VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/SetupDLL/VeraCrypt_setup.bmp
diff options
context:
space:
mode:
authorMounir IDRASSI <mounir.idrassi@idrix.fr>2023-07-23 10:03:26 +0200
committerMounir IDRASSI <mounir.idrassi@idrix.fr>2023-07-23 10:03:26 +0200
commit75334fc37df3a1eab2d16cf3fe61b5038739283d (patch)
tree62c220a8d347c9effac91195e7341d9cfe0be8b2 /src/SetupDLL/VeraCrypt_setup.bmp
parent334ea9c0b9b1747f4ecbc6297d36d1e265b91cda (diff)
downloadVeraCrypt-75334fc37df3a1eab2d16cf3fe61b5038739283d.tar.gz
VeraCrypt-75334fc37df3a1eab2d16cf3fe61b5038739283d.zip
Translations: Add new entries. update Russian XML file by Dmitry Yerokhin. Increment version to 1.26.4
Diffstat (limited to 'src/SetupDLL/VeraCrypt_setup.bmp')
0 files changed, 0 insertions, 0 deletions
n131'>131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 ---------------------------------------------------------------------------
 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 31/01/2004

 My thanks to John Viega and David McGrew for their support in developing
 this code and to David for testing it on a big-endain system.
*/

/*
 ---------------------------------------------------------------------------
 Portions Copyright (c) 2005 TrueCrypt Developers Association

 Changes:

   - Added multiplication in the finite field GF(2^128) optimized for
     cases involving a 64-bit operand.

   - Added multiplication in the finite field GF(2^64).

   - Added MSB-first mode.

   - Added basic test algorithms.

   - Removed GCM.
 ---------------------------------------------------------------------------
*/

#include <memory.h>
#include <stdlib.h>
#include "GfMul.h"
#include "Tcdefs.h"
#include "Common/Endian.h"

/* BUFFER_ALIGN32 or BUFFER_ALIGN64 must be defined at this point to    */
/* enable faster operation by taking advantage of memory aligned values */
/* NOTE: the BUFFER_ALIGN64 option has not been tested extensively      */

#define BUFFER_ALIGN32
#define UNROLL_LOOPS    /* define to unroll some loops      */
#define IN_LINES        /* define to use inline functions   */
                        /* in place of macros               */

#define mode(x)			GM_##x

#if defined(__cplusplus)
extern "C"
{
#endif

typedef unsigned __int32 mode(32t);
typedef uint64 mode(64t);

#define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

#if BYTE_ORDER == LITTLE_ENDIAN
#  define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#endif

#if BYTE_ORDER == BIG_ENDIAN
#  define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#endif

#ifdef _MSC_VER
#pragma intrinsic(memcpy)
#define in_line __inline
#else
#define in_line
#endif

#if 0 && defined(_MSC_VER)
#define rotl32 _lrotl
#define rotr32 _lrotr
#else
#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
#endif

#if !defined(bswap_32)
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
#endif

#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef  SWAP_BYTES
#endif

#if defined(SWAP_BYTES)

#if defined ( IN_LINES )

in_line void bsw_32(void * p, unsigned int n)
{   unsigned int i = n;
    while(i--)
        ((mode(32t)*)p)[i] = bswap_32(((mode(32t)*)p)[i]);
}

#else

#define bsw_32(p,n) \
    { int _i = (n); while(_i--) ((mode(32t)*)p)[_i] = bswap_32(((mode(32t)*)p)[_i]); }

#endif

#else
#define bsw_32(p,n)
#endif

/* These values are used to detect long word alignment in order */
/* to speed up some GCM buffer operations. This facility may    */
/* not work on some machines                                    */

#define lp08(x)      ((unsigned char*)(x))
#define lp32(x)      ((mode(32t)*)(x))
#define lp64(x)      ((mode(64t)*)(x))

#define A32_MASK     3
#define A64_MASK     7
#define aligned32(x) (!(((mode(32t))(x)) & A32_MASK))
#define aligned64(x) (!(((mode(32t))(x)) & A64_MASK))

