VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Main/Forms/ChangePasswordDialog.cpp
diff options
context:
space:
mode:
authorMounir IDRASSI <mounir.idrassi@idrix.fr>2018-12-19 00:38:56 +0100
committerMounir IDRASSI <mounir.idrassi@idrix.fr>2018-12-19 00:41:37 +0100
commit1967bd862eaa5130260a7d7beea9657778718c31 (patch)
treee451e2d899e2b6f0ffb7ca3beaa795d42de9497e /src/Main/Forms/ChangePasswordDialog.cpp
parent6abc59acd204ce59f53b218cafc01ced955695cd (diff)
downloadVeraCrypt-1967bd862eaa5130260a7d7beea9657778718c31.tar.gz
VeraCrypt-1967bd862eaa5130260a7d7beea9657778718c31.zip
Windows: Add mount option that allows mounting a volume without attaching it to the specified drive letter. This is useful in situation where Windows has issue with the filesystem (e.g. ReFS on Windows 10 1809) and we need to use third party software to be able to use the filesystem under Windows through low level VeraCrypt virtual device (e.g. \Device\VeraCryptVolumeX).
Diffstat (limited to 'src/Main/Forms/ChangePasswordDialog.cpp')
0 files changed, 0 insertions, 0 deletions
26 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 ---------------------------------------------------------------------------
 Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 20/12/2007

 This file contains the compilation options for AES (Rijndael) and code
 that is common across encryption, key scheduling and table generation.

 OPERATION

 These source code files implement the AES algorithm Rijndael designed by
 Joan Daemen and Vincent Rijmen. This version is designed for the standard
 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
 and 32 bytes).

 This version is designed for flexibility and speed using operations on
 32-bit words rather than operations on bytes.  It can be compiled with
 either big or little endian internal byte order but is faster when the
 native byte order for the processor is used.

 THE CIPHER INTERFACE

 The cipher interface is implemented as an array of bytes in which lower
 AES bit sequence indexes map to higher numeric significance within bytes.

  uint_8t                 (an unsigned  8-bit type)
  uint_32t                (an unsigned 32-bit type)
  struct aes_encrypt_ctx  (structure for the cipher encryption context)
  struct aes_decrypt_ctx  (structure for the cipher decryption context)
  AES_RETURN                the function return type

  C subroutine calls:

  AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
  AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
  AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
  AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
                                                  const aes_encrypt_ctx cx[1]);

  AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
  AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
  AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
  AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
                                                  const aes_decrypt_ctx cx[1]);

 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
 you call aes_init() before AES is used so that the tables are initialised.

 C++ aes class subroutines:

     Class AESencrypt  for encryption

      Construtors:
          AESencrypt(void)
          AESencrypt(const unsigned char *key) - 128 bit key
      Members:
          AES_RETURN key128(const unsigned char *key)
          AES_RETURN key192(const unsigned char *key)
          AES_RETURN key256(const unsigned char *key)
          AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const

      Class AESdecrypt  for encryption
      Construtors:
          AESdecrypt(void)
          AESdecrypt(const unsigned char *key) - 128 bit key
      Members:
          AES_RETURN key128(const unsigned char *key)
          AES_RETURN key192(const unsigned char *key)
          AES_RETURN key256(const unsigned char *key)
          AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
*/

/* Adapted for TrueCrypt */

#if !defined( _AESOPT_H )
#define _AESOPT_H

#ifdef TC_WINDOWS_BOOT
#define ASM_X86_V2
#endif

#if defined( __cplusplus )
#include "Aescpp.h"
#else
#include "Aes.h"
#endif


#include "Common/Endian.h"
#define IS_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define IS_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

#if BYTE_ORDER == LITTLE_ENDIAN
#  define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#endif

#if BYTE_ORDER == BIG_ENDIAN
#  define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#endif


/*  CONFIGURATION - THE USE OF DEFINES

    Later in this section there are a number of defines that control the
    operation of the code.  In each section, the purpose of each define is
    explained so that the relevant form can be included or excluded by
    setting either 1's or 0's respectively on the branches of the related
    #if clauses.  The following local defines should not be changed.
*/

#define ENCRYPTION_IN_C     1
#define DECRYPTION_IN_C     2
#define ENC_KEYING_IN_C     4
#define DEC_KEYING_IN_C     8

#define NO_TABLES           0
#define ONE_TABLE           1
#define FOUR_TABLES         4
#define NONE                0
#define PARTIAL             1
#define FULL                2

/*  --- START OF USER CONFIGURED OPTIONS --- */

/*  1. BYTE ORDER WITHIN 32 BIT WORDS

    The fundamental data processing units in Rijndael are 8-bit bytes. The
    input, output and key input are all enumerated arrays of bytes in which
    bytes are numbered starting at zero and increasing to one less than the
    number of bytes in the array in question. This enumeration is only used
    for naming bytes and does not imply any adjacency or order relationship
    from one byte to another. When these inputs and outputs are considered
    as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
    byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
    In this implementation bits are numbered from 0 to 7 starting at the
    numerically least significant end of each byte (bit n represents 2^n).

