diff options
Diffstat (limited to 'src/Common/Inflate.c')
-rw-r--r-- | src/Common/Inflate.c | 2642 |
1 files changed, 1321 insertions, 1321 deletions
diff --git a/src/Common/Inflate.c b/src/Common/Inflate.c index bf850e79..2d8c96b6 100644 --- a/src/Common/Inflate.c +++ b/src/Common/Inflate.c @@ -1,1321 +1,1321 @@ -/* inflate.c -- put in the public domain by Mark Adler */
-
-/* Decompresses raw data compressed using the DEFLATE algorithm (RFC 1951) */
-
-/* You can do whatever you like with this source file, though I would
- prefer that if you modify it and redistribute it that you include
- comments to that effect with your name and the date. Thank you.
-
- History:
- vers date who what
- ---- --------- -------------- ------------------------------------
- a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
- b1 21 Mar 92 M. Adler first version with partial lookup tables
- b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
- b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
- b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
- is the responsibility of unzip.h--also
- changed name to slide[]), so needs diffs
- for unzip.c and unzip.h (this allows
- compiling in the small model on MSDOS);
- fixed cast of q in huft_build();
- b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
- b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
- bug in inflate_fixed().
- c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
- changed BMAX to 16 for explode. Removed
- OUTB usage, and replaced it with flush()--
- this was a 20% speed improvement! Added
- an explode.c (to replace unimplod.c) that
- uses the huft routines here. Removed
- register union.
- c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
- c3 10 Apr 92 M. Adler reduced memory of code tables made by
- huft_build significantly (factor of two to
- three).
- c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
- worked around a Turbo C optimization bug.
- c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing
- the 32K window size for specialized
- applications.
- c6 31 May 92 M. Adler added some typecasts to eliminate warnings
- c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
- c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
- c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
- c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
- removed old inflate, renamed inflate_entry
- to inflate, added Mark's fix to a comment.
- c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
- c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
- tables, and removed assumption that EOB is
- the longest code (bad assumption).
- c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
- c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
- outputs one zero length code for an empty
- distance tree).
- c14 12 Mar 93 M. Adler made inflate.c standalone with the
- introduction of inflate.h.
- c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
- c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
- to static for Amiga.
- c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
- c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
- c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
- conditional; added inflate_free().
- c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
- c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
- c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
- G. Roelofs check NEXTBYTE macro for EOF.
- c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
- EOF check.
- c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
- c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
- to avoid bug in Encore compiler.
- c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
- inflate_codes() (define ASM_INFLATECODES)
- c14n 22 Jul 94 G. Roelofs changed fprintf to macro for DLL versions
- c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
- G. Roelofs added another typecast to avoid MSC warning
- c14p 4 Oct 94 G. Roelofs added (voidp *) cast to free() argument
- c14q 30 Oct 94 G. Roelofs changed fprintf macro to MESSAGE()
- c14r 1 Nov 94 G. Roelofs fixed possible redefinition of CHECK_EOF
- c14s 7 May 95 S. Maxwell OS/2 DLL globals stuff incorporated;
- P. Kienitz "fixed" ASM_INFLATECODES macro/prototype
- c14t 18 Aug 95 G. Roelofs added inflate() to use zlib functions;
- changed voidp to zvoid; moved huft_build()
- and huft_free() to end of file
- c14u 1 Oct 95 G. Roelofs moved G into definition of MESSAGE macro
- c14v 8 Nov 95 P. Kienitz changed ASM_INFLATECODES to use a regular
- call with __G__ instead of a macro
- c15 3 Aug 96 M. Adler fixed bomb-bug on random input data (Adobe)
- c15b 24 Aug 96 M. Adler more fixes for random input data
- c15c 28 Mar 97 G. Roelofs changed USE_ZLIB fatal exit code from
- PK_MEM2 to PK_MEM3
- c16 20 Apr 97 J. Altman added memzero(v[]) in huft_build()
- c16b 29 Mar 98 C. Spieler modified DLL code for slide redirection
-
- fork 12 Dec 07 Adapted for TrueCrypt
- */
-
-
-/*
- Inflate deflated (PKZIP's method 8 compressed) data. The compression
- method searches for as much of the current string of bytes (up to a
- length of 258) in the previous 32K bytes. If it doesn't find any
- matches (of at least length 3), it codes the next byte. Otherwise, it
- codes the length of the matched string and its distance backwards from
- the current position. There is a single Huffman code that codes both
- single bytes (called "literals") and match lengths. A second Huffman
- code codes the distance information, which follows a length code. Each
- length or distance code actually represents a base value and a number
- of "extra" (sometimes zero) bits to get to add to the base value. At
- the end of each deflated block is a special end-of-block (EOB) literal/
- length code. The decoding process is basically: get a literal/length
- code; if EOB then done; if a literal, emit the decoded byte; if a
- length then get the distance and emit the referred-to bytes from the
- sliding window of previously emitted data.
-
- There are (currently) three kinds of inflate blocks: stored, fixed, and
- dynamic. The compressor outputs a chunk of data at a time and decides
- which method to use on a chunk-by-chunk basis. A chunk might typically
- be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
- "stored" method is used. In this case, the bytes are simply stored as
- is, eight bits per byte, with none of the above coding. The bytes are
- preceded by a count, since there is no longer an EOB code.
-
- If the data are compressible, then either the fixed or dynamic methods
- are used. In the dynamic method, the compressed data are preceded by
- an encoding of the literal/length and distance Huffman codes that are
- to be used to decode this block. The representation is itself Huffman
- coded, and so is preceded by a description of that code. These code
- descriptions take up a little space, and so for small blocks, there is
- a predefined set of codes, called the fixed codes. The fixed method is
- used if the block ends up smaller that way (usually for quite small
- chunks); otherwise the dynamic method is used. In the latter case, the
- codes are customized to the probabilities in the current block and so
- can code it much better than the pre-determined fixed codes can.
-
- The Huffman codes themselves are decoded using a multi-level table
- lookup, in order to maximize the speed of decoding plus the speed of
- building the decoding tables. See the comments below that precede the
- lbits and dbits tuning parameters.
-
- GRR: return values(?)
- 0 OK
- 1 incomplete table
- 2 bad input
- 3 not enough memory
- */
-
-
-/*
- Notes beyond the 1.93a appnote.txt:
-
- 1. Distance pointers never point before the beginning of the output
- stream.
- 2. Distance pointers can point back across blocks, up to 32k away.
- 3. There is an implied maximum of 7 bits for the bit length table and
- 15 bits for the actual data.
- 4. If only one code exists, then it is encoded using one bit. (Zero
- would be more efficient, but perhaps a little confusing.) If two
- codes exist, they are coded using one bit each (0 and 1).
- 5. There is no way of sending zero distance codes--a dummy must be
- sent if there are none. (History: a pre 2.0 version of PKZIP would
- store blocks with no distance codes, but this was discovered to be
- too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
- zero distance codes, which is sent as one code of zero bits in
- length.
- 6. There are up to 286 literal/length codes. Code 256 represents the
- end-of-block. Note however that the static length tree defines
- 288 codes just to fill out the Huffman codes. Codes 286 and 287
- cannot be used though, since there is no length base or extra bits
- defined for them. Similarily, there are up to 30 distance codes.
- However, static trees define 32 codes (all 5 bits) to fill out the
- Huffman codes, but the last two had better not show up in the data.
- 7. Unzip can check dynamic Huffman blocks for complete code sets.
- The exception is that a single code would not be complete (see #4).
- 8. The five bits following the block type is really the number of
- literal codes sent minus 257.
- 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
- (1+6+6). Therefore, to output three times the length, you output
- three codes (1+1+1), whereas to output four times the same length,
- you only need two codes (1+3). Hmm.
- 10. In the tree reconstruction algorithm, Code = Code + Increment
- only if BitLength(i) is not zero. (Pretty obvious.)
- 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
- 12. Note: length code 284 can represent 227-258, but length code 285
- really is 258. The last length deserves its own, short code
- since it gets used a lot in very redundant files. The length
- 258 is special since 258 - 3 (the min match length) is 255.
- 13. The literal/length and distance code bit lengths are read as a
- single stream of lengths. It is possible (and advantageous) for
- a repeat code (16, 17, or 18) to go across the boundary between
- the two sets of lengths.
- */
-
-
-/* #define DEBUG */
-#define INFMOD /* tell inflate.h to include code to be compiled */
-#include "inflate.h"
-
-
-#ifndef WSIZE /* default is 32K */
-# define WSIZE 0x8000 /* window size--must be a power of two, and at least */
-#endif /* 32K for zip's deflate method */
-
-#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
-# define wsize G._wsize /* wsize is a variable */
-#else
-# define wsize WSIZE /* wsize is a constant */
-#endif
-
-
-#ifndef NEXTBYTE /* default is to simply get a byte from stdin */
-# define NEXTBYTE getchar()
-#endif
-
-#ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */
-# define MESSAGE(str,len,flag) fprintf(stderr,(char *)(str))
-#endif
-
-#ifndef FLUSH /* default is to simply write the buffer to stdout */
-# define FLUSH(n) fwrite(redirSlide, 1, n, stdout) /* return value not used */
-#endif
-/* Warning: the fwrite above might not work on 16-bit compilers, since
- 0x8000 might be interpreted as -32,768 by the library function. */
-
-#ifndef Trace
-# ifdef DEBUG
-# define Trace(x) fprintf x
-# else
-# define Trace(x)
-# endif
-#endif
-
-G_struct G;
-uch redirSlide [WSIZE];
-
-/*---------------------------------------------------------------------------*/
-#ifdef USE_ZLIB
-
-
-/*
- GRR: return values for both original inflate() and inflate()
- 0 OK
- 1 incomplete table(?)
