diff options
Diffstat (limited to 'src/Common/Xts.c')
-rw-r--r-- | src/Common/Xts.c | 1500 |
1 files changed, 750 insertions, 750 deletions
diff --git a/src/Common/Xts.c b/src/Common/Xts.c index c2fe125c..0bdb8271 100644 --- a/src/Common/Xts.c +++ b/src/Common/Xts.c @@ -1,750 +1,750 @@ -/*
- Derived from source code of TrueCrypt 7.1a, which is
- Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
- by the TrueCrypt License 3.0.
-
- Modifications and additions to the original source code (contained in this file)
- and all other portions of this file are Copyright (c) 2013-2016 IDRIX
- and are governed by the Apache License 2.0 the full text of which is
- contained in the file License.txt included in VeraCrypt binary and source
- code distribution packages.
-*/
-
-/* If native 64-bit data types are not available, define TC_NO_COMPILER_INT64.
-
-For big-endian platforms define BYTE_ORDER as BIG_ENDIAN. */
-
-
-#ifdef TC_MINIMIZE_CODE_SIZE
-// Preboot/boot version
-# ifndef TC_NO_COMPILER_INT64
-# define TC_NO_COMPILER_INT64
-# endif
-# pragma optimize ("tl", on)
-#endif
-
-#ifdef TC_NO_COMPILER_INT64
-# include <memory.h>
-#endif
-
-#include "Xts.h"
-
-
-#ifndef TC_NO_COMPILER_INT64
-
-// length: number of bytes to encrypt; may be larger than one data unit and must be divisible by the cipher block size
-// ks: the primary key schedule
-// ks2: the secondary key schedule
-// startDataUnitNo: The sequential number of the data unit with which the buffer starts.
-// startCipherBlockNo: The sequential number of the first plaintext block to encrypt inside the data unit startDataUnitNo.
-// When encrypting the data unit from its first block, startCipherBlockNo is 0.
-// The startCipherBlockNo value applies only to the first data unit in the buffer; each successive
-// data unit is encrypted from its first block. The start of the buffer does not have to be
-// aligned with the start of a data unit. If it is aligned, startCipherBlockNo must be 0; if it
-// is not aligned, startCipherBlockNo must reflect the misalignment accordingly.
-void EncryptBufferXTS (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- if (CipherSupportsIntraDataUnitParallelization (cipher))
- EncryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
- else
- EncryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
-}
-
-
-// Optimized for encryption algorithms supporting intra-data-unit parallelization
-static void EncryptBufferXTSParallel (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- unsigned __int8 finalCarry;
- unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
- unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
- unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
- unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
- unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
- unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
- unsigned __int64 *dataUnitBufPtr;
- unsigned int startBlock = startCipherBlockNo, endBlock, block;
- unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
- TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
-
- /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
- finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
- number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
- as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
- the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
- derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */
-
- // Convert the 64-bit data unit number into a little-endian 16-byte array.
- // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
- dataUnitNo = startDataUnitNo->Value;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- *((unsigned __int64 *) byteBufUnitNo + 1) = 0;
-
- if (length % BYTES_PER_XTS_BLOCK)
- TC_THROW_FATAL_EXCEPTION;
-
- blockCount = length / BYTES_PER_XTS_BLOCK;
-
- // Process all blocks in the buffer
- while (blockCount > 0)
- {
- if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
- endBlock = startBlock + (unsigned int) blockCount;
- else
- endBlock = BLOCKS_PER_XTS_DATA_UNIT;
-
- whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
- whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
-
- // Encrypt the data unit number using the secondary key (in order to generate the first
- // whitening value for this data unit)
- *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
- *(whiteningValuePtr64 + 1) = 0;
- EncipherBlock (cipher, whiteningValue, ks2);
-
- // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
- // whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
- for (block = 0; block < endBlock; block++)
- {
- if (block >= startBlock)
- {
- *whiteningValuesPtr64-- = *whiteningValuePtr64++;
- *whiteningValuesPtr64-- = *whiteningValuePtr64;
- }
- else
- whiteningValuePtr64++;
-
- // Derive the next whitening value
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
- // Little-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x8000000000000000) ?
