VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Platform/Unix/SyncEvent.cpp
diff options
context:
space:
mode:
authorMounir IDRASSI <mounir.idrassi@idrix.fr>2018-03-04 18:48:16 +0100
committerMounir IDRASSI <mounir.idrassi@idrix.fr>2018-03-04 18:50:23 +0100
commitcd59d5364f5b32ac136e4a91b8534f2410059cde (patch)
tree12bcb56e15befd8adad7f342f32fff378297e946 /src/Platform/Unix/SyncEvent.cpp
parent5065116e568defd254ea83909d3b6e6c9b0947ed (diff)
downloadVeraCrypt-cd59d5364f5b32ac136e4a91b8534f2410059cde.tar.gz
VeraCrypt-cd59d5364f5b32ac136e4a91b8534f2410059cde.zip
Windows: Implement TRIM support for non-system SSD partitions/drives and add driver option to enable it (TRIM is disabled by default for non-system SSD partitions/drives)
Diffstat (limited to 'src/Platform/Unix/SyncEvent.cpp')
0 files changed, 0 insertions, 0 deletions
f='#n121'>121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "EncryptionModeXTS.h"
#include "Common/Crypto.h"

namespace VeraCrypt
{
	void EncryptionModeXTS::Encrypt (byte *data, uint64 length) const
	{
		EncryptBuffer (data, length, 0);
	}

	void EncryptionModeXTS::EncryptBuffer (byte *data, uint64 length, uint64 startDataUnitNo) const
	{
		if_debug (ValidateState());

		CipherList::const_iterator iSecondaryCipher = SecondaryCiphers.begin();

		for (CipherList::const_iterator iCipher = Ciphers.begin(); iCipher != Ciphers.end(); ++iCipher)
		{
			EncryptBufferXTS (**iCipher, **iSecondaryCipher, data, length, startDataUnitNo, 0);
			++iSecondaryCipher;
		}

		assert (iSecondaryCipher == SecondaryCiphers.end());
	}

	void EncryptionModeXTS::EncryptBufferXTS (const Cipher &cipher, const Cipher &secondaryCipher, byte *buffer, uint64 length, uint64 startDataUnitNo, unsigned int startCipherBlockNo) const
	{
		byte finalCarry;
		byte whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
		byte whiteningValue [BYTES_PER_XTS_BLOCK];
		byte byteBufUnitNo [BYTES_PER_XTS_BLOCK];
		uint64 *whiteningValuesPtr64 = (uint64 *) whiteningValues;
		uint64 *whiteningValuePtr64 = (uint64 *) whiteningValue;
		uint64 *bufPtr = (uint64 *) buffer;
		uint64 *dataUnitBufPtr;
		unsigned int startBlock = startCipherBlockNo, endBlock, block;
		uint64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
		uint64 blockCount, dataUnitNo;

		startDataUnitNo += SectorOffset;

		/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
		finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
		number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
		as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
		the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
		derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */

		// Convert the 64-bit data unit number into a little-endian 16-byte array.
		// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
		dataUnitNo = startDataUnitNo;
		*((uint64 *) byteBufUnitNo) = Endian::Little (dataUnitNo);
		*((uint64 *) byteBufUnitNo + 1) = 0;

		if (length % BYTES_PER_XTS_BLOCK)
			TC_THROW_FATAL_EXCEPTION;

		blockCount = length / BYTES_PER_XTS_BLOCK;

		// Process all blocks in the buffer
		while (blockCount > 0)
		{
			if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
				endBlock = startBlock + (unsigned int) blockCount;
			else
				endBlock = BLOCKS_PER_XTS_DATA_UNIT;

			whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
			whiteningValuePtr64 = (uint64 *) whiteningValue;

			// Encrypt the data unit number using the secondary key (in order to generate the first
			// whitening value for this data unit)
			*whiteningValuePtr64 = *((uint64 *) byteBufUnitNo);
			*(whiteningValuePtr64 + 1) = 0;
			secondaryCipher.EncryptBlock (whiteningValue);

			// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
			// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
			for (block = 0; block < endBlock; block++)
			{
				if (block >= startBlock)
				{
					*whiteningValuesPtr64-- = *whiteningValuePtr64++;
					*whiteningValuesPtr64-- = *whiteningValuePtr64;
				}
				else
					whiteningValuePtr64++;

				// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

				// Little-endian platforms

				finalCarry =
					(*whiteningValuePtr64 & 0x8000000000000000ULL) ?
					135 : 0;