- 2 bad input
- 3 not enough memory
- */
-
-/**************************/
-/* Function inflate() */
-/**************************/
-
-int inflate(__G) /* decompress an inflated entry using the zlib routines */
- __GDEF
-{
- int err=Z_OK;
-
-#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
- if (G.redirect_slide)
- wsize = G.redirect_size, redirSlide = G.redirect_buffer;
- else
- wsize = WSIZE, redirSlide = slide;
-#endif
-
- G.dstrm.next_out = redirSlide;
- G.dstrm.avail_out = wsize;
-
- G.dstrm.next_in = G.inptr;
- G.dstrm.avail_in = G.incnt;
-
- if (!G.inflInit) {
- unsigned i;
- int windowBits;
-
- /* only need to test this stuff once */
- if (zlib_version[0] != ZLIB_VERSION[0]) {
- Info(slide, 0x21, ((char *)slide,
- "error: incompatible zlib version (expected %s, found %s)\n",
- ZLIB_VERSION, zlib_version));
- return 3;
- } else if (strcmp(zlib_version, ZLIB_VERSION) != 0)
- Info(slide, 0x21, ((char *)slide,
- "warning: different zlib version (expected %s, using %s)\n",
- ZLIB_VERSION, zlib_version));
-
- /* windowBits = log2(wsize) */
- for (i = ((unsigned)wsize * 2 - 1), windowBits = 0;
- !(i & 1); i >>= 1, ++windowBits);
- if ((unsigned)windowBits > (unsigned)15)
- windowBits = 15;
- else if (windowBits < 8)
- windowBits = 8;
-
- G.dstrm.zalloc = (alloc_func)Z_NULL;
- G.dstrm.zfree = (free_func)Z_NULL;
-
- Trace((stderr, "initializing inflate()\n"));
- err = inflateInit2(&G.dstrm, -windowBits);
-
- if (err == Z_MEM_ERROR)
- return 3;
- else if (err != Z_OK)
- Trace((stderr, "oops! (inflateInit2() err = %d)\n", err));
- G.inflInit = 1;
- }
-
-#ifdef FUNZIP
- while (err != Z_STREAM_END) {
-#else /* !FUNZIP */
- while (G.csize > 0) {
- Trace((stderr, "first loop: G.csize = %ld\n", G.csize));
-#endif /* ?FUNZIP */
- while (G.dstrm.avail_out > 0) {
- err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
-
- if (err == Z_DATA_ERROR)
- return 2;
- else if (err == Z_MEM_ERROR)
- return 3;
- else if (err != Z_OK && err != Z_STREAM_END)
- Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err));
-
-#ifdef FUNZIP
- if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */
-#else /* !FUNZIP */
- if (G.csize <= 0L) /* "END-of-entry-condition" ? */
-#endif /* ?FUNZIP */
- break;
-
- if (G.dstrm.avail_in <= 0) {
- if (fillinbuf(__G) == 0)
- return 2; /* no "END-condition" yet, but no more data */
-
- G.dstrm.next_in = G.inptr;
- G.dstrm.avail_in = G.incnt;
- }
- Trace((stderr, " avail_in = %d\n", G.dstrm.avail_in));
- }
- FLUSH(wsize - G.dstrm.avail_out); /* flush slide[] */
- Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n",
- (long)(wsize - G.dstrm.avail_out),
- (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
- G.dstrm.next_out = redirSlide;
- G.dstrm.avail_out = wsize;
- }
-
- /* no more input, so loop until we have all output */
- Trace((stderr, "beginning final loop: err = %d\n", err));
- while (err != Z_STREAM_END) {
- err = inflate(&G.dstrm, Z_PARTIAL_FLUSH);
- if (err == Z_DATA_ERROR)
- return 2;
- else if (err == Z_MEM_ERROR)
- return 3;
- else if (err == Z_BUF_ERROR) { /* DEBUG */
- Trace((stderr, "zlib inflate() did not detect stream end (%s, %s)\n"
- , G.zipfn, G.filename));
- break;
- } else if (err != Z_OK && err != Z_STREAM_END) {
- Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err));
- DESTROYGLOBALS()
- EXIT(PK_MEM3);
- }
- FLUSH(wsize - G.dstrm.avail_out); /* final flush of slide[] */
- Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n",
- (long)(wsize - G.dstrm.avail_out),
- (long)(G.dstrm.next_out-(Bytef *)redirSlide)));
- G.dstrm.next_out = redirSlide;
- G.dstrm.avail_out = wsize;
- }
- Trace((stderr, "total in = %ld, total out = %ld\n", G.dstrm.total_in,
- G.dstrm.total_out));
-
- G.inptr = (uch *)G.dstrm.next_in;
- G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */
-
- err = inflateReset(&G.dstrm);
- if (err != Z_OK)
- Trace((stderr, "oops! (inflateReset() err = %d)\n", err));
-
- return 0;
-}
-
-
-/*---------------------------------------------------------------------------*/
-#else /* !USE_ZLIB */
-
-
-/* Function prototypes */
-#ifndef OF
-# ifdef __STDC__
-# define OF(a) a
-# else
-# define OF(a) ()
-# endif
-#endif /* !OF */
-int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td,
- int bl, int bd));
-static int inflate_stored OF((__GPRO));
-static int inflate_fixed OF((__GPRO));
-static int inflate_dynamic OF((__GPRO));
-static int inflate_block OF((__GPRO__ int *e));
-
-
-/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
- stream to find repeated byte strings. This is implemented here as a
- circular buffer. The index is updated simply by incrementing and then
- and'ing with 0x7fff (32K-1). */
-/* It is left to other modules to supply the 32K area. It is assumed
- to be usable as if it were declared "uch slide[32768];" or as just
- "uch *slide;" and then malloc'ed in the latter case. The definition
- must be in unzip.h, included above. */
-
-
-/* unsigned wp; moved to globals.h */ /* current position in slide */
-
-
-/* Tables for deflate from PKZIP's appnote.txt. */
-static ZCONST unsigned border[] = { /* Order of the bit length code lengths */
- 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
-static ZCONST ush cplens[] = { /* Copy lengths for literal codes 257..285 */
- 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
- 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
- /* note: see note #13 above about the 258 in this list. */
-static ZCONST ush cplext[] = { /* Extra bits for literal codes 257..285 */
- 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
- 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
-static ZCONST ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
- 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
- 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
- 8193, 12289, 16385, 24577};
-static ZCONST ush cpdext[] = { /* Extra bits for distance codes */
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
- 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
- 12, 12, 13, 13};
-
-
-/* moved to consts.h (included in unzip.c), resp. funzip.c */
-#if 1
-/* And'ing with mask_bits[n] masks the lower n bits */
-ZCONST ush near mask_bits[] = {
- 0x0000,
- 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
- 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
-};
-#endif /* 0 */
-
-
-/* Macros for inflate() bit peeking and grabbing.
- The usage is:
-
- NEEDBITS(j)
- x = b & mask_bits[j];
- DUMPBITS(j)
-
- where NEEDBITS makes sure that b has at least j bits in it, and
- DUMPBITS removes the bits from b. The macros use the variable k
- for the number of bits in b. Normally, b and k are register
- variables for speed and are initialized at the begining of a
- routine that uses these macros from a global bit buffer and count.
-
- In order to not ask for more bits than there are in the compressed
- stream, the Huffman tables are constructed to only ask for just
- enough bits to make up the end-of-block code (value 256). Then no
- bytes need to be "returned" to the buffer at the end of the last
- block. See the huft_build() routine.
- */
-
-/* These have been moved to globals.h */
-#if 0
-ulg bb; /* bit buffer */
-unsigned bk; /* bits in bit buffer */
-#endif
-
-#ifndef CHECK_EOF
-# define CHECK_EOF /* default as of 5.13/5.2 */
-#endif
-
-#ifndef CHECK_EOF
-# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}}
-#else
-# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\
- b|=((ulg)c)<<k;k+=8;}}
-#endif /* Piet Plomp: change "return 1" to "break" */
-
-#define DUMPBITS(n) {b>>=(n);k-=(n);}
-
-
-/*
- Huffman code decoding is performed using a multi-level table lookup.
- The fastest way to decode is to simply build a lookup table whose
- size is determined by the longest code. However, the time it takes
- to build this table can also be a factor if the data being decoded
- are not very long. The most common codes are necessarily the
- shortest codes, so those codes dominate the decoding time, and hence
- the speed. The idea is you can have a shorter table that decodes the
- shorter, more probable codes, and then point to subsidiary tables for
- the longer codes. The time it costs to decode the longer codes is
- then traded against the time it takes to make longer tables.
-
- This results of this trade are in the variables lbits and dbits
- below. lbits is the number of bits the first level table for literal/
- length codes can decode in one step, and dbits is the same thing for
- the distance codes. Subsequent tables are also less than or equal to
- those sizes. These values may be adjusted either when all of the
- codes are shorter than that, in which case the longest code length in
- bits is used, or when the shortest code is *longer* than the requested
- table size, in which case the length of the shortest code in bits is
- used.
-
- There are two different values for the two tables, since they code a
- different number of possibilities each. The literal/length table
- codes 286 possible values, or in a flat code, a little over eight
- bits. The distance table codes 30 possible values, or a little less
- than five bits, flat. The optimum values for speed end up being
- about one bit more than those, so lbits is 8+1 and dbits is 5+1.
- The optimum values may differ though from machine to machine, and
- possibly even between compilers. Your mileage may vary.
- */
-
-static ZCONST int lbits = 9; /* bits in base literal/length lookup table */
-static ZCONST int dbits = 6; /* bits in base distance lookup table */
-
-
-#ifndef ASM_INFLATECODES
-
-#pragma warning(disable:4131)
-
-int inflate_codes(__G__ tl, td, bl, bd)
- __GDEF
-struct huft *tl, *td; /* literal/length and distance decoder tables */
-int bl, bd; /* number of bits decoded by tl[] and td[] */
-/* inflate (decompress) the codes in a deflated (compressed) block.