- 135 : 0;
-
- *whiteningValuePtr64-- <<= 1;
-
- if (*whiteningValuePtr64 & 0x8000000000000000)
- *(whiteningValuePtr64 + 1) |= 1;
-
- *whiteningValuePtr64 <<= 1;
-#else
-
- // Big-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x80) ?
- 135 : 0;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-
- whiteningValuePtr64--;
-
- if (*whiteningValuePtr64 & 0x80)
- *(whiteningValuePtr64 + 1) |= 0x0100000000000000;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-#endif
-
- whiteningValue[0] ^= finalCarry;
- }
-
- dataUnitBufPtr = bufPtr;
- whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
-
- // Encrypt all blocks in this data unit
-
- for (block = startBlock; block < endBlock; block++)
- {
- // Pre-whitening
- *bufPtr++ ^= *whiteningValuesPtr64--;
- *bufPtr++ ^= *whiteningValuesPtr64--;
- }
-
- // Actual encryption
- EncipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);
-
- bufPtr = dataUnitBufPtr;
- whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
-
- for (block = startBlock; block < endBlock; block++)
- {
- // Post-whitening
- *bufPtr++ ^= *whiteningValuesPtr64--;
- *bufPtr++ ^= *whiteningValuesPtr64--;
- }
-
- blockCount -= endBlock - startBlock;
- startBlock = 0;
- dataUnitNo++;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- }
-
- FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
- FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
-}
-
-
-// Optimized for encryption algorithms not supporting intra-data-unit parallelization
-static void EncryptBufferXTSNonParallel (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- unsigned __int8 finalCarry;
- unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
- unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
- unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
- unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
- unsigned int startBlock = startCipherBlockNo, endBlock, block;
- TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
-
- /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
- finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
- number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
- as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
- the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
- derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */
-
- // Convert the 64-bit data unit number into a little-endian 16-byte array.
- // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
- dataUnitNo = startDataUnitNo->Value;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- *((unsigned __int64 *) byteBufUnitNo + 1) = 0;
-
- if (length % BYTES_PER_XTS_BLOCK)
- TC_THROW_FATAL_EXCEPTION;
-
- blockCount = length / BYTES_PER_XTS_BLOCK;
-
- // Process all blocks in the buffer
- while (blockCount > 0)
- {
- if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
- endBlock = startBlock + (unsigned int) blockCount;
- else
- endBlock = BLOCKS_PER_XTS_DATA_UNIT;
-
- whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
-
- // Encrypt the data unit number using the secondary key (in order to generate the first
- // whitening value for this data unit)
- *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
- *(whiteningValuePtr64 + 1) = 0;
- EncipherBlock (cipher, whiteningValue, ks2);
-
- // Generate (and apply) subsequent whitening values for blocks in this data unit and
- // encrypt all relevant blocks in this data unit
- for (block = 0; block < endBlock; block++)
- {
- if (block >= startBlock)
- {
- // Pre-whitening
- *bufPtr++ ^= *whiteningValuePtr64++;
- *bufPtr-- ^= *whiteningValuePtr64--;
-
- // Actual encryption
- EncipherBlock (cipher, bufPtr, ks);
-
- // Post-whitening
- *bufPtr++ ^= *whiteningValuePtr64++;
- *bufPtr++ ^= *whiteningValuePtr64;
- }
- else
- whiteningValuePtr64++;
-
- // Derive the next whitening value
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
- // Little-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x8000000000000000) ?
- 135 : 0;
-
- *whiteningValuePtr64-- <<= 1;
-
- if (*whiteningValuePtr64 & 0x8000000000000000)
- *(whiteningValuePtr64 + 1) |= 1;
-
- *whiteningValuePtr64 <<= 1;
-#else
-
- // Big-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x80) ?
- 135 : 0;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-
- whiteningValuePtr64--;
-
- if (*whiteningValuePtr64 & 0x80)
- *(whiteningValuePtr64 + 1) |= 0x0100000000000000;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-#endif
-
- whiteningValue[0] ^= finalCarry;
- }
-
- blockCount -= endBlock - startBlock;
- startBlock = 0;
- dataUnitNo++;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- }
-
- FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
-}
-
-
-// For descriptions of the input parameters, see EncryptBufferXTS().