#if defined( BUFFER_ALIGN32 )

#define ADR_MASK    A32_MASK
#define aligned     aligned32
#define lp          lp32
#define lp_inc      4

#if defined( IN_LINES )

in_line void move_block_aligned( void *p, const void *q)
{
    lp32(p)[0] = lp32(q)[0], lp32(p)[1] = lp32(q)[1],
    lp32(p)[2] = lp32(q)[2], lp32(p)[3] = lp32(q)[3];
}

in_line void move_block_aligned64( void *p, const void *q)
{
    lp32(p)[0] = lp32(q)[0], lp32(p)[1] = lp32(q)[1];
}

in_line void xor_block_aligned( void *p, const void *q)
{
    lp32(p)[0] ^= lp32(q)[0], lp32(p)[1] ^= lp32(q)[1],
    lp32(p)[2] ^= lp32(q)[2], lp32(p)[3] ^= lp32(q)[3];
}

in_line void xor_block_aligned64( void *p, const void *q)
{
    lp32(p)[0] ^= lp32(q)[0], lp32(p)[1] ^= lp32(q)[1];
}

#else

#define move_block_aligned(p,q) \
    lp32(p)[0] = lp32(q)[0], lp32(p)[1] = lp32(q)[1], \
    lp32(p)[2] = lp32(q)[2], lp32(p)[3] = lp32(q)[3]

#define xor_block_aligned(p,q) \
    lp32(p)[0] ^= lp32(q)[0], lp32(p)[1] ^= lp32(q)[1], \
    lp32(p)[2] ^= lp32(q)[2], lp32(p)[3] ^= lp32(q)[3]

#endif

#elif defined( BUFFER_ALIGN64 )

#define ADR_MASK    A64_MASK
#define aligned     aligned64
#define lp          lp64
#define lp_inc      8

#define move_block_aligned(p,q) \
    lp64(p)[0] = lp64(q)[0], lp64(p)[1] = lp64(q)[1]

#define xor_block_aligned(p,q) \
    lp64(p)[0] ^= lp64(q)[0], lp64(p)[1] ^= lp64(q)[1]

#else
#define aligned(x) 0
#endif

#define move_block(p,q) memcpy((p), (q), BLOCK_LEN)

#define xor_block(p,q) \
    lp08(p)[ 0] ^= lp08(q)[ 0], lp08(p)[ 1] ^= lp08(q)[ 1], \
    lp08(p)[ 2] ^= lp08(q)[ 2], lp08(p)[ 3] ^= lp08(q)[ 3], \
    lp08(p)[ 4] ^= lp08(q)[ 4], lp08(p)[ 5] ^= lp08(q)[ 5], \
    lp08(p)[ 6] ^= lp08(q)[ 6], lp08(p)[ 7] ^= lp08(q)[ 7], \
    lp08(p)[ 8] ^= lp08(q)[ 8], lp08(p)[ 9] ^= lp08(q)[ 9], \
    lp08(p)[10] ^= lp08(q)[10], lp08(p)[11] ^= lp08(q)[11], \
    lp08(p)[12] ^= lp08(q)[12], lp08(p)[13] ^= lp08(q)[13], \
    lp08(p)[14] ^= lp08(q)[14], lp08(p)[15] ^= lp08(q)[15]


#define gf_dat(q) {\
    q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
    q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
    q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
    q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
    q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
    q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
    q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
    q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
    q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
    q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
    q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
    q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
    q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
    q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
    q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
    q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
    q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
    q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
    q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
    q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
    q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
    q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
    q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
    q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
    q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
    q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
    q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
    q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
    q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
    q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
    q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
    q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) }

/* given the value i in 0..255 as the byte overflow when a a field  */
/* element in GHASH is multipled by x^8, this function will return  */
/* the values that are generated in the lo 16-bit word of the field */
/* value by applying the modular polynomial. The values lo_byte and */
/* hi_byte are returned via the macro xp_fun(lo_byte, hi_byte) so   */
/* that the values can be assembled into memory as required by a    */
/* suitable definition of this macro operating on the table above   */