- Return an error code or zero if it all goes ok. */
-{
- register unsigned e; /* table entry flag/number of extra bits */
- unsigned n, d; /* length and index for copy */
- unsigned w; /* current window position */
- struct huft *t; /* pointer to table entry */
- unsigned ml, md; /* masks for bl and bd bits */
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local copies of globals */
- b = G.bb; /* initialize bit buffer */
- k = G.bk;
- w = G.wp; /* initialize window position */
-
-
- /* inflate the coded data */
- ml = mask_bits[bl]; /* precompute masks for speed */
- md = mask_bits[bd];
- while (1) /* do until end of block */
- {
- NEEDBITS((unsigned)bl)
- if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
- do {
- if (e == 99)
- return 1;
- DUMPBITS(t->b)
- e -= 16;
- NEEDBITS(e)
- } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
- DUMPBITS(t->b)
- if (e == 16) /* then it's a literal */
- {
- redirSlide[w++] = (uch)t->v.n;
- if (w == wsize)
- {
- FLUSH(w);
- w = 0;
- }
- }
- else /* it's an EOB or a length */
- {
- /* exit if end of block */
- if (e == 15)
- break;
-
- /* get length of block to copy */
- NEEDBITS(e)
- n = t->v.n + ((unsigned)b & mask_bits[e]);
- DUMPBITS(e);
-
- /* decode distance of block to copy */
- NEEDBITS((unsigned)bd)
- if ((e = (t = td + ((unsigned)b & md))->e) > 16)
- do {
- if (e == 99)
- return 1;
- DUMPBITS(t->b)
- e -= 16;
- NEEDBITS(e)
- } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
- DUMPBITS(t->b)
- NEEDBITS(e)
- d = w - t->v.n - ((unsigned)b & mask_bits[e]);
- DUMPBITS(e)
-
- /* do the copy */
- do {
-#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
- if (G.redirect_slide) {/* &= w/ wsize unnecessary & wrong if redirect */
- if (d >= wsize)
- return 1; /* invalid compressed data */
- n -= (e = (e = wsize - (d > w ? d : w)) > n ? n : e);
- }
- else
-#endif
- n -= (e = (e = wsize - ((d &= wsize-1) > w ? d : w)) > n ? n : e);
-#ifndef NOMEMCPY
- if (w - d >= e) /* (this test assumes unsigned comparison) */
- {
- memcpy(redirSlide + w, redirSlide + d, e);
- w += e;
- d += e;
- }
- else /* do it slowly to avoid memcpy() overlap */
-#endif /* !NOMEMCPY */
- do {
- redirSlide[w++] = redirSlide[d++];
- } while (--e);
- if (w == wsize)
- {
- FLUSH(w);
- w = 0;
- }
- } while (n);
- }
- }
-
-
- /* restore the globals from the locals */
- G.wp = w; /* restore global window pointer */
- G.bb = b; /* restore global bit buffer */
- G.bk = k;
-
-
- /* done */
- return 0;
-}
-
-#endif /* ASM_INFLATECODES */
-
-
-
-static int inflate_stored(__G)
- __GDEF
-/* "decompress" an inflated type 0 (stored) block. */
-{
- unsigned n; /* number of bytes in block */
- unsigned w; /* current window position */
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local copies of globals */
- Trace((stderr, "\nstored block"));
- b = G.bb; /* initialize bit buffer */
- k = G.bk;
- w = G.wp; /* initialize window position */
-
-
- /* go to byte boundary */
- n = k & 7;
- DUMPBITS(n);
-
-
- /* get the length and its complement */
- NEEDBITS(16)
- n = ((unsigned)b & 0xffff);
- DUMPBITS(16)
- NEEDBITS(16)
- if (n != (unsigned)((~b) & 0xffff))
- return 1; /* error in compressed data */
- DUMPBITS(16)
-
-
- /* read and output the compressed data */
- while (n--)
- {
- NEEDBITS(8)
- redirSlide[w++] = (uch)b;
- if (w == wsize)
- {
- FLUSH(w);
- w = 0;
- }
- DUMPBITS(8)
- }
-
-
- /* restore the globals from the locals */
- G.wp = w; /* restore global window pointer */
- G.bb = b; /* restore global bit buffer */
- G.bk = k;
- return 0;
-}
-
-
-/* Globals for literal tables (built once) */
-/* Moved to globals.h */
-#if 0
-struct huft *fixed_tl = (struct huft *)NULL;
-struct huft *fixed_td;
-int fixed_bl, fixed_bd;
-#endif
-
-static int inflate_fixed(__G)
- __GDEF
-/* decompress an inflated type 1 (fixed Huffman codes) block. We should
- either replace this with a custom decoder, or at least precompute the
- Huffman tables. */
-{
- /* if first time, set up tables for fixed blocks */
- Trace((stderr, "\nliteral block"));
- if (G.fixed_tl == (struct huft *)NULL)
- {
- int i; /* temporary variable */
- unsigned l[288]; /* length list for huft_build */
-
- /* literal table */
- for (i = 0; i < 144; i++)
- l[i] = 8;
- for (; i < 256; i++)
- l[i] = 9;
- for (; i < 280; i++)
- l[i] = 7;
- for (; i < 288; i++) /* make a complete, but wrong code set */
- l[i] = 8;
- G.fixed_bl = 7;
- if ((i = huft_build(__G__ l, 288, 257, cplens, cplext,
- &G.fixed_tl, &G.fixed_bl)) != 0)
- {
- G.fixed_tl = (struct huft *)NULL;
- return i;
- }
-
- /* distance table */
- for (i = 0; i < 30; i++) /* make an incomplete code set */
- l[i] = 5;
- G.fixed_bd = 5;
- if ((i = huft_build(__G__ l, 30, 0, cpdist, cpdext,
- &G.fixed_td, &G.fixed_bd)) > 1)
- {
- huft_free(G.fixed_tl);
- G.fixed_tl = (struct huft *)NULL;
- return i;
- }
- }
-
- /* decompress until an end-of-block code */
- return inflate_codes(__G__ G.fixed_tl, G.fixed_td,
- G.fixed_bl, G.fixed_bd) != 0;
-}
-
-
-
-static int inflate_dynamic(__G)
- __GDEF
-/* decompress an inflated type 2 (dynamic Huffman codes) block. */
-{
- int i; /* temporary variables */
- unsigned j;
- unsigned l; /* last length */
- unsigned m; /* mask for bit lengths table */
- unsigned n; /* number of lengths to get */
- struct huft *tl; /* literal/length code table */
- struct huft *td; /* distance code table */
- int bl; /* lookup bits for tl */
- int bd; /* lookup bits for td */
- unsigned nb; /* number of bit length codes */
- unsigned nl; /* number of literal/length codes */
- unsigned nd; /* number of distance codes */
-#ifdef PKZIP_BUG_WORKAROUND
- unsigned ll[288+32]; /* literal/length and distance code lengths */
-#else
- unsigned ll[286+30]; /* literal/length and distance code lengths */
-#endif
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local bit buffer */
- Trace((stderr, "\ndynamic block"));
- b = G.bb;
- k = G.bk;
-
-
- /* read in table lengths */
- NEEDBITS(5)
- nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
- DUMPBITS(5)
- NEEDBITS(5)
- nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
- DUMPBITS(5)
- NEEDBITS(4)
- nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
- DUMPBITS(4)
-#ifdef PKZIP_BUG_WORKAROUND
- if (nl > 288 || nd > 32)
-#else
- if (nl > 286 || nd > 30)
-#endif
- return 1; /* bad lengths */
-
-
- /* read in bit-length-code lengths */
- for (j = 0; j < nb; j++)
- {
- NEEDBITS(3)
- ll[border[j]] = (unsigned)b & 7;
- DUMPBITS(3)
- }
- for (; j < 19; j++)
- ll[border[j]] = 0;
-
-
- /* build decoding table for trees--single level, 7 bit lookup */
- bl = 7;
- i = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl);
- if (bl == 0) /* no bit lengths */
- i = 1;
- if (i)
- {
- if (i == 1)
- huft_free(tl);
- return i; /* incomplete code set */
- }
-
-
- /* read in literal and distance code lengths */
- n = nl + nd;
- m = mask_bits[bl];
- i = l = 0;
- while ((unsigned)i < n)
- {
- NEEDBITS((unsigned)bl)
- j = (td = tl + ((unsigned)b & m))->b;
- DUMPBITS(j)
- j = td->v.n;
- if (j < 16) /* length of code in bits (0..15) */
- ll[i++] = l = j; /* save last length in l */
- else if (j == 16) /* repeat last length 3 to 6 times */
- {
- NEEDBITS(2)
- j = 3 + ((unsigned)b & 3);
- DUMPBITS(2)
- if ((unsigned)i + j > n)
- {
- huft_free(tl);
- return 1;
- }
- while (j--)
- ll[i++] = l;
- }
- else if (j == 17) /* 3 to 10 zero length codes */
- {
- NEEDBITS(3)
- j = 3 + ((unsigned)b & 7);
- DUMPBITS(3)
- if ((unsigned)i + j > n)
- {
- huft_free(tl);
- return 1;
- }
- while (j--)
- ll[i++] = 0;
- l = 0;
- }
- else /* j == 18: 11 to 138 zero length codes */
- {
- NEEDBITS(7)
- j = 11 + ((unsigned)b & 0x7f);
- DUMPBITS(7)
- if ((unsigned)i + j > n)
- {
- huft_free(tl);
- return 1;
- }
- while (j--)
- ll[i++] = 0;
- l = 0;
- }
- }
-
-
- /* free decoding table for trees */
- huft_free(tl);
-
-
- /* restore the global bit buffer */
- G.bb = b;
- G.bk = k;
-
-
- /* build the decoding tables for literal/length and distance codes */
- bl = lbits;
- i = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl);
- if (bl == 0) /* no literals or lengths */
- i = 1;
- if (i)
- {
- if (i == 1) {
- //if (!uO.qflag)
- MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1);
- huft_free(tl);
- }
- return i; /* incomplete code set */
- }
- bd = dbits;
- i = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
- if (bd == 0 && nl > 257) /* lengths but no distances */
- {
- //if (!uO.qflag)
- MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
- huft_free(tl);
- huft_free(td);
- return 1;
- }
- if (i == 1) {
-#ifdef PKZIP_BUG_WORKAROUND
- i = 0;
-#else
- //if (!uO.qflag)
- MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1);
- huft_free(td);
- td = NULL;
-#endif
- }
- if (i)
- {
- huft_free(tl);
- return i;
- }
-
-
- /* decompress until an end-of-block code */
- i = inflate_codes(__G__ tl, td, bl, bd);
-
- /* free the decoding tables, return */
- huft_free(tl);
- huft_free(td);
-
- if (i)
- return 1;
-
- return 0;
-}
-
-
-
-static int inflate_block(__G__ e)
- __GDEF
