_BOOL_X64 +#define HasSSE2() 1 +#define HasISSE() 1 +#define HasMMX() 1 +#else + +extern int g_hasSSE2; +extern int g_hasISSE; +extern int g_hasMMX; + +#define HasSSE2() g_hasSSE2 +#define HasISSE() g_hasISSE +#define HasMMX() g_hasMMX + +#endif + +#define HasSSSE3() g_hasSSSE3 +#define HasAESNI() g_hasAESNI +#define HasCLMUL() g_hasCLMUL +#define IsP4() g_isP4 +#define GetCacheLineSize() g_cacheLineSize + +#if defined(__cplusplus) +} +#endif + +#else + +#define GetCacheLineSize() CRYPTOPP_L1_CACHE_LINE_SIZE + +#endif + +#endif + +#ifdef CRYPTOPP_GENERATE_X64_MASM + #define AS1(x) x*newline* + #define AS2(x, y) x, y*newline* + #define AS3(x, y, z) x, y, z*newline* + #define ASS(x, y, a, b, c, d) x, y, a*64+b*16+c*4+d*newline* + #define ASL(x) label##x:*newline* + #define ASJ(x, y, z) x label##y*newline* + #define ASC(x, y) x label##y*newline* + #define AS_HEX(y) 0##y##h +#elif defined(_MSC_VER) || defined(__BORLANDC__) + #define CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY + #define AS1(x) __asm {x} + #define AS2(x, y) __asm {x, y} + #define AS3(x, y, z) __asm {x, y, z} + #define ASS(x, y, a, b, c, d) __asm {x, y, (a)*64+(b)*16+(c)*4+(d)} + #define ASL(x) __asm {label##x:} + #define ASJ(x, y, z) __asm {x label##y} + #define ASC(x, y) __asm {x label##y} + #define CRYPTOPP_NAKED __declspec(naked) + #define AS_HEX(y) 0x##y +#else + #define CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY + + #if defined(CRYPTOPP_CLANG_VERSION) || defined(CRYPTOPP_APPLE_CLANG_VERSION) + #define NEW_LINE "\n" + #define INTEL_PREFIX ".intel_syntax;" + #define INTEL_NOPREFIX ".intel_syntax;" + #define ATT_PREFIX ".att_syntax;" + #define ATT_NOPREFIX ".att_syntax;" + #else + #define NEW_LINE + #define INTEL_PREFIX ".intel_syntax prefix;" + #define INTEL_NOPREFIX ".intel_syntax noprefix;" + #define ATT_PREFIX ".att_syntax prefix;" + #define ATT_NOPREFIX ".att_syntax noprefix;" + #endif + + // define these in two steps to allow arguments to be expanded + #define GNU_AS1(x) #x ";" NEW_LINE + #define GNU_AS2(x, y) #x ", " #y ";" NEW_LINE + #define GNU_AS3(x, y, z) #x ", " #y ", " #z ";" NEW_LINE + #define GNU_ASL(x) "\n" #x ":" NEW_LINE + #define GNU_ASJ(x, y, z) #x " " #y #z ";" NEW_LINE + #define AS1(x) GNU_AS1(x) + #define AS2(x, y) GNU_AS2(x, y) + #define AS3(x, y, z) GNU_AS3(x, y, z) + #define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";" + #define ASL(x) GNU_ASL(x) + #define ASJ(x, y, z) GNU_ASJ(x, y, z) + #define ASC(x, y) #x " " #y ";" + #define CRYPTOPP_NAKED + #define AS_HEX(y) 0x##y +#endif + +#define IF0(y) +#define IF1(y) y + +// Should be confined to GCC, but its used to help manage Clang 3.4 compiler error. +// Also see LLVM Bug 24232, http://llvm.org/bugs/show_bug.cgi?id=24232 . +#ifndef INTEL_PREFIX +#define INTEL_PREFIX +#endif +#ifndef INTEL_NOPREFIX +#define INTEL_NOPREFIX +#endif +#ifndef ATT_PREFIX +#define ATT_PREFIX +#endif +#ifndef ATT_NOPREFIX +#define ATT_NOPREFIX +#endif + +#ifdef CRYPTOPP_GENERATE_X64_MASM +#define ASM_MOD(x, y) ((x) MOD (y)) +#define XMMWORD_PTR XMMWORD PTR +#else +// GNU assembler doesn't seem to have mod operator +#define ASM_MOD(x, y) ((x)-((x)/(y))*(y)) +// GAS 2.15 doesn't support XMMWORD PTR. it seems necessary only for MASM +#define XMMWORD_PTR +#endif + +#if CRYPTOPP_BOOL_X86 + #define AS_REG_1 