#define xp(i) xp_fun( \
    (i & 0x80 ? 0xe1 : 0) ^ (i & 0x40 ? 0x70 : 0) ^ \
    (i & 0x20 ? 0x38 : 0) ^ (i & 0x10 ? 0x1c : 0) ^ \
    (i & 0x08 ? 0x0e : 0) ^ (i & 0x04 ? 0x07 : 0) ^ \
    (i & 0x02 ? 0x03 : 0) ^ (i & 0x01 ? 0x01 : 0),  \
    (i & 0x80 ? 0x00 : 0) ^ (i & 0x40 ? 0x80 : 0) ^ \
    (i & 0x20 ? 0x40 : 0) ^ (i & 0x10 ? 0x20 : 0) ^ \
    (i & 0x08 ? 0x10 : 0) ^ (i & 0x04 ? 0x08 : 0) ^ \
    (i & 0x02 ? 0x84 : 0) ^ (i & 0x01 ? 0xc2 : 0) )

#define xp64(i) xp_fun( \
    (i & 0x80 ? 0xd8 : 0) ^ (i & 0x40 ? 0x6c : 0) ^ \
    (i & 0x20 ? 0x36 : 0) ^ (i & 0x10 ? 0x1b : 0) ^ \
    (i & 0x08 ? 0x0d : 0) ^ (i & 0x04 ? 0x06 : 0) ^ \
    (i & 0x02 ? 0x03 : 0) ^ (i & 0x01 ? 0x01 : 0),  \
    (i & 0x80 ? 0x00 : 0) ^ (i & 0x40 ? 0x00 : 0) ^ \
    (i & 0x20 ? 0x00 : 0) ^ (i & 0x10 ? 0x00 : 0) ^ \
    (i & 0x08 ? 0x80 : 0) ^ (i & 0x04 ? 0xc0 : 0) ^ \
    (i & 0x02 ? 0x60 : 0) ^ (i & 0x01 ? 0xb0 : 0) )

static mode(32t) gf_poly[2] = { 0, 0xe1000000 };
static mode(32t) gf_poly64[2] = { 0, 0xd8000000 };

/* Multiply of a GF128 field element by x.   The field element  */
/* is held in an array of bytes in which field bits 8n..8n + 7  */
/* are held in byte[n], with lower indexed bits placed in the   */
/* more numerically significant bit positions in bytes.         */

/* This function multiples a field element x, in the polynomial */
/* field representation. It uses 32-bit word operations to gain */
/* speed but compensates for machine endianess and hence works  */
/* correctly on both styles of machine                          */

in_line void mul_x(mode(32t) x[4])
{   mode(32t)   t;

    bsw_32(x, 4);

    /* at this point the filed element bits 0..127 are set out  */
    /* as follows in 32-bit words (where the most significant   */
    /* (ms) numeric bits are to the left)                       */
    /*                                                          */
    /*            x[0]      x[1]      x[2]      x[3]            */
    /*          ms    ls  ms    ls  ms    ls  ms     ls         */
    /* field:   0 ... 31  32 .. 63  64 .. 95  96 .. 127         */

    t = gf_poly[x[3] & 1];          /* bit 127 of the element   */
    x[3] = (x[3] >> 1) | (x[2] << 31);  /* shift bits up by one */
    x[2] = (x[2] >> 1) | (x[1] << 31);  /* position             */
    x[1] = (x[1] >> 1) | (x[0] << 31);  /* if bit 7 is 1 xor in */
    x[0] = (x[0] >> 1) ^ t;             /* the field polynomial */
    bsw_32(x, 4);
}

in_line void mul_x64(mode(32t) x[2])
{   mode(32t)   t;

    bsw_32(x, 2);