-void DecryptBufferXTS (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- if (CipherSupportsIntraDataUnitParallelization (cipher))
- DecryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
- else
- DecryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
-}
-
-
-// Optimized for encryption algorithms supporting intra-data-unit parallelization
-static void DecryptBufferXTSParallel (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- unsigned __int8 finalCarry;
- unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
- unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
- unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
- unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
- unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
- unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
- unsigned __int64 *dataUnitBufPtr;
- unsigned int startBlock = startCipherBlockNo, endBlock, block;
- unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
- TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
-
- // Convert the 64-bit data unit number into a little-endian 16-byte array.
- // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
- dataUnitNo = startDataUnitNo->Value;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- *((unsigned __int64 *) byteBufUnitNo + 1) = 0;
-
- if (length % BYTES_PER_XTS_BLOCK)
- TC_THROW_FATAL_EXCEPTION;
-
- blockCount = length / BYTES_PER_XTS_BLOCK;
-
- // Process all blocks in the buffer
- while (blockCount > 0)
- {
- if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
- endBlock = startBlock + (unsigned int) blockCount;
- else
- endBlock = BLOCKS_PER_XTS_DATA_UNIT;
-
- whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
- whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
-
- // Encrypt the data unit number using the secondary key (in order to generate the first
- // whitening value for this data unit)
- *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
- *(whiteningValuePtr64 + 1) = 0;
- EncipherBlock (cipher, whiteningValue, ks2);
-
- // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
- // whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
- for (block = 0; block < endBlock; block++)
- {
- if (block >= startBlock)
- {
- *whiteningValuesPtr64-- = *whiteningValuePtr64++;
- *whiteningValuesPtr64-- = *whiteningValuePtr64;
- }
- else
- whiteningValuePtr64++;
-
- // Derive the next whitening value
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
- // Little-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x8000000000000000) ?
- 135 : 0;
-
- *whiteningValuePtr64-- <<= 1;
-
- if (*whiteningValuePtr64 & 0x8000000000000000)
- *(whiteningValuePtr64 + 1) |= 1;
-
- *whiteningValuePtr64 <<= 1;
-
-#else
- // Big-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x80) ?
- 135 : 0;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-
- whiteningValuePtr64--;
-
- if (*whiteningValuePtr64 & 0x80)
- *(whiteningValuePtr64 + 1) |= 0x0100000000000000;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-#endif
-
- whiteningValue[0] ^= finalCarry;
- }
-
- dataUnitBufPtr = bufPtr;
- whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
-
- // Decrypt blocks in this data unit
-
- for (block = startBlock; block < endBlock; block++)
- {
- *bufPtr++ ^= *whiteningValuesPtr64--;
- *bufPtr++ ^= *whiteningValuesPtr64--;
- }
-
- DecipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);
-
- bufPtr = dataUnitBufPtr;
- whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
-
- for (block = startBlock; block < endBlock; block++)
- {
- *bufPtr++ ^= *whiteningValuesPtr64--;
- *bufPtr++ ^= *whiteningValuesPtr64--;
- }
-
- blockCount -= endBlock - startBlock;
- startBlock = 0;
- dataUnitNo++;
-
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- }
-
- FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
- FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
-}
-
-
-// Optimized for encryption algorithms not supporting intra-data-unit parallelization
-static void DecryptBufferXTSNonParallel (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- unsigned __int8 finalCarry;
- unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
- unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
- unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
- unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
- unsigned int startBlock = startCipherBlockNo, endBlock, block;
- TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
-
- // Convert the 64-bit data unit number into a little-endian 16-byte array.
- // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
- dataUnitNo = startDataUnitNo->Value;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- *((unsigned __int64 *) byteBufUnitNo + 1) = 0;
-
- if (length % BYTES_PER_XTS_BLOCK)
- TC_THROW_FATAL_EXCEPTION;
-
- blockCount = length / BYTES_PER_XTS_BLOCK;
-
- // Process all blocks in the buffer
- while (blockCount > 0)
- {
- if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
- endBlock = startBlock + (unsigned int) blockCount;
- else
- endBlock = BLOCKS_PER_XTS_DATA_UNIT;
-
- whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
-
- // Encrypt the data unit number using the secondary key (in order to generate the first
- // whitening value for this data unit)
- *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
- *(whiteningValuePtr64 + 1) = 0;
- EncipherBlock (cipher, whiteningValue, ks2);
-
- // Generate (and apply) subsequent whitening values for blocks in this data unit and
- // decrypt all relevant blocks in this data unit
- for (block = 0; block < endBlock; block++)
- {
- if (block >= startBlock)
- {
- // Post-whitening
- *bufPtr++ ^= *whiteningValuePtr64++;
- *bufPtr-- ^= *whiteningValuePtr64--;
-
- // Actual decryption
- DecipherBlock (cipher, bufPtr, ks);
-
- // Pre-whitening
- *bufPtr++ ^= *whiteningValuePtr64++;
- *bufPtr++ ^= *whiteningValuePtr64;
- }
- else
- whiteningValuePtr64++;
-
- // Derive the next whitening value
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-
- // Little-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x8000000000000000) ?
- 135 : 0;
-
- *whiteningValuePtr64-- <<= 1;
-
- if (*whiteningValuePtr64 & 0x8000000000000000)
- *(whiteningValuePtr64 + 1) |= 1;
-
- *whiteningValuePtr64 <<= 1;
-
-#else
- // Big-endian platforms
-
- finalCarry =
- (*whiteningValuePtr64 & 0x80) ?
- 135 : 0;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-
- whiteningValuePtr64--;
-
- if (*whiteningValuePtr64 & 0x80)
- *(whiteningValuePtr64 + 1) |= 0x0100000000000000;
-
- *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
-#endif
-
- whiteningValue[0] ^= finalCarry;
- }
-
- blockCount -= endBlock - startBlock;
- startBlock = 0;
- dataUnitNo++;
- *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
- }
-
- FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
-}
-
-
-#else // TC_NO_COMPILER_INT64
-
-/* ---- The following code is to be used only when native 64-bit data types are not available. ---- */
-
-#if BYTE_ORDER == BIG_ENDIAN
-#error The TC_NO_COMPILER_INT64 version of the XTS code is not compatible with big-endian platforms
-#endif
-
-
-// Converts a 64-bit unsigned integer (passed as two 32-bit integers for compatibility with non-64-bit
-// environments/platforms) into a little-endian 16-byte array.
-static void Uint64ToLE16ByteArray (unsigned __int8 *byteBuf, unsigned __int32 highInt32, unsigned __int32 lowInt32)
-{
- unsigned __int32 *bufPtr32 = (unsigned __int32 *) byteBuf;
-
- *bufPtr32++ = lowInt32;
- *bufPtr32++ = highInt32;
-
- // We're converting a 64-bit number into a little-endian 16-byte array so we can zero the last 8 bytes
- *bufPtr32++ = 0;
- *bufPtr32 = 0;
-}
-
-
-// Encrypts or decrypts all blocks in the buffer in XTS mode. For descriptions of the input parameters,
-// see the 64-bit version of EncryptBufferXTS().
-static void EncryptDecryptBufferXTS32 (const unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startBlock,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher,
- BOOL decryption)
-{
- TC_LARGEST_COMPILER_UINT blockCount;
- UINT64_STRUCT dataUnitNo;
- unsigned int block;
- unsigned int endBlock;
- unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
- unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
- unsigned __int32 *bufPtr32 = (unsigned __int32 *) buffer;
- unsigned __int32 *whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
- unsigned __int8 finalCarry;
- unsigned __int32 *const finalDwordWhiteningValuePtr = whiteningValuePtr32 + sizeof (whiteningValue) / sizeof (*whiteningValuePtr32) - 1;
-
- // Store the 64-bit data unit number in a way compatible with non-64-bit environments/platforms
- dataUnitNo.HighPart = startDataUnitNo->HighPart;
- dataUnitNo.LowPart = startDataUnitNo->LowPart;
-
- blockCount = length / BYTES_PER_XTS_BLOCK;
-
- // Convert the 64-bit data unit number into a little-endian 16-byte array.