    However, Rijndael can be implemented more efficiently using 32-bit
    words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
    into word[n]. While in principle these bytes can be assembled into words
    in any positions, this implementation only supports the two formats in
    which bytes in adjacent positions within words also have adjacent byte
    numbers. This order is called big-endian if the lowest numbered bytes
    in words have the highest numeric significance and little-endian if the
    opposite applies.

    This code can work in either order irrespective of the order used by the
    machine on which it runs. Normally the internal byte order will be set
    to the order of the processor on which the code is to be run but this
    define can be used to reverse this in special situations

    WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
    This define will hence be redefined later (in section 4) if necessary
*/

#if 1
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
#elif 0
#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
#elif 0
#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
#else
#error The algorithm byte order is not defined
#endif

/*  2. VIA ACE SUPPORT

    Define this option if support for the VIA ACE is required. This uses
    inline assembler instructions and is only implemented for the Microsoft,
    Intel and GCC compilers.  If VIA ACE is known to be present, then defining
    ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
    code.  If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
    it is detected (both present and enabled) but the normal AES code will
    also be present.

    When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
    aligned; other input/output buffers do not need to be 16 byte aligned
    but there are very large performance gains if this can be arranged.
    VIA ACE also requires the decryption key schedule to be in reverse
    order (which later checks below ensure).
*/

#if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
#  define USE_VIA_ACE_IF_PRESENT
#endif

#if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
#  define ASSUME_VIA_ACE_PRESENT
#  endif

#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
                    defined( _MSC_VER ) && ( _MSC_VER <= 800 )
#  if defined( USE_VIA_ACE_IF_PRESENT )
#    undef USE_VIA_ACE_IF_PRESENT
#  endif
#  if defined( ASSUME_VIA_ACE_PRESENT )
#    undef ASSUME_VIA_ACE_PRESENT
#  endif
#endif

/*  3. ASSEMBLER SUPPORT

    This define (which can be on the command line) enables the use of the
    assembler code routines for encryption, decryption and key scheduling
    as follows:

    ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
                encryption and decryption and but with key scheduling in C
    ASM_X86_V2  uses assembler (aes_x86_v2.asm) with compressed tables for
                encryption, decryption and key scheduling
    ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
                encryption and decryption and but with key scheduling in C
    ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
                encryption and decryption and but with key scheduling in C

    Change one 'if 0' below to 'if 1' to select the version or define
    as a compilation option.
*/

#if 0 && !defined( ASM_X86_V1C )
#  define ASM_X86_V1C
#elif 0 && !defined( ASM_X86_V2  )
#  define ASM_X86_V2
#elif 0 && !defined( ASM_X86_V2C )
#  define ASM_X86_V2C
#elif 0 && !defined( ASM_AMD64_C )
#  define ASM_AMD64_C
#endif

#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
      && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
//#  error Assembler code is only available for x86 and AMD64 systems
#endif

/*  4. FAST INPUT/OUTPUT OPERATIONS.

    On some machines it is possible to improve speed by transferring the
    bytes in the input and output arrays to and from the internal 32-bit
    variables by addressing these arrays as if they are arrays of 32-bit
    words.  On some machines this will always be possible but there may
    be a large performance penalty if the byte arrays are not aligned on
    the normal word boundaries. On other machines this technique will
    lead to memory access errors when such 32-bit word accesses are not
    properly aligned. The option SAFE_IO avoids such problems but will
    often be slower on those machines that support misaligned access
    (especially so if care is taken to align the input  and output byte
    arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
    assumed that access to byte arrays as if they are arrays of 32-bit
    words will not cause problems when such accesses are misaligned.
*/
#if 1 && !defined( _MSC_VER )
#define SAFE_IO
#endif