    /* at this point the filed element bits 0..127 are set out  */
    /* as follows in 32-bit words (where the most significant   */
    /* (ms) numeric bits are to the left)                       */
    /*                                                          */
    /*            x[0]      x[1]      x[2]      x[3]            */
    /*          ms    ls  ms    ls  ms    ls  ms     ls         */
    /* field:   0 ... 31  32 .. 63  64 .. 95  96 .. 127         */

    t = gf_poly64[x[1] & 1];          /* bit 127 of the element   */
										/* shift bits up by one */
										/* position             */
    x[1] = (x[1] >> 1) | (x[0] << 31);  /* if bit 7 is 1 xor in */
    x[0] = (x[0] >> 1) ^ t;             /* the field polynomial */
    bsw_32(x, 2);
}

/* Multiply of a GF128 field element by x^8 using 32-bit words  */
/* for speed - machine endianess matters here                   */

#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)

#define xp_fun(x,y)    ((mode(32t))(x)) | (((mode(32t))(y)) << 8)
static const unsigned __int16 gft_le[256] = gf_dat(xp);
static const unsigned __int16 gft_le64[256] = gf_dat(xp64);

in_line void mul_lex8(mode(32t) x[4])   /* mutiply with long words  */
{   mode(32t)   t = (x[3] >> 24);       /* in little endian format  */
    x[3] = (x[3] << 8) | (x[2] >> 24);
    x[2] = (x[2] << 8) | (x[1] >> 24);
    x[1] = (x[1] << 8) | (x[0] >> 24);
    x[0] = (x[0] << 8) ^ gft_le[t];
}

in_line void mul_lex8_64(mode(32t) x[2])   /* mutiply with long words  */
{   mode(32t)   t = (x[1] >> 24);       /* in little endian format  */
    x[1] = (x[1] << 8) | (x[0] >> 24);
    x[0] = (x[0] << 8) ^ gft_le64[t];
}

#endif

#if 1 || (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)

#undef  xp_fun
#define xp_fun(x,y)    ((mode(32t))(y)) | (((mode(32t))(x)) << 8)
static const unsigned __int16 gft_be[256] = gf_dat(xp);
static const unsigned __int16 gft_be64[256] = gf_dat(xp64);

in_line void mul_bex8(mode(32t) x[4])   /* mutiply with long words  */
{   mode(32t)   t = (x[3] & 0xff);      /* in big endian format     */
    x[3] = (x[3] >> 8) | (x[2] << 24);
    x[2] = (x[2] >> 8) | (x[1] << 24);
    x[1] = (x[1] >> 8) | (x[0] << 24);
    x[0] = (x[0] >> 8) ^ (((mode(32t))gft_be[t]) << 16);
}

in_line void mul_bex8_64(mode(32t) x[2])   /* mutiply with long words  */
{   mode(32t)   t = (x[1] & 0xff);      /* in big endian format     */
    x[1] = (x[1] >> 8) | (x[0] << 24);
    x[0] = (x[0] >> 8) ^ (((mode(32t))gft_be64[t]) << 16);
}

#endif

/* hence choose the correct version for the machine endianess       */

#if PLATFORM_BYTE_ORDER == BRG_BIG_ENDIAN
#define mul_x8  mul_bex8
#define mul_x8_64  mul_bex8_64
#else
#define mul_x8  mul_lex8
#define mul_x8_64  mul_lex8_64
#endif

/* different versions of the general gf_mul function are provided   */
/* here. Sadly none are very fast :-(                               */

void GfMul128 (void *a, const void* b)
{   mode(32t) r[CBLK_LEN >> 2], p[8][CBLK_LEN >> 2];
    int i;

    move_block_aligned(p[0], b);
    bsw_32(p[0], 4);
    for(i = 0; i < 7; ++i)
    {
        p[i + 1][3] = (p[i][3] >> 1) | (p[i][2] << 31);
        p[i + 1][2] = (p[i][2] >> 1) | (p[i][1] << 31);
        p[i + 1][1] = (p[i][1] >> 1) | (p[i][0] << 31);
        p[i + 1][0] = (p[i][0] >> 1) ^ gf_poly[p[i][3] & 1];
    }