- // (Passed as two 32-bit integers for compatibility with non-64-bit environments/platforms.)
- Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);
-
- // Generate whitening values for all blocks in the buffer
- while (blockCount > 0)
- {
- if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
- endBlock = startBlock + (unsigned int) blockCount;
- else
- endBlock = BLOCKS_PER_XTS_DATA_UNIT;
-
- // Encrypt the data unit number using the secondary key (in order to generate the first
- // whitening value for this data unit)
- memcpy (whiteningValue, byteBufUnitNo, BYTES_PER_XTS_BLOCK);
- EncipherBlock (cipher, whiteningValue, ks2);
-
- // Generate (and apply) subsequent whitening values for blocks in this data unit and
- // encrypt/decrypt all relevant blocks in this data unit
- for (block = 0; block < endBlock; block++)
- {
- if (block >= startBlock)
- {
- whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
-
- // Whitening
- *bufPtr32++ ^= *whiteningValuePtr32++;
- *bufPtr32++ ^= *whiteningValuePtr32++;
- *bufPtr32++ ^= *whiteningValuePtr32++;
- *bufPtr32 ^= *whiteningValuePtr32;
-
- bufPtr32 -= BYTES_PER_XTS_BLOCK / sizeof (*bufPtr32) - 1;
-
- // Actual encryption/decryption
- if (decryption)
- DecipherBlock (cipher, bufPtr32, ks);
- else
- EncipherBlock (cipher, bufPtr32, ks);
-
- whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
-
- // Whitening
- *bufPtr32++ ^= *whiteningValuePtr32++;
- *bufPtr32++ ^= *whiteningValuePtr32++;
- *bufPtr32++ ^= *whiteningValuePtr32++;
- *bufPtr32++ ^= *whiteningValuePtr32;
- }
-
- // Derive the next whitening value
-
- finalCarry = 0;
-
- for (whiteningValuePtr32 = finalDwordWhiteningValuePtr;
- whiteningValuePtr32 >= (unsigned __int32 *) whiteningValue;
- whiteningValuePtr32--)
- {
- if (*whiteningValuePtr32 & 0x80000000) // If the following shift results in a carry
- {
- if (whiteningValuePtr32 != finalDwordWhiteningValuePtr) // If not processing the highest double word
- {
- // A regular carry
- *(whiteningValuePtr32 + 1) |= 1;
- }
- else
- {
- // The highest byte shift will result in a carry
- finalCarry = 135;
- }
- }
-
- *whiteningValuePtr32 <<= 1;
- }
-
- whiteningValue[0] ^= finalCarry;
- }
-
- blockCount -= endBlock - startBlock;
- startBlock = 0;
-
- // Increase the data unit number by one
- if (!++dataUnitNo.LowPart)
- {
- dataUnitNo.HighPart++;
- }
-
- // Convert the 64-bit data unit number into a little-endian 16-byte array.
- Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);
- }
-
- FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
-}
-
-
-// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS() above.
-void EncryptBufferXTS (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- // Encrypt all plaintext blocks in the buffer
- EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, FALSE);
-}
-
-
-// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS().