/*  5. LOOP UNROLLING

    The code for encryption and decrytpion cycles through a number of rounds
    that can be implemented either in a loop or by expanding the code into a
    long sequence of instructions, the latter producing a larger program but
    one that will often be much faster. The latter is called loop unrolling.
    There are also potential speed advantages in expanding two iterations in
    a loop with half the number of iterations, which is called partial loop
    unrolling.  The following options allow partial or full loop unrolling
    to be set independently for encryption and decryption
*/
#if 1
#define ENC_UNROLL  FULL
#elif 0
#define ENC_UNROLL  PARTIAL
#else
#define ENC_UNROLL  NONE
#endif

#if 1
#define DEC_UNROLL  FULL
#elif 0
#define DEC_UNROLL  PARTIAL
#else
#define DEC_UNROLL  NONE
#endif

/*  6. FAST FINITE FIELD OPERATIONS

    If this section is included, tables are used to provide faster finite
    field arithmetic (this has no effect if FIXED_TABLES is defined).
*/
#if !defined (TC_WINDOWS_BOOT)
#define FF_TABLES
#endif

/*  7. INTERNAL STATE VARIABLE FORMAT

    The internal state of Rijndael is stored in a number of local 32-bit
    word varaibles which can be defined either as an array or as individual
    names variables. Include this section if you want to store these local
    varaibles in arrays. Otherwise individual local variables will be used.
*/
#if 1
#define ARRAYS
#endif

/*  8. FIXED OR DYNAMIC TABLES

    When this section is included the tables used by the code are compiled
    statically into the binary file.  Otherwise the subroutine aes_init()
    must be called to compute them before the code is first used.
*/
#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
#define FIXED_TABLES
#endif

/*  9. TABLE ALIGNMENT

    On some sytsems speed will be improved by aligning the AES large lookup
    tables on particular boundaries. This define should be set to a power of
    two giving the desired alignment. It can be left undefined if alignment
    is not needed.  This option is specific to the Microsft VC++ compiler -
    it seems to sometimes cause trouble for the VC++ version 6 compiler.
*/

#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
#define TABLE_ALIGN 32
#endif

/*  10. TABLE OPTIONS

    This cipher proceeds by repeating in a number of cycles known as 'rounds'
    which are implemented by a round function which can optionally be speeded
    up using tables.  The basic tables are each 256 32-bit words, with either
    one or four tables being required for each round function depending on
    how much speed is required. The encryption and decryption round functions
    are different and the last encryption and decrytpion round functions are
    different again making four different round functions in all.

    This means that:
      1. Normal encryption and decryption rounds can each use either 0, 1
         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
      2. The last encryption and decryption rounds can also use either 0, 1
         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.

    Include or exclude the appropriate definitions below to set the number
    of tables used by this implementation.
*/

#if 1   /* set tables for the normal encryption round */
#define ENC_ROUND   FOUR_TABLES
#elif 0
#define ENC_ROUND   ONE_TABLE
#else
#define ENC_ROUND   NO_TABLES
#endif

#if 1   /* set tables for the last encryption round */
#define LAST_ENC_ROUND  FOUR_TABLES
#elif 0
#define LAST_ENC_ROUND  ONE_TABLE
#else
#define LAST_ENC_ROUND  NO_TABLES
#endif

#if 1   /* set tables for the normal decryption round */
#define DEC_ROUND   FOUR_TABLES
#elif 0
#define DEC_ROUND   ONE_TABLE
#else
#define DEC_ROUND   NO_TABLES
#endif

#if 1   /* set tables for the last decryption round */
#define LAST_DEC_ROUND  FOUR_TABLES
#elif 0
#define LAST_DEC_ROUND  ONE_TABLE
#else
#define LAST_DEC_ROUND  NO_TABLES
#endif

/*  The decryption key schedule can be speeded up with tables in the same
    way that the round functions can.  Include or exclude the following
    defines to set this requirement.
*/
#if 1
#define KEY_SCHED   FOUR_TABLES
#elif 0
#define KEY_SCHED   ONE_TABLE
#else
#define KEY_SCHED   NO_TABLES
#endif

/*  ---- END OF USER CONFIGURED OPTIONS ---- */

/* VIA ACE support is only available for VC++ and GCC */

#if !defined( _MSC_VER ) && !defined( __GNUC__ )
#  if defined( ASSUME_VIA_ACE_PRESENT )
#    undef ASSUME_VIA_ACE_PRESENT
#  endif
#  if defined( USE_VIA_ACE_IF_PRESENT )
#    undef USE_VIA_ACE_IF_PRESENT
#  endif
#endif

#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
#define USE_VIA_ACE_IF_PRESENT
#endif

#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
#define AES_REV_DKS
#endif

/* Assembler support requires the use of platform byte order */

#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
    && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
#undef  ALGORITHM_BYTE_ORDER
#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
#endif