ecx + #define AS_REG_2 edx + #define AS_REG_3 esi + #define AS_REG_4 edi + #define AS_REG_5 eax + #define AS_REG_6 ebx + #define AS_REG_7 ebp + #define AS_REG_1d ecx + #define AS_REG_2d edx + #define AS_REG_3d esi + #define AS_REG_4d edi + #define AS_REG_5d eax + #define AS_REG_6d ebx + #define AS_REG_7d ebp + #define WORD_SZ 4 + #define WORD_REG(x) e##x + #define WORD_PTR DWORD PTR + #define AS_PUSH_IF86(x) AS1(push e##x) + #define AS_POP_IF86(x) AS1(pop e##x) + #define AS_JCXZ jecxz +#elif CRYPTOPP_BOOL_X32 + #define AS_REG_1 ecx + #define AS_REG_2 edx + #define AS_REG_3 r8d + #define AS_REG_4 r9d + #define AS_REG_5 eax + #define AS_REG_6 r10d + #define AS_REG_7 r11d + #define AS_REG_1d ecx + #define AS_REG_2d edx + #define AS_REG_3d r8d + #define AS_REG_4d r9d + #define AS_REG_5d eax + #define AS_REG_6d r10d + #define AS_REG_7d r11d + #define WORD_SZ 4 + #define WORD_REG(x) e##x + #define WORD_PTR DWORD PTR + #define AS_PUSH_IF86(x) AS1(push r##x) + #define AS_POP_IF86(x) AS1(pop r##x) + #define AS_JCXZ jecxz +#elif CRYPTOPP_BOOL_X64 + #ifdef CRYPTOPP_GENERATE_X64_MASM + #define AS_REG_1 rcx + #define AS_REG_2 rdx + #define AS_REG_3 r8 + #define AS_REG_4 r9 + #define AS_REG_5 rax + #define AS_REG_6 r10 + #define AS_REG_7 r11 + #define AS_REG_1d ecx + #define AS_REG_2d edx + #define AS_REG_3d r8d + #define AS_REG_4d r9d + #define AS_REG_5d eax + #define AS_REG_6d r10d + #define AS_REG_7d r11d + #else + #define AS_REG_1 rdi + #define AS_REG_2 rsi + #define AS_REG_3 rdx + #define AS_REG_4 rcx + #define AS_REG_5 r8 + #define AS_REG_6 r9 + #define AS_REG_7 r10 + #define AS_REG_1d edi + #define AS_REG_2d esi + #define AS_REG_3d edx + #define AS_REG_4d ecx + #define AS_REG_5d r8d + #define AS_REG_6d r9d + #define AS_REG_7d r10d + #endif + #define WORD_SZ 8 + #define WORD_REG(x) r##x + #define WORD_PTR QWORD PTR + #define AS_PUSH_IF86(x) + #define AS_POP_IF86(x) + #define AS_JCXZ jrcxz +#endif + +// helper macro for stream cipher output +#define AS_XMM_OUTPUT4(labelPrefix, inputPtr, outputPtr, x0, x1, x2, x3, t, p0, p1, p2, p3, increment)\ + AS2( test inputPtr, inputPtr)\ + ASC( jz, labelPrefix##3)\ + AS2( test inputPtr, 15)\ + ASC( jnz, labelPrefix##7)\ + AS2( pxor xmm##x0, [inputPtr+p0*16])\ + AS2( pxor xmm##x1, [inputPtr+p1*16])\ + AS2( pxor xmm##x2, [inputPtr+p2*16])\ + AS2( pxor xmm##x3, [inputPtr+p3*16])\ + AS2( add inputPtr, increment*16)\ + ASC( jmp, labelPrefix##3)\ + ASL(labelPrefix##7)\ + AS2( movdqu xmm##t, [inputPtr+p0*16])\ + AS2( pxor xmm##x0, xmm##t)\ + AS2( movdqu xmm##t, [inputPtr+p1*16])\ + AS2( pxor xmm##x1, xmm##t)\ + AS2( movdqu xmm##t, [inputPtr+p2*16])\ + AS2( pxor xmm##x2, xmm##t)\ + AS2( movdqu xmm##t, [inputPtr+p3*16])\ + AS2( pxor xmm##x3, xmm##t)\ + AS2( add inputPtr, increment*16)\ + ASL(labelPrefix##3)\ + AS2( test outputPtr, 15)\ + ASC( jnz, labelPrefix##8)\ + AS2( movdqa [outputPtr+p0*16], xmm##x0)\ + AS2( movdqa [outputPtr+p1*16], xmm##x1)\ + AS2( movdqa [outputPtr+p2*16], xmm##x2)\ + AS2( movdqa [outputPtr+p3*16], xmm##x3)\ + ASC( jmp, labelPrefix##9)\ + ASL(labelPrefix##8)\ + AS2( movdqu [outputPtr+p0*16], xmm##x0)\ + AS2( movdqu [outputPtr+p1*16], xmm##x1)\ + AS2( movdqu [outputPtr+p2*16], xmm##x2)\ + AS2( movdqu [outputPtr+p3*16], xmm##x3)\ + ASL(labelPrefix##9)\ + AS2( add outputPtr, increment*16) + + +#endif |