- int *e; /* last block flag */
-/* decompress an inflated block */
-{
- unsigned t; /* block type */
- register ulg b; /* bit buffer */
- register unsigned k; /* number of bits in bit buffer */
-
-
- /* make local bit buffer */
- b = G.bb;
- k = G.bk;
-
-
- /* read in last block bit */
- NEEDBITS(1)
- *e = (int)b & 1;
- DUMPBITS(1)
-
-
- /* read in block type */
- NEEDBITS(2)
- t = (unsigned)b & 3;
- DUMPBITS(2)
-
-
- /* restore the global bit buffer */
- G.bb = b;
- G.bk = k;
-
-
- /* inflate that block type */
- if (t == 2)
- return inflate_dynamic(__G);
- if (t == 0)
- return inflate_stored(__G);
- if (t == 1)
- return inflate_fixed(__G);
-
-
- /* bad block type */
- return 2;
-}
-
-
-
-int inflate(__G)
- __GDEF
-/* decompress an inflated entry */
-{
- int e; /* last block flag */
- int r; /* result code */
-//#ifdef DEBUG
-// unsigned h = 0; /* maximum struct huft's malloc'ed */
-//#endif
-
-#if (defined(DLL) && !defined(NO_SLIDE_REDIR))
- if (G.redirect_slide)
- wsize = G.redirect_size, redirSlide = G.redirect_buffer;
- else
- wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */
-#endif
-
- /* initialize window, bit buffer */
- G.wp = 0;
- G.bk = 0;
- G.bb = 0;
-
-
- /* decompress until the last block */
- do {
-//#ifdef DEBUG
-// G.hufts = 0;
-//#endif
- if ((r = inflate_block(__G__ &e)) != 0)
- return r;
-//#ifdef DEBUG
-// if (G.hufts > h)
-// h = G.hufts;
-//#endif
- } while (!e);
-
-
- /* flush out redirSlide */
- FLUSH(G.wp);
-
-
- /* return success */
- //Trace((stderr, "\n%u bytes in Huffman tables (%d/entry)\n",
- // h * sizeof(struct huft), sizeof(struct huft)));
- return 0;
-}
-
-
-
-int inflate_free(__G)
- __GDEF
-{
- if (G.fixed_tl != (struct huft *)NULL)
- {
- huft_free(G.fixed_td);
- huft_free(G.fixed_tl);
- G.fixed_td = G.fixed_tl = (struct huft *)NULL;
- }
- return 0;
-}
-
-#endif /* ?USE_ZLIB */
-
-
-/*
- * GRR: moved huft_build() and huft_free() down here; used by explode()
- * and fUnZip regardless of whether USE_ZLIB defined or not
- */
-
-
-/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
-#define BMAX 16 /* maximum bit length of any code (16 for explode) */
-#define N_MAX 288 /* maximum number of codes in any set */
-
-
-int huft_build(
- __GDEF
- ZCONST unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
- unsigned n, /* number of codes (assumed <= N_MAX) */
- unsigned s, /* number of simple-valued codes (0..s-1) */
- ZCONST ush *d, /* list of base values for non-simple codes */
- ZCONST ush *e, /* list of extra bits for non-simple codes */
- struct huft **t, /* result: starting table */
- int *m /* maximum lookup bits, returns actual */
- )
-/* Given a list of code lengths and a maximum table size, make a set of
- tables to decode that set of codes. Return zero on success, one if
- the given code set is incomplete (the tables are still built in this
- case), two if the input is invalid (all zero length codes or an
- oversubscribed set of lengths), and three if not enough memory.
- The code with value 256 is special, and the tables are constructed
- so that no bits beyond that code are fetched when that code is
- decoded. */
-{
- unsigned a; /* counter for codes of length k */
- unsigned c[BMAX+1]; /* bit length count table */
- unsigned el; /* length of EOB code (value 256) */
- unsigned f; /* i repeats in table every f entries */
- int g; /* maximum code length */
- int h; /* table level */
- register unsigned i; /* counter, current code */
- register unsigned j; /* counter */
- register int k; /* number of bits in current code */
- int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */
- int *l = lx+1; /* stack of bits per table */
- register unsigned *p; /* pointer into c[], b[], or v[] */
- register struct huft *q; /* points to current table */
- struct huft r; /* table entry for structure assignment */
- struct huft *u[BMAX]; /* table stack */
- unsigned v[N_MAX]; /* values in order of bit length */
- register int w; /* bits before this table == (l * h) */
- unsigned x[BMAX+1]; /* bit offsets, then code stack */
- unsigned *xp; /* pointer into x */
- int y; /* number of dummy codes added */
- unsigned z; /* number of entries in current table */
-
-
- /* Generate counts for each bit length */
- el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
- memset(c, 0, sizeof(c));
- p = (unsigned *)b; i = n;
- do {
- c[*p]++; p++; /* assume all entries <= BMAX */
- } while (--i);
- if (c[0] == n) /* null input--all zero length codes */
- {
- *t = (struct huft *)NULL;
- *m = 0;
- return 0;
- }
-
-
- /* Find minimum and maximum length, bound *m by those */
- for (j = 1; j <= BMAX; j++)
- if (c[j])
- break;
- k = j; /* minimum code length */
- if ((unsigned)*m < j)
- *m = j;
- for (i = BMAX; i; i--)
- if (c[i])
- break;
- g = i; /* maximum code length */
- if ((unsigned)*m > i)
- *m = i;
-
-
- /* Adjust last length count to fill out codes, if needed */
- for (y = 1 << j; j < i; j++, y <<= 1)
- if ((y -= c[j]) < 0)
- return 2; /* bad input: more codes than bits */
- if ((y -= c[i]) < 0)
- return 2;
- c[i] += y;
-
-
- /* Generate starting offsets into the value table for each length */
- x[1] = j = 0;
- p = c + 1; xp = x + 2;
- while (--i) { /* note that i == g from above */
- *xp++ = (j += *p++);
- }
-
-
- /* Make a table of values in order of bit lengths */
- memset(v, 0, sizeof(v));
- p = (unsigned *)b; i = 0;
- do {
- if ((j = *p++) != 0)
- v[x[j]++] = i;
- } while (++i < n);
- n = x[g]; /* set n to length of v */
-
-
- /* Generate the Huffman codes and for each, make the table entries */
- x[0] = i = 0; /* first Huffman code is zero */
- p = v; /* grab values in bit order */
- h = -1; /* no tables yet--level -1 */
- w = l[-1] = 0; /* no bits decoded yet */
- u[0] = (struct huft *)NULL; /* just to keep compilers happy */
- q = (struct huft *)NULL; /* ditto */
- z = 0; /* ditto */
-
- /* go through the bit lengths (k already is bits in shortest code) */
- for (; k <= g; k++)
- {
- a = c[k];
- while (a--)
- {
- /* here i is the Huffman code of length k bits for value *p */
- /* make tables up to required level */
- while (k > w + l[h])
- {
- w += l[h++]; /* add bits already decoded */
-
- /* compute minimum size table less than or equal to *m bits */
- z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */
- if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
- { /* too few codes for k-w bit table */
- f -= a + 1; /* deduct codes from patterns left */
- xp = c + k;
- while (++j < z) /* try smaller tables up to z bits */
- {
- if ((f <<= 1) <= *++xp)
- break; /* enough codes to use up j bits */
- f -= *xp; /* else deduct codes from patterns */
- }
- }
- if ((unsigned)w + j > el && (unsigned)w < el)
- j = el - w; /* make EOB code end at table */
- z = 1 << j; /* table entries for j-bit table */
- l[h] = j; /* set table size in stack */
-
- /* allocate and link in new table */
- if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
- (struct huft *)NULL)
- {
- if (h)
- huft_free(u[0]);
- return 3; /* not enough memory */
- }
-//#ifdef DEBUG
-// G.hufts += z + 1; /* track memory usage */
-//#endif
- *t = q + 1; /* link to list for huft_free() */
- *(t = &(q->v.t)) = (struct huft *)NULL;
- u[h] = ++q; /* table starts after link */
-
- /* connect to last table, if there is one */
- if (h)
- {
- x[h] = i; /* save pattern for backing up */
- r.b = (uch)l[h-1]; /* bits to dump before this table */
- r.e = (uch)(16 + j); /* bits in this table */
- r.v.t = q; /* pointer to this table */
- j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
- u[h-1][j] = r; /* connect to last table */
- }
- }
-
- /* set up table entry in r */
- r.b = (uch)(k - w);
- if (p >= v + n)
- r.e = 99; /* out of values--invalid code */
- else if (*p < s)
- {
- r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
- r.v.n = (ush)*p++; /* simple code is just the value */
- }
- else
- {
- r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
- r.v.n = d[*p++ - s];
- }
-
- /* fill code-like entries with r */
- f = 1 << (k - w);
- for (j = i >> w; j < z; j += f)
- q[j] = r;
-
- /* backwards increment the k-bit code i */
- for (j = 1 << (k - 1); i & j; j >>= 1)
- i ^= j;
- i ^= j;
-
- /* backup over finished tables */
- while ((i & ((1 << w) - 1)) != x[h])
- w -= l[--h]; /* don't need to update q */
- }
- }
-
-
- /* return actual size of base table */
- *m = l[0];
-
-
- /* Return true (1) if we were given an incomplete table */
- return y != 0 && g != 1;
-}
-
-
-
-int huft_free (struct huft *t)
- /* table to free */
-/* Free the malloc'ed tables built by huft_build(), which makes a linked
- list of the tables it made, with the links in a dummy first entry of
- each table. */
-{
- register struct huft *p, *q;
-
-
- /* Go through linked list, freeing from the malloced (t[-1]) address. */
- p = t;
- while (p != (struct huft *)NULL)
- {
- q = (--p)->v.t;
- free((zvoid *)p);
- p = q;
- }
- return 0;
-}
-
-
-// Main public function. Decompresses raw data compressed using the DEFLATE algorithm (RFC 1951 - e.g. zlib, gzip).