/* In this implementation the columns of the state array are each held in
   32-bit words. The state array can be held in various ways: in an array
   of words, in a number of individual word variables or in a number of
   processor registers. The following define maps a variable name x and
   a column number c to the way the state array variable is to be held.
   The first define below maps the state into an array x[c] whereas the
   second form maps the state into a number of individual variables x0,
   x1, etc.  Another form could map individual state colums to machine
   register names.
*/

#if defined( ARRAYS )
#define s(x,c) x[c]
#else
#define s(x,c) x##c
#endif

/*  This implementation provides subroutines for encryption, decryption
    and for setting the three key lengths (separately) for encryption
    and decryption. Since not all functions are needed, masks are set
    up here to determine which will be implemented in C
*/

#if !defined( AES_ENCRYPT )
#  define EFUNCS_IN_C   0
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
    || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
#  define EFUNCS_IN_C   ENC_KEYING_IN_C
#elif !defined( ASM_X86_V2 )
#  define EFUNCS_IN_C   ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
#else
#  define EFUNCS_IN_C   0
#endif

#if !defined( AES_DECRYPT )
#  define DFUNCS_IN_C   0
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
    || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
#  define DFUNCS_IN_C   DEC_KEYING_IN_C
#elif !defined( ASM_X86_V2 )
#  define DFUNCS_IN_C   ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
#else
#  define DFUNCS_IN_C   0
#endif

#define FUNCS_IN_C  ( EFUNCS_IN_C | DFUNCS_IN_C )

/* END OF CONFIGURATION OPTIONS */

#define RC_LENGTH   (5 * (AES_BLOCK_SIZE / 4 - 2))

/* Disable or report errors on some combinations of options */

#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
#undef  LAST_ENC_ROUND
#define LAST_ENC_ROUND  NO_TABLES
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
#undef  LAST_ENC_ROUND
#define LAST_ENC_ROUND  ONE_TABLE
#endif

#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
#undef  ENC_UNROLL
#define ENC_UNROLL  NONE
#endif

#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
#undef  LAST_DEC_ROUND
#define LAST_DEC_ROUND  NO_TABLES
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
#undef  LAST_DEC_ROUND
#define LAST_DEC_ROUND  ONE_TABLE
#endif

#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
#undef  DEC_UNROLL
#define DEC_UNROLL  NONE
#endif

#if defined( bswap32 )
#define aes_sw32    bswap32
#elif defined( bswap_32 )
#define aes_sw32    bswap_32
#else
#define brot(x,n)   (((uint_32t)(x) <<  n) | ((uint_32t)(x) >> (32 - n)))
#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
#endif

/*  upr(x,n):  rotates bytes within words by n positions, moving bytes to
               higher index positions with wrap around into low positions
    ups(x,n):  moves bytes by n positions to higher index positions in
               words but without wrap around
    bval(x,n): extracts a byte from a word

    WARNING:   The definitions given here are intended only for use with
               unsigned variables and with shift counts that are compile
               time constants
*/

#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
#define upr(x,n)        (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
#define ups(x,n)        ((uint_32t) (x) << (8 * (n)))
#define bval(x,n)       ((uint_8t)((x) >> (8 * (n))))
#define bytes2word(b0, b1, b2, b3)  \
        (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
#endif

#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
#define upr(x,n)        (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
#define ups(x,n)        ((uint_32t) (x) >> (8 * (n)))
#define bval(x,n)       ((uint_8t)((x) >> (24 - 8 * (n))))
#define bytes2word(b0, b1, b2, b3)  \
        (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
#endif

#if defined( SAFE_IO )

#define word_in(x,c)    bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
                                   ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
                          ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }

#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )

#define word_in(x,c)    (*((uint_32t*)(x)+(c)))
#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))

#else

#define word_in(x,c)    aes_sw32(*((uint_32t*)(x)+(c)))
#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))

#endif

/* the finite field modular polynomial and elements */

#define WPOLY   0x011b
#define BPOLY     0x1b

/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */

#define m1  0x80808080
#define m2  0x7f7f7f7f
#define gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))

/* The following defines provide alternative definitions of gf_mulx that might
   give improved performance if a fast 32-bit multiply is not available. Note
   that a temporary variable u needs to be defined where gf_mulx is used.