    memset(r, 0, CBLK_LEN);
    for(i = 0; i < 16; ++i)
    {
        if(i) mul_bex8(r);  /* order is always big endian here */

        if(((unsigned char*)a)[15 - i] & 0x80)
            xor_block_aligned(r, p[0]);
        if(((unsigned char*)a)[15 - i] & 0x40)
            xor_block_aligned(r, p[1]);
        if(((unsigned char*)a)[15 - i] & 0x20)
            xor_block_aligned(r, p[2]);
        if(((unsigned char*)a)[15 - i] & 0x10)
            xor_block_aligned(r, p[3]);
        if(((unsigned char*)a)[15 - i] & 0x08)
            xor_block_aligned(r, p[4]);
        if(((unsigned char*)a)[15 - i] & 0x04)
            xor_block_aligned(r, p[5]);
        if(((unsigned char*)a)[15 - i] & 0x02)
            xor_block_aligned(r, p[6]);
        if(((unsigned char*)a)[15 - i] & 0x01)
            xor_block_aligned(r, p[7]);
    }
    bsw_32(r, 4);
    move_block_aligned(a, r);
}

#if defined( UNROLL_LOOPS )

#define xor_8k(i)   \
    xor_block_aligned(r, ctx->gf_t8k[i + i][a[i] & 15]); \
    xor_block_aligned(r, ctx->gf_t8k[i + i + 1][a[i] >> 4])


void GfMul128Tab (unsigned char a[CBLK_LEN], GfCtx8k *ctx)
{   unsigned __int32 r[CBLK_LEN >> 2];

    move_block_aligned(r, ctx->gf_t8k[0][a[0] & 15]);
    xor_block_aligned(r, ctx->gf_t8k[1][a[0] >> 4]);
                xor_8k( 1); xor_8k( 2); xor_8k( 3);
    xor_8k( 4); xor_8k( 5); xor_8k( 6); xor_8k( 7);
    xor_8k( 8); xor_8k( 9); xor_8k(10); xor_8k(11);
    xor_8k(12); xor_8k(13); xor_8k(14); xor_8k(15);
    move_block_aligned(a, r);
}

#else

void GfMul128Tab (unsigned char a[CBLK_LEN], GfCtx8k *ctx)
{   unsigned __int32 r[CBLK_LEN >> 2], *p;
    int i;

    p = ctx->gf_t8k[0][a[0] & 15];
    memcpy(r, p, CBLK_LEN);
    p = ctx->gf_t8k[1][a[0] >> 4];
    xor_block_aligned(r, p);
    for(i = 1; i < CBLK_LEN; ++i)
    {
        xor_block_aligned(r, ctx->gf_t8k[i + i][a[i] & 15]);
        xor_block_aligned(r, ctx->gf_t8k[i + i + 1][a[i] >> 4]);
    }
    memcpy(a, r, CBLK_LEN);
}

#endif

void compile_8k_table(unsigned __int8 *a, GfCtx8k *ctx)
{   int i, j, k;

    memset(ctx->gf_t8k, 0, 32 * 16 * 16);
    for(i = 0; i < 2 * CBLK_LEN; ++i)
    {
        if(i == 0)
        {
            memcpy(ctx->gf_t8k[1][8], a, CBLK_LEN);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t8k[1][j], ctx->gf_t8k[1][j + j], CBLK_LEN);
                mul_x(ctx->gf_t8k[1][j]);
            }
            memcpy(ctx->gf_t8k[0][8], ctx->gf_t8k[1][1], CBLK_LEN);
            mul_x(ctx->gf_t8k[0][8]);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t8k[0][j], ctx->gf_t8k[0][j + j], CBLK_LEN);
                mul_x(ctx->gf_t8k[0][j]);
            }
        }
        else if(i > 1)
            for(j = 8; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t8k[i][j], ctx->gf_t8k[i - 2][j], CBLK_LEN);
                mul_x8(ctx->gf_t8k[i][j]);
            }