				*whiteningValuePtr64-- <<= 1;

				if (*whiteningValuePtr64 & 0x8000000000000000ULL)
					*(whiteningValuePtr64 + 1) |= 1;

				*whiteningValuePtr64 <<= 1;
#else

				// Big-endian platforms

				finalCarry =
					(*whiteningValuePtr64 & 0x80) ?
					135 : 0;

				*whiteningValuePtr64 = Endian::Little (Endian::Little (*whiteningValuePtr64) << 1);

				whiteningValuePtr64--;

				if (*whiteningValuePtr64 & 0x80)
					*(whiteningValuePtr64 + 1) |= 0x0100000000000000ULL;

				*whiteningValuePtr64 = Endian::Little (Endian::Little (*whiteningValuePtr64) << 1);
#endif

				whiteningValue[0] ^= finalCarry;
			}

			dataUnitBufPtr = bufPtr;
			whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

			// Encrypt all blocks in this data unit

			for (block = startBlock; block < endBlock; block++)
			{
				// Pre-whitening
				*bufPtr++ ^= *whiteningValuesPtr64--;
				*bufPtr++ ^= *whiteningValuesPtr64--;
			}

			// Actual encryption
			cipher.EncryptBlocks ((byte *) dataUnitBufPtr, endBlock - startBlock);

			bufPtr = dataUnitBufPtr;
			whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

			for (block = startBlock; block < endBlock; block++)
			{
				// Post-whitening
				*bufPtr++ ^= *whiteningValuesPtr64--;
				*bufPtr++ ^= *whiteningValuesPtr64--;
			}

			blockCount -= endBlock - startBlock;
			startBlock = 0;
			dataUnitNo++;
			*((uint64 *) byteBufUnitNo) = Endian::Little (dataUnitNo);
		}

		FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
		FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
	}

	void EncryptionModeXTS::EncryptSectorsCurrentThread (byte *data, uint64 sectorIndex, uint64 sectorCount, size_t sectorSize) const
	{
		EncryptBuffer (data, sectorCount * sectorSize, sectorIndex * sectorSize / ENCRYPTION_DATA_UNIT_SIZE);
	}

	size_t EncryptionModeXTS::GetKeySize () const
	{
		if (Ciphers.empty())
			throw NotInitialized (SRC_POS);

		size_t keySize = 0;
		foreach_ref (const Cipher &cipher, SecondaryCiphers)
		{
			keySize += cipher.GetKeySize();
		}

		return keySize;
	}

	void EncryptionModeXTS::Decrypt (byte *data, uint64 length) const
	{
		DecryptBuffer (data, length, 0);
	}

	void EncryptionModeXTS::DecryptBuffer (byte *data, uint64 length, uint64 startDataUnitNo) const
	{
		if_debug (ValidateState());

		CipherList::const_iterator iSecondaryCipher = SecondaryCiphers.end();

		for (CipherList::const_reverse_iterator iCipher = Ciphers.rbegin(); iCipher != Ciphers.rend(); ++iCipher)
		{
			--iSecondaryCipher;
			DecryptBufferXTS (**iCipher, **iSecondaryCipher, data, length, startDataUnitNo, 0);
		}

		assert (iSecondaryCipher == SecondaryCiphers.begin());
	}

	void EncryptionModeXTS::DecryptBufferXTS (const Cipher &cipher, const Cipher &secondaryCipher, byte *buffer, uint64 length, uint64 startDataUnitNo, unsigned int startCipherBlockNo) const
	{
		byte finalCarry;
		byte whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
		byte whiteningValue [BYTES_PER_XTS_BLOCK];
		byte byteBufUnitNo [BYTES_PER_XTS_BLOCK];
		uint64 *whiteningValuesPtr64 = (uint64 *) whiteningValues;
		uint64 *whiteningValuePtr64 = (uint64 *) whiteningValue;
		uint64 *bufPtr = (uint64 *) buffer;
		uint64 *dataUnitBufPtr;
		unsigned int startBlock = startCipherBlockNo, endBlock, block;
		uint64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
		uint64 blockCount, dataUnitNo;

		startDataUnitNo += SectorOffset;

		// Convert the 64-bit data unit number into a little-endian 16-byte array.
		// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
		dataUnitNo = startDataUnitNo;
		*((uint64 *) byteBufUnitNo) = Endian::Little (dataUnitNo);
		*((uint64 *) byteBufUnitNo + 1) = 0;

		if (length % BYTES_PER_XTS_BLOCK)
			TC_THROW_FATAL_EXCEPTION;

		blockCount = length / BYTES_PER_XTS_BLOCK;