#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
#define m4  (0x01010101 * BPOLY)
#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
*/

/* Work out which tables are needed for the different options   */

#if defined( ASM_X86_V1C )
#if defined( ENC_ROUND )
#undef  ENC_ROUND
#endif
#define ENC_ROUND   FOUR_TABLES
#if defined( LAST_ENC_ROUND )
#undef  LAST_ENC_ROUND
#endif
#define LAST_ENC_ROUND  FOUR_TABLES
#if defined( DEC_ROUND )
#undef  DEC_ROUND
#endif
#define DEC_ROUND   FOUR_TABLES
#if defined( LAST_DEC_ROUND )
#undef  LAST_DEC_ROUND
#endif
#define LAST_DEC_ROUND  FOUR_TABLES
#if defined( KEY_SCHED )
#undef  KEY_SCHED
#define KEY_SCHED   FOUR_TABLES
#endif
#endif

#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
#if ENC_ROUND == ONE_TABLE
#define FT1_SET
#elif ENC_ROUND == FOUR_TABLES
#define FT4_SET
#else
#define SBX_SET
#endif
#if LAST_ENC_ROUND == ONE_TABLE
#define FL1_SET
#elif LAST_ENC_ROUND == FOUR_TABLES
#define FL4_SET
#elif !defined( SBX_SET )
#define SBX_SET
#endif
#endif

#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
#if DEC_ROUND == ONE_TABLE
#define IT1_SET
#elif DEC_ROUND == FOUR_TABLES
#define IT4_SET
#else
#define ISB_SET
#endif
#if LAST_DEC_ROUND == ONE_TABLE
#define IL1_SET
#elif LAST_DEC_ROUND == FOUR_TABLES
#define IL4_SET
#elif !defined(ISB_SET)
#define ISB_SET
#endif
#endif

#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
#if KEY_SCHED == ONE_TABLE
#define LS1_SET
#elif KEY_SCHED == FOUR_TABLES
#define LS4_SET
#elif !defined( SBX_SET )
#define SBX_SET
#endif
#endif

#if (FUNCS_IN_C & DEC_KEYING_IN_C)
#if KEY_SCHED == ONE_TABLE
#define IM1_SET
#elif KEY_SCHED == FOUR_TABLES
#define IM4_SET
#elif !defined( SBX_SET )
#define SBX_SET
#endif
#endif

/* generic definitions of Rijndael macros that use tables    */

#define no_table(x,box,vf,rf,c) bytes2word( \
    box[bval(vf(x,0,c),rf(0,c))], \
    box[bval(vf(x,1,c),rf(1,c))], \
    box[bval(vf(x,2,c),rf(2,c))], \
    box[bval(vf(x,3,c),rf(3,c))])

#define one_table(x,op,tab,vf,rf,c) \
 (     tab[bval(vf(x,0,c),rf(0,c))] \
  ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
  ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
  ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))

#define four_tables(x,tab,vf,rf,c) \
 (  tab[0][bval(vf(x,0,c),rf(0,c))] \
  ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
  ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
  ^ tab[3][bval(vf(x,3,c),rf(3,c))])

#define vf1(x,r,c)  (x)
#define rf1(r,c)    (r)
#define rf2(r,c)    ((8+r-c)&3)

/* perform forward and inverse column mix operation on four bytes in long word x in */
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros.  */

#if defined( FM4_SET )    /* not currently used */
#define fwd_mcol(x)       four_tables(x,t_use(f,m),vf1,rf1,0)
#elif defined( FM1_SET )  /* not currently used */
#define fwd_mcol(x)       one_table(x,upr,t_use(f,m),vf1,rf1,0)
#else
#define dec_fmvars        uint_32t g2
#define fwd_mcol(x)       (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
#endif

#if defined( IM4_SET )
#define inv_mcol(x)       four_tables(x,t_use(i,m),vf1,rf1,0)
#elif defined( IM1_SET )
#define inv_mcol(x)       one_table(x,upr,t_use(i,m),vf1,rf1,0)
#else
#define dec_imvars        uint_32t g2, g4, g9
#define inv_mcol(x)       (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
                          (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
#endif

#if defined( FL4_SET )
#define ls_box(x,c)       four_tables(x,t_use(f,l),vf1,rf2,c)
#elif   defined( LS4_SET )
#define ls_box(x,c)       four_tables(x,t_use(l,s),vf1,rf2,c)
#elif defined( FL1_SET )
#define ls_box(x,c)       one_table(x,upr,t_use(f,l),vf1,rf2,c)
#elif defined( LS1_SET )
#define ls_box(x,c)       one_table(x,upr,t_use(l,s),vf1,rf2,c)
#else
#define ls_box(x,c)     no_table(x,t_use(s,box),vf1,rf2,c)
#endif

#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
#define ISB_SET
#endif

#endif