        for(j = 2; j < 16; j += j)
        {
            mode(32t) *pj = ctx->gf_t8k[i][j];
            mode(32t) *pk = ctx->gf_t8k[i][1];
            mode(32t) *pl = ctx->gf_t8k[i][j + 1];

            for(k = 1; k < j; ++k)
            {
                *pl++ = pj[0] ^ *pk++;
                *pl++ = pj[1] ^ *pk++;
                *pl++ = pj[2] ^ *pk++;
                *pl++ = pj[3] ^ *pk++;
            }
        }
    }
}


void compile_4k_table64(unsigned __int8 *a, GfCtx4k64 *ctx)
{   int i, j, k;

    memset(ctx->gf_t4k, 0, sizeof(ctx->gf_t4k));
    for(i = 0; i < 2 * CBLK_LEN8; ++i)
    {
        if(i == 0)
        {
            memcpy(ctx->gf_t4k[1][8], a, CBLK_LEN8);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t4k[1][j], ctx->gf_t4k[1][j + j], CBLK_LEN8);
                mul_x64(ctx->gf_t4k[1][j]);
            }
            memcpy(ctx->gf_t4k[0][8], ctx->gf_t4k[1][1], CBLK_LEN8);
            mul_x64(ctx->gf_t4k[0][8]);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t4k[0][j], ctx->gf_t4k[0][j + j], CBLK_LEN8);
                mul_x64(ctx->gf_t4k[0][j]);
            }
        }
        else if(i > 1)
            for(j = 8; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t4k[i][j], ctx->gf_t4k[i - 2][j], CBLK_LEN8);
                mul_x8_64(ctx->gf_t4k[i][j]);
            }

        for(j = 2; j < 16; j += j)
        {
            mode(32t) *pj = ctx->gf_t4k[i][j];
            mode(32t) *pk = ctx->gf_t4k[i][1];
            mode(32t) *pl = ctx->gf_t4k[i][j + 1];

            for(k = 1; k < j; ++k)
            {
                *pl++ = pj[0] ^ *pk++;
                *pl++ = pj[1] ^ *pk++;
                *pl++ = pj[2] ^ *pk++;
                *pl++ = pj[3] ^ *pk++;
            }
        }
    }
}

static int IsBitSet128 (unsigned int bit, unsigned __int8 *a)
{
	return a[(127 - bit) / 8] & (0x80 >> ((127 - bit) % 8));
}

static int IsBitSet64 (unsigned int bit, unsigned __int8 *a)
{
	return a[(63 - bit) / 8] & (0x80 >> ((63 - bit) % 8));
}

static void SetBit128 (unsigned int bit, unsigned __int8 *a)
{
	a[(127 - bit) / 8] |= 0x80 >> ((127 - bit) % 8);
}

static void SetBit64 (unsigned int bit, unsigned __int8 *a)
{
	a[(63 - bit) / 8] |= 0x80 >> ((63 - bit) % 8);
}

void MirrorBits128 (unsigned __int8 *a)
{
	unsigned __int8 t[128 / 8];
	int i;
	memset (t,0,16);
	for (i = 0; i < 128; i++)
	{
		if (IsBitSet128(i, a))
			SetBit128 (127 - i, t);
	}
	memcpy (a, t, sizeof (t));
	burn (t,sizeof (t));
}

void MirrorBits64 (unsigned __int8 *a)
{
	unsigned __int8 t[64 / 8];
	int i;
	memset (t,0,8);
	for (i = 0; i < 64; i++)
	{
		if (IsBitSet64(i, a))
			SetBit64 (63 - i, t);
	}
	memcpy (a, t, sizeof (t));
	burn (t,sizeof (t));
}

/* Allocate and initialize speed optimization table
   for multiplication by 64-bit operand in MSB-first mode */
int Gf128Tab64Init (unsigned __int8 *a, GfCtx *ctx)
{
	GfCtx8k *ctx8k;
	unsigned __int8 am[16];
	int i, j;

	ctx8k = (GfCtx8k *) TCalloc (sizeof (GfCtx8k));
	if (!ctx8k)
		return FALSE;

	memcpy (am, a, 16);
	MirrorBits128 (am);
    compile_8k_table (am, ctx8k);