-// Returns 0 if decompression fails or, if successful, returns the size of the decompressed data.
-int DecompressDeflatedData (char *out, char *in, int inLength)
-{
- G.outbufptr = out;
- G.inptr = in;
- G.incnt = inLength;
- G.outCounter = 0;
-
- if (inflate(__G) != 0)
- {
- // Error decompressing
- return 0;
- }
- return G.outCounter;
-}
-
+/* inflate.c -- put in the public domain by Mark Adler */ + +/* Decompresses raw data compressed using the DEFLATE algorithm (RFC 1951) */ + +/* You can do whatever you like with this source file, though I would + prefer that if you modify it and redistribute it that you include + comments to that effect with your name and the date. Thank you. + + History: + vers date who what + ---- --------- -------------- ------------------------------------ + a ~~ Feb 92 M. Adler used full (large, one-step) lookup table + b1 21 Mar 92 M. Adler first version with partial lookup tables + b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks + b3 22 Mar 92 M. Adler sped up match copies, cleaned up some + b4 25 Mar 92 M. Adler added prototypes; removed window[] (now + is the responsibility of unzip.h--also + changed name to slide[]), so needs diffs + for unzip.c and unzip.h (this allows + compiling in the small model on MSDOS); + fixed cast of q in huft_build(); + b5 26 Mar 92 M. Adler got rid of unintended macro recursion. + b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed + bug in inflate_fixed(). + c1 30 Mar 92 M. Adler removed lbits, dbits environment variables. + changed BMAX to 16 for explode. Removed + OUTB usage, and replaced it with flush()-- + this was a 20% speed improvement! Added + an explode.c (to replace unimplod.c) that + uses the huft routines here. Removed + register union. + c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k. + c3 10 Apr 92 M. Adler reduced memory of code tables made by + huft_build significantly (factor of two to + three). + c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy(). + worked around a Turbo C optimization bug. + c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing + the 32K window size for specialized + applications. + c6 31 May 92 M. Adler added some typecasts to eliminate warnings + c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug). + c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug. + c9 9 Oct 92 M. Adler removed a memory error message (~line 416). + c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch, + removed old inflate, renamed inflate_entry + to inflate, added Mark's fix to a comment. + c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees. + c11 2 Jan 93 M. Adler fixed bug in detection of incomplete + tables, and removed assumption that EOB is + the longest code (bad assumption). + c12 3 Jan 93 M. Adler make tables for fixed blocks only once. + c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c + outputs one zero length code for an empty + distance tree). + c14 12 Mar 93 M. Adler made inflate.c standalone with the + introduction of inflate.h. + c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470. + c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays + to static for Amiga. + c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing. + c14e 8 Oct 93 G. Roelofs changed memset() to memzero(). + c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace() + conditional; added inflate_free(). + c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug) + c14h 7 Dec 93 C. Ghisler huft_build() optimizations. + c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing; + G. Roelofs check NEXTBYTE macro for EOF. + c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd + EOF check. + c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings. + c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines + to avoid bug in Encore compiler. + c14m 7 Jul 94 P. Kienitz modified to allow assembler version of + inflate_codes() (define ASM_INFLATECODES) + c14n 22 Jul 94 G. Roelofs changed fprintf to macro for DLL versions + c14o 23 Aug 94 C. Spieler added a newline to a debug statement; + G. Roelofs added another typecast to avoid MSC warning + c14p 4 Oct 94 G. Roelofs added (voidp *) cast to free() argument + c14q 30 Oct 94 G. Roelofs changed fprintf macro to MESSAGE() + c14r 1 Nov 94 G. Roelofs fixed possible redefinition of CHECK_EOF + c14s 7 May 95 S. Maxwell OS/2 DLL globals stuff incorporated; + P. Kienitz "fixed" ASM_INFLATECODES macro/prototype + c14t 18 Aug 95 G. Roelofs added inflate() to use zlib functions; + changed voidp to zvoid; moved huft_build() + and huft_free() to end of file + c14u 1 Oct 95 G. Roelofs moved G into definition of MESSAGE macro + c14v 8 Nov 95 P. Kienitz changed ASM_INFLATECODES to use a regular + call with __G__ instead of a macro + c15 3 Aug 96 M. Adler fixed bomb-bug on random input data (Adobe) + c15b 24 Aug 96 M. Adler more fixes for random input data + c15c 28 Mar 97 G. Roelofs changed USE_ZLIB fatal exit code from + PK_MEM2 to PK_MEM3 + c16 20 Apr 97 J. Altman added memzero(v[]) in huft_build() + c16b 29 Mar 98 C. Spieler modified DLL code for slide redirection + + fork 12 Dec 07 Adapted for TrueCrypt + */ + + +/* + Inflate deflated (PKZIP's method 8 compressed) data. The compression + method searches for as much of the current string of bytes (up to a + length of 258) in the previous 32K bytes. If it doesn't find any + matches (of at least length 3), it codes the next byte. Otherwise, it + codes the length of the matched string and its distance backwards from + the current position. There is a single Huffman code that codes both + single bytes (called "literals") and match lengths. A second Huffman + code codes the distance information, which follows a length code. Each + length or distance code actually represents a base value and a number + of "extra" (sometimes zero) bits to get to add to the base value. At + the end of each deflated block is a special end-of-block (EOB) literal/ + length code. The decoding process is basically: get a literal/length + code; if EOB then done; if a literal, emit the decoded byte; if a + length then get the distance and emit the referred-to bytes from the + sliding window of previously emitted data. + + There are (currently) three kinds of inflate blocks: stored, fixed, and + dynamic. The compressor outputs a chunk of data at a time and decides + which method to use on a chunk-by-chunk basis. A chunk might typically + be 32K to 64K, uncompressed. If the chunk is uncompressible, then the + "stored" method is used. In this case, the bytes are simply stored as + is, eight bits per byte, with none of the above coding. The bytes are + preceded by a count, since there is no longer an EOB code. + + If the data are compressible, then either the fixed or dynamic methods + are used. In the dynamic method, the compressed data are preceded by + an encoding of the literal/length and distance Huffman codes that are + to be used to decode this block. The representation is itself Huffman + coded, and so is preceded by a description of that code. These code + descriptions take up a little space, and so for small blocks, there is + a predefined set of codes, called the fixed codes. The fixed method is + used if the block ends up smaller that way (usually for quite small + chunks); otherwise the dynamic method is used. In the latter case, the + codes are customized to the probabilities in the current block and so + can code it much better than the pre-determined fixed codes can. + + The Huffman codes themselves are decoded using a multi-level table + lookup, in order to maximize the speed of decoding plus the speed of + building the decoding tables. See the comments below that precede the + lbits and dbits tuning parameters. + + GRR: return values(?) + 0 OK + 1 incomplete table + 2 bad input + 3 not enough memory + */ + + +/* + Notes beyond the 1.93a appnote.txt: + + 1. Distance pointers never point before the beginning of the output + stream. + 2. Distance pointers can point back across blocks, up to 32k away. + 3. There is an implied maximum of 7 bits for the bit length table and + 15 bits for the actual data. + 4. If only one code exists, then it is encoded using one bit. (Zero + would be more efficient, but perhaps a little confusing.) If two + codes exist, they are coded using one bit each (0 and 1). + 5. There is no way of sending zero distance codes--a dummy must be + sent if there are none. (History: a pre 2.0 version of PKZIP would + store blocks with no distance codes, but this was discovered to be + too harsh a criterion.) Valid only for 1.93a. 2.04c does allow + zero distance codes, which is sent as one code of zero bits in + length. + 6. There are up to 286 literal/length codes. Code 256 represents the + end-of-block. Note however that the static length tree defines + 288 codes just to fill out the Huffman codes. Codes 286 and 287 + cannot be used though, since there is no length base or extra bits + defined for them. Similarily, there are up to 30 distance codes. + However, static trees define 32 codes (all 5 bits) to fill out the + Huffman codes, but the last two had better not show up in the data. + 7. Unzip can check dynamic Huffman blocks for complete code sets. + The exception is that a single code would not be complete (see #4). + 8. The five bits following the block type is really the number of + literal codes sent minus 257. + 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits + (1+6+6). Therefore, to output three times the length, you output + three codes (1+1+1), whereas to output four times the same length, + you only need two codes (1+3). Hmm. + 10. In the tree reconstruction algorithm, Code = Code + Increment + only if BitLength(i) is not zero. (Pretty obvious.) + 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) + 12. Note: length code 284 can represent 227-258, but length code 285 + really is 258. The last length deserves its own, short code + since it gets used a lot in very redundant files. The length + 258 is special since 258 - 3 (the min match length) is 255. + 13. The literal/length and distance code bit lengths are read as a + single stream of lengths. It is possible (and advantageous) for + a repeat code (16, 17, or 18) to go across the boundary between + the two sets of lengths. + */ + + +/* #define DEBUG */ +#define INFMOD /* tell inflate.h to include code to be compiled */ +#include "inflate.h" + + +#ifndef WSIZE /* default is 32K */ +# define WSIZE 0x8000 /* window size--must be a power of two, and at least */ +#endif /* 32K for zip's deflate method */ + +#if (defined(DLL) && !defined(NO_SLIDE_REDIR)) +# define wsize G._wsize /* wsize is a variable */ +#else +# define wsize WSIZE /* wsize is a constant */ +#endif + + +#ifndef NEXTBYTE /* default is to simply get a byte from stdin */ +# define NEXTBYTE getchar() +#endif + +#ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */ +# define MESSAGE(str,len,flag) fprintf(stderr,(char *)(str)) +#endif + +#ifndef FLUSH /* default is to simply write the buffer to stdout */ +# define FLUSH(n) fwrite(redirSlide, 1, n, stdout) /* return value not used */ +#endif +/* Warning: the fwrite above might not work on 16-bit compilers, since + 0x8000 might be interpreted as -32,768 by the library function. */ + +#ifndef Trace +# ifdef DEBUG +# define Trace(x) fprintf x +# else +# define Trace(x) +# endif +#endif + +G_struct G; +uch redirSlide [WSIZE]; + +/*---------------------------------------------------------------------------*/ +#ifdef USE_ZLIB + + +/* + GRR: return values for both original inflate() and inflate() + 0 OK + 1 incomplete table(?) + 2 bad input + 3 not enough memory + */ + +/**************************/ +/* Function inflate() */ +/**************************/ + +int inflate(__G) /* decompress an inflated entry using the zlib routines */ + __GDEF +{ + int err=Z_OK; + +#if (defined(DLL) && !defined(NO_SLIDE_REDIR)) + if (G.redirect_slide) + wsize = G.redirect_size, redirSlide = G.redirect_buffer; + else + wsize = WSIZE, redirSlide = slide; +#endif + + G.dstrm.next_out = redirSlide; + G.dstrm.avail_out = wsize; + + G.dstrm.next_in = G.inptr; + G.dstrm.avail_in = G.incnt; + + if (!G.inflInit) { + unsigned i; + int windowBits; + + /* only need to test this stuff once */ + if (zlib_version[0] != ZLIB_VERSION[0]) { + Info(slide, 0x21, ((char *)slide, + "error: incompatible zlib version (expected %s, found %s)\n", + ZLIB_VERSION, zlib_version)); + return 3; + } else if (strcmp(zlib_version, ZLIB_VERSION) != 0) + Info(slide, 0x21, ((char *)slide, + "warning: different zlib version (expected %s, using %s)\n", + ZLIB_VERSION, zlib_version)); + + /* windowBits = log2(wsize) */ + for (i = ((unsigned)wsize * 2 - 1), windowBits = 0; + !(i & 1); i >>= 1, ++windowBits); + if ((unsigned)windowBits > (unsigned)15) + windowBits = 15; + else if (windowBits < 8) + windowBits = 8; + + G.dstrm.zalloc = (alloc_func)Z_NULL; + G.dstrm.zfree = (free_func)Z_NULL; + + Trace((stderr, "initializing inflate()\n")); + err = inflateInit2(&G.dstrm, -windowBits); + + if (err == Z_MEM_ERROR) + return 3; + else if (err != Z_OK) + Trace((stderr, "oops! (inflateInit2() err = %d)\n", err)); + G.inflInit = 1; + } + +#ifdef FUNZIP + while (err != Z_STREAM_END) { +#else /* !FUNZIP */ + while (G.csize > 0) { + Trace((stderr, "first loop: G.csize = %ld\n", G.csize)); +#endif /* ?FUNZIP */ + while (G.dstrm.avail_out > 0) { + err = inflate(&G.dstrm, Z_PARTIAL_FLUSH); + + if (err == Z_DATA_ERROR) + return 2; + else if (err == Z_MEM_ERROR) + return 3; + else if (err != Z_OK && err != Z_STREAM_END) + Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err)); + +#ifdef FUNZIP + if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */ +#else /* !FUNZIP */ + if (G.csize <= 0L) /* "END-of-entry-condition" ? */ +#endif /* ?FUNZIP */ + break; + + if (G.dstrm.avail_in <= 0) { + if (fillinbuf(__G) == 0) + return 2; /* no "END-condition" yet, but no more data */ + + G.dstrm.next_in = G.inptr; + G.dstrm.avail_in = G.incnt; + } + Trace((stderr, " avail_in = %d\n", G.dstrm.avail_in)); + } + FLUSH(wsize - G.dstrm.avail_out); /* flush slide[] */ + Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n", + (long)(wsize - G.dstrm.avail_out), + (long)(G.dstrm.next_out-(Bytef *)redirSlide))); + G.dstrm.next_out = redirSlide; + G.dstrm.avail_out = wsize; + } + + /* no more input, so loop until we have all output */ + Trace((stderr, "beginning final loop: err = %d\n", err)); + while (err != Z_STREAM_END) { + err = inflate(&G.dstrm, Z_PARTIAL_FLUSH); + if (err == Z_DATA_ERROR) + return 2; + else if (err == Z_MEM_ERROR) + return 3; + else if (err == Z_BUF_ERROR) { /* DEBUG */ + Trace((stderr, "zlib inflate() did not detect stream end (%s, %s)\n" + , G.zipfn, G.filename)); + break; + } else if (err != Z_OK && err != Z_STREAM_END) { + Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err)); + DESTROYGLOBALS() + EXIT(PK_MEM3); + } + FLUSH(wsize - G.dstrm.avail_out); /* final flush of slide[] */ + Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n", + (long)(wsize - G.dstrm.avail_out), + (long)(G.dstrm.next_out-(Bytef *)redirSlide))); + G.dstrm.next_out = redirSlide; + G.dstrm.avail_out = wsize; + } + Trace((stderr, "total in = %ld, total out = %ld\n", G.dstrm.total_in, + G.dstrm.total_out)); + + G.inptr = (uch *)G.dstrm.next_in; + G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */ + + err = inflateReset(&G.dstrm); + if (err != Z_OK) + Trace((stderr, "oops! (inflateReset() err = %d)\n", err)); + + return 0; +} + + +/*---------------------------------------------------------------------------*/ +#else /* !USE_ZLIB */ + + +/* Function prototypes */ +#ifndef OF +# ifdef __STDC__ +# define OF(a) a +# else +# define OF(a) () +# endif +#endif /* !OF */ +int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td, + int bl, int bd)); +static int inflate_stored OF((__GPRO)); +static int inflate_fixed OF((__GPRO)); +static int inflate_dynamic OF((__GPRO)); +static int inflate_block OF((__GPRO__ int *e)); + + +/* The inflate algorithm uses a sliding 32K byte window on the uncompressed + stream to find repeated byte strings. This is implemented here as a + circular buffer. The index is updated simply by incrementing and then + and'ing with 0x7fff (32K-1). */ +/* It is left to other modules to supply the 32K area. It is assumed + to be usable as if it were declared "uch slide[32768];" or as just + "uch *slide;" and then malloc'ed in the latter case. The definition + must be in unzip.h, included above. */ + + +/* unsigned wp; moved to globals.h */ /* current position in slide */ + + +/* Tables for deflate from PKZIP's appnote.txt. */ +static ZCONST unsigned border[] = { /* Order of the bit length code lengths */ + 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; +static ZCONST ush cplens[] = { /* Copy lengths for literal codes 257..285 */ + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, + 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; + /* note: see note #13 above about the 258 in this list. */ +static ZCONST ush cplext[] = { /* Extra bits for literal codes 257..285 */ + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, + 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ +static ZCONST ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ + 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, + 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, + 8193, 12289, 16385, 24577}; +static ZCONST ush cpdext[] = { /* Extra bits for distance codes */ + 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, + 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, + 12, 12, 13, 13}; + + +/* moved to consts.h (included in unzip.c), resp. funzip.c */ +#if 1 +/* And'ing with mask_bits[n] masks the lower n bits */ +ZCONST ush near mask_bits[] = { + 0x0000, + 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, + 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff +}; +#endif /* 0 */ + + +/* Macros for inflate() bit peeking and grabbing. + The usage is: + + NEEDBITS(j) + x = b & mask_bits[j]; + DUMPBITS(j) + + where NEEDBITS makes sure that b has at least j bits in it, and + DUMPBITS removes the bits from b. The macros use the variable k + for the number of bits in b. Normally, b and k are register + variables for speed and are initialized at the begining of a + routine that uses these macros from a global bit buffer and count. + + In order to not ask for more bits than there are in the compressed + stream, the Huffman tables are constructed to only ask for just + enough bits to make up the end-of-block code (value 256). Then no + bytes need to be "returned" to the buffer at the end of the last + block. See the huft_build() routine. + */ + +/* These have been moved to globals.h */ +#if 0 +ulg bb; /* bit buffer */ +unsigned bk; /* bits in bit buffer */ +#endif + +#ifndef CHECK_EOF +# define CHECK_EOF /* default as of 5.13/5.2 */ +#endif + +#ifndef CHECK_EOF +# define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}} +#else +# define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\ + b|=((ulg)c)<<k;k+=8;}} +#endif /* Piet Plomp: change "return 1" to "break" */ + +#define DUMPBITS(n) {b>>=(n);k-=(n);} + + +/* + Huffman code decoding is performed using a multi-level table lookup. + The fastest way to decode is to simply build a lookup table whose + size is determined by the longest code. However, the time it takes + to build this table can also be a factor if the data being decoded + are not very long. The most common codes are necessarily the + shortest codes, so those codes dominate the decoding time, and hence + the speed. The idea is you can have a shorter table that decodes the + shorter, more probable codes, and then point to subsidiary tables for + the longer codes. The time it costs to decode the longer codes is + then traded against the time it takes to make longer tables. + + This