		// Process all blocks in the buffer
		while (blockCount > 0)
		{
			if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
				endBlock = startBlock + (unsigned int) blockCount;
			else
				endBlock = BLOCKS_PER_XTS_DATA_UNIT;

			whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
			whiteningValuePtr64 = (uint64 *) whiteningValue;

			// Encrypt the data unit number using the secondary key (in order to generate the first
			// whitening value for this data unit)
			*whiteningValuePtr64 = *((uint64 *) byteBufUnitNo);
			*(whiteningValuePtr64 + 1) = 0;
			secondaryCipher.EncryptBlock (whiteningValue);

			// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
			// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
			for (block = 0; block < endBlock; block++)
			{
				if (block >= startBlock)
				{
					*whiteningValuesPtr64-- = *whiteningValuePtr64++;
					*whiteningValuesPtr64-- = *whiteningValuePtr64;
				}
				else
					whiteningValuePtr64++;

				// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

				// Little-endian platforms

				finalCarry =
					(*whiteningValuePtr64 & 0x8000000000000000ULL) ?
					135 : 0;

				*whiteningValuePtr64-- <<= 1;

				if (*whiteningValuePtr64 & 0x8000000000000000ULL)
					*(whiteningValuePtr64 + 1) |= 1;

				*whiteningValuePtr64 <<= 1;

#else
				// Big-endian platforms

				finalCarry =
					(*whiteningValuePtr64 & 0x80) ?
					135 : 0;

				*whiteningValuePtr64 = Endian::Little (Endian::Little (*whiteningValuePtr64) << 1);

				whiteningValuePtr64--;

				if (*whiteningValuePtr64 & 0x80)
					*(whiteningValuePtr64 + 1) |= 0x0100000000000000ULL;

				*whiteningValuePtr64 = Endian::Little (Endian::Little (*whiteningValuePtr64) << 1);
#endif

				whiteningValue[0] ^= finalCarry;
			}

			dataUnitBufPtr = bufPtr;
			whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

			// Decrypt blocks in this data unit

			for (block = startBlock; block < endBlock; block++)
			{
				*bufPtr++ ^= *whiteningValuesPtr64--;
				*bufPtr++ ^= *whiteningValuesPtr64--;
			}

			cipher.DecryptBlocks ((byte *) dataUnitBufPtr, endBlock - startBlock);

			bufPtr = dataUnitBufPtr;
			whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

			for (block = startBlock; block < endBlock; block++)
			{
				*bufPtr++ ^= *whiteningValuesPtr64--;
				*bufPtr++ ^= *whiteningValuesPtr64--;
			}

			blockCount -= endBlock - startBlock;
			startBlock = 0;
			dataUnitNo++;

			*((uint64 *) byteBufUnitNo) = Endian::Little (dataUnitNo);
		}

		FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
		FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
	}

	void EncryptionModeXTS::DecryptSectorsCurrentThread (byte *data, uint64 sectorIndex, uint64 sectorCount, size_t sectorSize) const
	{
		DecryptBuffer (data, sectorCount * sectorSize, sectorIndex * sectorSize / ENCRYPTION_DATA_UNIT_SIZE);
	}

	void EncryptionModeXTS::SetCiphers (const CipherList &ciphers)
	{
		EncryptionMode::SetCiphers (ciphers);

		SecondaryCiphers.clear();

		foreach_ref (const Cipher &cipher, ciphers)
		{
			SecondaryCiphers.push_back (cipher.GetNew());
		}

		if (SecondaryKey.Size() > 0)
			SetSecondaryCipherKeys();
	}

	void EncryptionModeXTS::SetKey (const ConstBufferPtr &key)
	{
		SecondaryKey.Allocate (key.Size());
		SecondaryKey.CopyFrom (key);

		if (!SecondaryCiphers.empty())
			SetSecondaryCipherKeys();
	}

	void EncryptionModeXTS::SetSecondaryCipherKeys ()
	{
		size_t keyOffset = 0;
		foreach_ref (Cipher &cipher, SecondaryCiphers)
		{
			cipher.SetKey (SecondaryKey.GetRange (keyOffset, cipher.GetKeySize()));
			keyOffset += cipher.GetKeySize();
		}

		KeySet = true;
	}
}