	/* Convert 8k LSB-first table to 4k MSB-first */
	for (i = 16; i < 32; i++)
	{
		for (j = 0; j < 16; j++)
		{
			int jm = 0;
			jm |= (j & 0x1) << 3;
			jm |= (j & 0x2) << 1;
			jm |= (j & 0x4) >> 1;
			jm |= (j & 0x8) >> 3;

			memcpy (&ctx->gf_t128[i-16][jm], (unsigned char *)&ctx8k->gf_t8k[31-i][j], 16);
			MirrorBits128 ((unsigned char *)&ctx->gf_t128[i-16][jm]);
		}
	}

	burn (ctx8k ,sizeof (*ctx8k));
	burn (am, sizeof (am));
	TCfree (ctx8k);
	return TRUE;
}


#define xor_8kt64(i)   \
    xor_block_aligned(r, ctx->gf_t128[i + i][a[i] & 15]); \
    xor_block_aligned(r, ctx->gf_t128[i + i + 1][a[i] >> 4])

/* Multiply a 128-bit number by a 64-bit number in the finite field GF(2^128) */
void Gf128MulBy64Tab (unsigned __int8 a[8], unsigned __int8 p[16], GfCtx *ctx)
{
	unsigned __int32 r[CBLK_LEN >> 2];

	move_block_aligned(r, ctx->gf_t128[7*2][a[7] & 15]);
    xor_block_aligned(r,  ctx->gf_t128[7*2+1][a[7] >> 4]);

	if (*(unsigned __int16 *)a)
	{
		xor_8kt64(0);
		xor_8kt64(1);
	}
	if (a[2])
	{
		xor_8kt64(2);
	}
	xor_8kt64(3);
    xor_8kt64(4);
	xor_8kt64(5);
	xor_8kt64(6);

    move_block_aligned(p, r);
}



/* Basic algorithms for testing of optimized algorithms */

static void xor128 (uint64 *a, uint64 *b)
{
	*a++ ^= *b++;
	*a ^= *b;
}

static void shl128 (unsigned __int8 *a)
{
	int i, x = 0, xx;
	for (i = 15; i >= 0; i--)
	{
		xx = (a[i] & 0x80) >> 7;
		a[i] = (char) ((a[i] << 1) | x);
		x = xx;
	}
}

static void GfMul128Basic (unsigned __int8 *a, unsigned __int8 *b, unsigned __int8 *p)
{
	int i;
	unsigned __int8 la[16];
	memcpy (la, a, 16);
	memset (p, 0, 16);

	for (i = 0; i < 128; i++)
	{
		if (IsBitSet128 (i, b))
			xor128 ((uint64 *)p, (uint64 *)la);

		if (la[0] & 0x80)
		{
			shl128 (la);
			la[15] ^= 0x87;
		}
		else
		{
			shl128 (la);
		}
	}
}


BOOL GfMulSelfTest ()
{
	BOOL result = TRUE;
	unsigned __int8 a[16];
	unsigned __int8 b[16];
	unsigned __int8 p1[16];
	unsigned __int8 p2[16];
	GfCtx *gfCtx = (GfCtx *) TCalloc (sizeof (GfCtx));
	int i, j;

	if (!gfCtx)
		return FALSE;


	/* GF(2^128) */
	for (i = 0; i < 0x100; i++)
	{
		for (j = 0; j < 16; j++)
		{
			a[j] = (unsigned __int8) i;
			b[j] = j < 8 ? 0 : a[j] ^ 0xff;
		}

		GfMul128Basic (a, b, p1);

		Gf128Tab64Init (a, gfCtx);
		Gf128MulBy64Tab (b + 8, p2, gfCtx);

		if (memcmp (p1, p2, 16) != 0)
			result = FALSE;
	}

	TCfree (gfCtx);
	return result;
}

#if defined(__cplusplus)
}
#endif