results of this trade are in the variables lbits and dbits + below. lbits is the number of bits the first level table for literal/ + length codes can decode in one step, and dbits is the same thing for + the distance codes. Subsequent tables are also less than or equal to + those sizes. These values may be adjusted either when all of the + codes are shorter than that, in which case the longest code length in + bits is used, or when the shortest code is *longer* than the requested + table size, in which case the length of the shortest code in bits is + used. + + There are two different values for the two tables, since they code a + different number of possibilities each. The literal/length table + codes 286 possible values, or in a flat code, a little over eight + bits. The distance table codes 30 possible values, or a little less + than five bits, flat. The optimum values for speed end up being + about one bit more than those, so lbits is 8+1 and dbits is 5+1. + The optimum values may differ though from machine to machine, and + possibly even between compilers. Your mileage may vary. + */ + +static ZCONST int lbits = 9; /* bits in base literal/length lookup table */ +static ZCONST int dbits = 6; /* bits in base distance lookup table */ + + +#ifndef ASM_INFLATECODES + +#pragma warning(disable:4131) + +int inflate_codes(__G__ tl, td, bl, bd) + __GDEF +struct huft *tl, *td; /* literal/length and distance decoder tables */ +int bl, bd; /* number of bits decoded by tl[] and td[] */ +/* inflate (decompress) the codes in a deflated (compressed) block. + Return an error code or zero if it all goes ok. */ +{ + register unsigned e; /* table entry flag/number of extra bits */ + unsigned n, d; /* length and index for copy */ + unsigned w; /* current window position */ + struct huft *t; /* pointer to table entry */ + unsigned ml, md; /* masks for bl and bd bits */ + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local copies of globals */ + b = G.bb; /* initialize bit buffer */ + k = G.bk; + w = G.wp; /* initialize window position */ + + + /* inflate the coded data */ + ml = mask_bits[bl]; /* precompute masks for speed */ + md = mask_bits[bd]; + while (1) /* do until end of block */ + { + NEEDBITS((unsigned)bl) + if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) + do { + if (e == 99) + return 1; + DUMPBITS(t->b) + e -= 16; + NEEDBITS(e) + } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); + DUMPBITS(t->b) + if (e == 16) /* then it's a literal */ + { + redirSlide[w++] = (uch)t->v.n; + if (w == wsize) + { + FLUSH(w); + w = 0; + } + } + else /* it's an EOB or a length */ + { + /* exit if end of block */ + if (e == 15) + break; + + /* get length of block to copy */ + NEEDBITS(e) + n = t->v.n + ((unsigned)b & mask_bits[e]); + DUMPBITS(e); + + /* decode distance of block to copy */ + NEEDBITS((unsigned)bd) + if ((e = (t = td + ((unsigned)b & md))->e) > 16) + do { + if (e == 99) + return 1; + DUMPBITS(t->b) + e -= 16; + NEEDBITS(e) + } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); + DUMPBITS(t->b) + NEEDBITS(e) + d = w - t->v.n - ((unsigned)b & mask_bits[e]); + DUMPBITS(e) + + /* do the copy */ + do { +#if (defined(DLL) && !defined(NO_SLIDE_REDIR)) + if (G.redirect_slide) {/* &= w/ wsize unnecessary & wrong if redirect */ + if (d >= wsize) + return 1; /* invalid compressed data */ + n -= (e = (e = wsize - (d > w ? d : w)) > n ? n : e); + } + else +#endif + n -= (e = (e = wsize - ((d &= wsize-1) > w ? d : w)) > n ? n : e); +#ifndef NOMEMCPY + if (w - d >= e) /* (this test assumes unsigned comparison) */ + { + memcpy(redirSlide + w, redirSlide + d, e); + w += e; + d += e; + } + else /* do it slowly to avoid memcpy() overlap */ +#endif /* !NOMEMCPY */ + do { + redirSlide[w++] = redirSlide[d++]; + } while (--e); + if (w == wsize) + { + FLUSH(w); + w = 0; + } + } while (n); + } + } + + + /* restore the globals from the locals */ + G.wp = w; /* restore global window pointer */ + G.bb = b; /* restore global bit buffer */ + G.bk = k; + + + /* done */ + return 0; +} + +#endif /* ASM_INFLATECODES */ + + + +static int inflate_stored(__G) + __GDEF +/* "decompress" an inflated type 0 (stored) block. */ +{ + unsigned n; /* number of bytes in block */ + unsigned w; /* current window position */ + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local copies of globals */ + Trace((stderr, "\nstored block")); + b = G.bb; /* initialize bit buffer */ + k = G.bk; + w = G.wp; /* initialize window position */ + + + /* go to byte boundary */ + n = k & 7; + DUMPBITS(n); + + + /* get the length and its complement */ + NEEDBITS(16) + n = ((unsigned)b & 0xffff); + DUMPBITS(16) + NEEDBITS(16) + if (n != (unsigned)((~b) & 0xffff)) + return 1; /* error in compressed data */ + DUMPBITS(16) + + + /* read and output the compressed data */ + while (n--) + { + NEEDBITS(8) + redirSlide[w++] = (uch)b; + if (w == wsize) + { + FLUSH(w); + w = 0; + } + DUMPBITS(8) + } + + + /* restore the globals from the locals */ + G.wp = w; /* restore global window pointer */ + G.bb = b; /* restore global bit buffer */ + G.bk = k; + return 0; +} + + +/* Globals for literal tables (built once) */ +/* Moved to globals.h */ +#if 0 +struct huft *fixed_tl = (struct huft *)NULL; +struct huft *fixed_td; +int fixed_bl, fixed_bd; +#endif + +static int inflate_fixed(__G) + __GDEF +/* decompress an inflated type 1 (fixed Huffman codes) block. We should + either replace this with a custom decoder, or at least precompute the + Huffman tables. */ +{ + /* if first time, set up tables for fixed blocks */ + Trace((stderr, "\nliteral block")); + if (G.fixed_tl == (struct huft *)NULL) + { + int i; /* temporary variable */ + unsigned l[288]; /* length list for huft_build */ + + /* literal table */ + for (i = 0; i < 144; i++) + l[i] = 8; + for (; i < 256; i++) + l[i] = 9; + for (; i < 280; i++) + l[i] = 7; + for (; i < 288; i++) /* make a complete, but wrong code set */ + l[i] = 8; + G.fixed_bl = 7; + if ((i = huft_build(__G__ l, 288, 257, cplens, cplext, + &G.fixed_tl, &G.fixed_bl)) != 0) + { + G.fixed_tl = (struct huft *)NULL; + return i; + } + + /* distance table */ + for (i = 0; i < 30; i++) /* make an incomplete code set */ + l[i] = 5; + G.fixed_bd = 5; + if ((i = huft_build(__G__ l, 30, 0, cpdist, cpdext, + &G.fixed_td, &G.fixed_bd)) > 1) + { + huft_free(G.fixed_tl); + G.fixed_tl = (struct huft *)NULL; + return i; + } + } + + /* decompress until an end-of-block code */ + return inflate_codes(__G__ G.fixed_tl, G.fixed_td, + G.fixed_bl, G.fixed_bd) != 0; +} + + + +static int inflate_dynamic(__G) + __GDEF +/* decompress an inflated type 2 (dynamic Huffman codes) block. */ +{ + int i; /* temporary variables */ + unsigned j; + unsigned l; /* last length */ + unsigned m; /* mask for bit lengths table */ + unsigned n; /* number of lengths to get */ + struct huft *tl; /* literal/length code table */ + struct huft *td; /* distance code table */ + int bl; /* lookup bits for tl */ + int bd; /* lookup bits for td */ + unsigned nb; /* number of bit length codes */ + unsigned nl; /* number of literal/length codes */ + unsigned nd; /* number of distance codes */ +#ifdef PKZIP_BUG_WORKAROUND + unsigned ll[288+32]; /* literal/length and distance code lengths */ +#else + unsigned ll[286+30]; /* literal/length and distance code lengths */ +#endif + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local bit buffer */ + Trace((stderr, "\ndynamic block")); + b = G.bb; + k = G.bk; + + + /* read in table lengths */ + NEEDBITS(5) + nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ + DUMPBITS(5) + NEEDBITS(5) + nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ + DUMPBITS(5) + NEEDBITS(4) + nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ + DUMPBITS(4) +#ifdef PKZIP_BUG_WORKAROUND + if (nl > 288 || nd > 32) +#else + if (nl > 286 || nd > 30) +#endif + return 1; /* bad lengths */ + + + /* read in bit-length-code lengths */ + for (j = 0; j < nb; j++) + { + NEEDBITS(3) + ll[border[j]] = (unsigned)b & 7; + DUMPBITS(3) + } + for (; j < 19; j++) + ll[border[j]] = 0; + + + /* build decoding table for trees--single level, 7 bit lookup */ + bl = 7; + i = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl); + if (bl == 0) /* no bit lengths */ + i = 1; + if (i) + { + if (i == 1) + huft_free(tl); + return i; /* incomplete code set */ + } + + + /* read in literal and distance code lengths */ + n = nl + nd; + m = mask_bits[bl]; + i = l = 0; + while ((unsigned)i < n) + { + NEEDBITS((unsigned)bl) + j = (td = tl + ((unsigned)b & m))->b; + DUMPBITS(j) + j = td->v.n; + if (j < 16) /* length of code in bits (0..15) */ + ll[i++] = l = j; /* save last length in l */ + else if (j == 16) /* repeat last length 3 to 6 times */ + { + NEEDBITS(2) + j = 3 + ((unsigned)b & 3); + DUMPBITS(2) + if ((unsigned)i + j > n) + { + huft_free(tl); + return 1; + } + while (j--) + ll[i++] = l; + } + else if (j == 17) /* 3 to 10 zero length codes */ + { + NEEDBITS(3) + j = 3 + ((unsigned)b & 7); + DUMPBITS(3) + if ((unsigned)i + j > n) + { + huft_free(tl); + return 1; + } + while (j--) + ll[i++] = 0; + l = 0; + } + else /* j == 18: 11 to 138 zero length codes */ + { + NEEDBITS(7) + j = 11 + ((unsigned)b & 0x7f); + DUMPBITS(7) + if ((unsigned)i + j > n) + { + huft_free(tl); + return 1; + } + while (j--) + ll[i++] = 0; + l = 0; + } + } + + + /* free decoding table for trees */ + huft_free(tl); + + + /* restore the global bit buffer */ + G.bb = b; + G.bk = k; + + + /* build the decoding tables for literal/length and distance codes */ + bl = lbits; + i = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl); + if (bl == 0) /* no literals or lengths */ + i = 1; + if (i) + { + if (i == 1) { + //if (!uO.qflag) + MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1); + huft_free(tl); + } + return i; /* incomplete code set */ + } + bd = dbits; + i = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd); + if (bd == 0 && nl > 257) /* lengths but no distances */ + { + //if (!uO.qflag) + MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1); + huft_free(tl); + huft_free(td); + return 1; + } + if (i == 1) { +#ifdef PKZIP_BUG_WORKAROUND + i = 0; +#else + //if (!uO.qflag) + MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1); + huft_free(td); + td = NULL; +#endif + } + if (i) + { + huft_free(tl); + return i; + } + + + /* decompress until an end-of-block code */ + i = inflate_codes(__G__ tl, td, bl, bd); + + /* free the decoding tables, return */ + huft_free(tl); + huft_free(td); + + if (i) + return 1; + + return 0; +} + + + +static int inflate_block(__G__ e) + __GDEF + int *e; /* last block flag */ +/* decompress an inflated block */ +{ + unsigned t; /* block type */ + register ulg b; /* bit buffer */ + register unsigned k; /* number of bits in bit buffer */ + + + /* make local bit buffer */ + b = G.bb; + k = G.bk; + + + /* read in last block bit */ + NEEDBITS(1) + *e = (int)b & 1; + DUMPBITS(1) + + + /* read in block type */ + NEEDBITS(2) + t = (unsigned)b & 3; + DUMPBITS(2) + + + /* restore the global bit buffer */ + G.bb = b; + G.bk = k; + + + /* inflate that block type */ + if (t == 2) + return inflate_dynamic(__G); + if (t == 0) + return inflate_stored(__G); + if (t == 1) + return inflate_fixed(__G); + + + /* bad block type */ + return 2; +} + + + +int inflate(__G) + __GDEF +/* decompress an inflated entry */ +{ + int e; /* last block flag */ + int r; /* result code */ +//#ifdef DEBUG +// unsigned h = 0; /* maximum struct huft's malloc'ed */ +//#endif + +#if (defined(DLL) && !defined(NO_SLIDE_REDIR)) + if (G.redirect_slide) + wsize = G.redirect_size, redirSlide = G.redirect_buffer; + else + wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */ +#endif + + /* initialize window, bit buffer */ + G.wp = 0; + G.bk = 0; + G.bb = 0; + + + /* decompress until the last block */ + do { +//#ifdef DEBUG +// G.hufts = 0; +//#endif + if ((r = inflate_block(__G__ &e)) != 0) + return r; +//#ifdef DEBUG +// if (G.hufts > h) +// h = G.hufts; +//#endif + } while (!e); + + + /* flush out redirSlide */ + FLUSH(G.wp); + + + /* return success */ + //Trace((stderr, "\n%u bytes in Huffman tables (%d/entry)\n", + // h * sizeof(struct huft), sizeof(struct huft))); + return 0; +} + + + +int inflate_free(__G) + __GDEF +{ + if (G.fixed_tl != (struct huft *)NULL) + { + huft_free(G.fixed_td); + huft_free(G.fixed_tl); + G.fixed_td = G.fixed_tl = (struct huft *)NULL; + } + return 0; +} + +#endif /* ?USE_ZLIB */ + + +/* + * GRR: moved huft_build() and huft_free() down here; used by explode() + * and fUnZip regardless of whether USE_ZLIB defined or not + */ + + +/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ +#define BMAX 16 /* maximum bit length of any code (16 for explode) */ +#define N_MAX 288 /* maximum number of codes in any set */ + + +int huft_build( + __GDEF + ZCONST unsigned *b, /* code lengths in bits (all assumed <= BMAX) */ + unsigned n, /* number of codes (assumed <= N_MAX) */ + unsigned s, /* number of simple-valued codes (0..s-1) */ + ZCONST ush *d, /* list of base values for non-simple codes */ + ZCONST ush *e, /* list of extra bits for non-simple codes */ + struct huft **t, /* result: starting table */ + int *m /* maximum lookup bits, returns actual */ + ) +/* Given a list of code lengths and a maximum table size, make a set of + tables to decode that set of codes. Return zero on success, one if + the given code set is incomplete (the tables are still built in this + case), two if the input is invalid (all zero length codes or an + oversubscribed set of lengths), and three if not enough memory. + The code with value 256 is special, and the tables are constructed + so that no bits beyond that code are fetched when that code is + decoded. */ +{ + unsigned a; /* counter for codes of length k */ + unsigned c[BMAX+1]; /* bit length count table */ + unsigned el; /* length of EOB code (value 256) */ + unsigned f; /* i repeats in table every f entries */ + int g; /* maximum code length */ + int h; /* table level */ + register unsigned i; /* counter, current code */ + register unsigned j; /* counter */ + register int k; /* number of bits in current code */ + int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */ + int *l = lx+1; /* stack of bits per table */ + register unsigned *p; /* pointer into c[], b[], or v[] */ + register struct huft *q; /* points to current table */ + struct huft r; /* table entry for structure assignment */ + struct huft *u[BMAX]; /* table stack */ + unsigned v[N_MAX]; /* values in order of bit length */ + register int w; /* bits before this table == (l * h) */ + unsigned x[BMAX+1]; /* bit offsets, then code stack */ + unsigned *xp; /* pointer into x */ + int y; /* number of dummy codes added */ + unsigned z; /* number of entries in current table */ + + + /* Generate counts for each bit length */ + el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */ + memset(c, 0, sizeof(c)); + p = (unsigned *)b; i = n; + do { + c[*p]++; p++; /* assume all entries <= BMAX */ + } while (--i); + if (c[0] == n) /* null input--all zero length codes */ + { + *t = (struct huft *)NULL; + *m = 0; + return 0; + } + + + /* Find minimum and maximum length, bound *m by those */ + for (j = 1; j <= BMAX; j++) + if (c[j]) + break; + k = j; /* minimum code length */ + if ((unsigned)*m < j) + *m = j; + for (i = BMAX; i; i--) + if (c[i]) + break; + g = i; /* maximum code length */ + if ((unsigned)*m > i) + *m = i; + + + /* Adjust last length count to fill out codes, if needed */ + for (y = 1 << j; j < i; j++, y <<= 1) + if ((y -= c[j]) < 0) + return 2; /* bad input: more codes than bits */ + if ((y -= c[i]) < 0) + return 2; + c[i] += y; + + + /* Generate starting offsets into the value table for each length */ + x[1] = j = 0; + p = c + 1; xp = x + 2; + while (--i) { /* note that i == g from above */ + *xp++ = (j += *p++); + } + + + /* Make a table of values in order of bit lengths */ + memset(v, 0, sizeof(v)); + p = (unsigned *)b; i = 0; + do { + if ((j = *p++) != 0) + v[x[j]++] = i; + } while (++i < n); + n = x[g]; /* set n to length of v */ + + + /* Generate the Huffman codes and for each, make the table entries */ + x[0] = i = 0; /* first Huffman code is zero */ + p = v; /* grab values in bit order */ + h = -1; /* no tables yet--level -1 */ + w = l[-1] = 0; /* no bits decoded yet */ + u[0] = (struct huft *)NULL; /* just to keep compilers happy */ + q = (struct huft *)NULL; /* ditto */ + z = 0; /* ditto */ + + /* go through the bit lengths (k already is bits in shortest code) */ + for (; k <= g; k++) + { + a = c[k]; + while (a--) + { + /* here i is the Huffman code of length k bits for value *p */ + /* make tables up to required level */ + while (k > w + l[h]) + { + w += l[h++]; /* add bits already decoded */ + + /* compute minimum size table less than or equal to *m bits */ + z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */ + if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ + { /* too few codes for k-w bit table */ + f -= a + 1; /* deduct codes from patterns left */ + xp = c + k; + while (++j < z) /* try smaller tables up to z bits */ + { + if ((f <<= 1) <= *++xp) + break; /* enough codes to use up j bits */ + f -= *xp; /* else deduct codes from patterns */ + } + } + if ((unsigned)w + j > el && (unsigned)w < el) + j = el - w; /* make EOB code end at table */ + z = 1 << j; /* table entries for j-bit table */ + l[h] = j; /* set table size in stack */ + + /* allocate and link in new table */ + if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == + (struct huft *)NULL) + { + if (h) + huft_free(u[0]); + return 3; /* not enough memory */ + } +//#ifdef DEBUG +// G.hufts += z + 1; /* track memory usage */ +//#endif + *t = q + 1; /* link to list for huft_free() */ + *(t = &(q->v.t)) = (struct huft *)NULL; + u[h] = ++q; /* table starts after link */ + + /* connect to last table, if there is one */ + if (h) + { + x[h] = i; /* save pattern for backing up */ + r.b = (uch)l[h-1]; /* bits to dump before this table */ + r.e = (uch)(16 + j); /* bits in this table */ + r.v.t = q; /* pointer to this table */ + j = (i & ((1 << w) - 1)) >> (w - l[h-1]); + u[h-1][j] = r; /* connect to last table */ + } + } + + /* set up table entry in r */ + r.b = (uch)(k - w); + if (p >= v + n) + r.e = 99; /* out of values--invalid code */ + else if (*p < s) + { + r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ + r.v.n = (ush)*p++; /* simple code is just the value */ + } + else + { + r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ + r.v.n = d[*p++ - s]; + } + + /* fill code-like entries with r */ + f = 1 << (k - w); + for (j = i >> w; j < z; j += f) + q[j] = r; + + /* backwards increment the k-bit code i */ + for (j = 1 << (k - 1); i & j; j >>= 1) + i ^= j; + i ^= j; + + /* backup over finished tables */ + while ((i & ((1 << w) - 1)) != x[h]) + w -= l[--h]; /* don't need to update q */ + } + } + + + /* return actual size of base table */ + *m = l[0]; + + + /* Return true (1) if we were given an incomplete table */ + return y != 0 && g != 1; +} + + + +int huft_free (struct huft *t) + /* table to free */ +/* Free the malloc'ed tables built by huft_build(), which makes a linked + list of the tables it made, with the links in a dummy first entry of + each table. */ +{ + register struct huft *p, *q; + + + /* Go through linked list, freeing from the malloced (t[-1]) address. */ + p = t; + while (p != (struct huft *)NULL) + { + q = (--p)->v.t; + free((zvoid *)p); + p = q; + } + return 0; +} + + +// Main public function. Decompresses raw data compressed using the DEFLATE algorithm (RFC 1951 - e.g. zlib, gzip). +// Returns 0 if decompression fails or, if successful, returns the size of the decompressed data. +int DecompressDeflatedData (char *out, char *in, int inLength) +{ + G.outbufptr = out; + G.inptr = in; + G.incnt = inLength; + G.outCounter = 0; + + if (inflate(__G) != 0) + { + // Error decompressing + return 0; + } + return G.outCounter; +} + |