-void DecryptBufferXTS (unsigned __int8 *buffer,
- TC_LARGEST_COMPILER_UINT length,
- const UINT64_STRUCT *startDataUnitNo,
- unsigned int startCipherBlockNo,
- unsigned __int8 *ks,
- unsigned __int8 *ks2,
- int cipher)
-{
- // Decrypt all ciphertext blocks in the buffer
- EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, TRUE);
-}
-
-#endif // TC_NO_COMPILER_INT64
+/* + Derived from source code of TrueCrypt 7.1a, which is + Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed + by the TrueCrypt License 3.0. + + Modifications and additions to the original source code (contained in this file) + and all other portions of this file are Copyright (c) 2013-2016 IDRIX + and are governed by the Apache License 2.0 the full text of which is + contained in the file License.txt included in VeraCrypt binary and source + code distribution packages. +*/ + +/* If native 64-bit data types are not available, define TC_NO_COMPILER_INT64. + +For big-endian platforms define BYTE_ORDER as BIG_ENDIAN. */ + + +#ifdef TC_MINIMIZE_CODE_SIZE +// Preboot/boot version +# ifndef TC_NO_COMPILER_INT64 +# define TC_NO_COMPILER_INT64 +# endif +# pragma optimize ("tl", on) +#endif + +#ifdef TC_NO_COMPILER_INT64 +# include <memory.h> +#endif + +#include "Xts.h" + + +#ifndef TC_NO_COMPILER_INT64 + +// length: number of bytes to encrypt; may be larger than one data unit and must be divisible by the cipher block size +// ks: the primary key schedule +// ks2: the secondary key schedule +// startDataUnitNo: The sequential number of the data unit with which the buffer starts. +// startCipherBlockNo: The sequential number of the first plaintext block to encrypt inside the data unit startDataUnitNo. +// When encrypting the data unit from its first block, startCipherBlockNo is 0. +// The startCipherBlockNo value applies only to the first data unit in the buffer; each successive +// data unit is encrypted from its first block. The start of the buffer does not have to be +// aligned with the start of a data unit. If it is aligned, startCipherBlockNo must be 0; if it +// is not aligned, startCipherBlockNo must reflect the misalignment accordingly. +void EncryptBufferXTS (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + if (CipherSupportsIntraDataUnitParallelization (cipher)) + EncryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher); + else + EncryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher); +} + + +// Optimized for encryption algorithms supporting intra-data-unit parallelization +static void EncryptBufferXTSParallel (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + unsigned __int8 finalCarry; + unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE]; + unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; + unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; + unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues; + unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; + unsigned __int64 *dataUnitBufPtr; + unsigned int startBlock = startCipherBlockNo, endBlock, block; + unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1; + TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; + + /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the + finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block + number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented + as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if + the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is + derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */ + + // Convert the 64-bit data unit number into a little-endian 16-byte array. + // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. + dataUnitNo = startDataUnitNo->Value; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + *((unsigned __int64 *) byteBufUnitNo + 1) = 0; + + if (length % BYTES_PER_XTS_BLOCK) + TC_THROW_FATAL_EXCEPTION; + + blockCount = length / BYTES_PER_XTS_BLOCK; + + // Process all blocks in the buffer + while (blockCount > 0) + { + if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) + endBlock = startBlock + (unsigned int) blockCount; + else + endBlock = BLOCKS_PER_XTS_DATA_UNIT; + + whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; + whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + + // Encrypt the data unit number using the secondary key (in order to generate the first + // whitening value for this data unit) + *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); + *(whiteningValuePtr64 + 1) = 0; + EncipherBlock (cipher, whiteningValue, ks2); + + // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit + // whitening values are stored in memory as a sequence of 64-bit integers in reverse order. + for (block = 0; block < endBlock; block++) + { + if (block >= startBlock) + { + *whiteningValuesPtr64-- = *whiteningValuePtr64++; + *whiteningValuesPtr64-- = *whiteningValuePtr64; + } + else + whiteningValuePtr64++; + + // Derive the next whitening value + +#if BYTE_ORDER == LITTLE_ENDIAN + + // Little-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x8000000000000000) ? + 135 : 0; + + *whiteningValuePtr64-- <<= 1; + + if (*whiteningValuePtr64 & 0x8000000000000000) + *(whiteningValuePtr64 + 1) |= 1; + + *whiteningValuePtr64 <<= 1; +#else + + // Big-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x80) ? + 135 : 0; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); + + whiteningValuePtr64--; + + if (*whiteningValuePtr64 & 0x80) + *(whiteningValuePtr64 + 1) |= 0x0100000000000000; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); +#endif + + whiteningValue[0] ^= finalCarry; + } + + dataUnitBufPtr = bufPtr; + whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; + + // Encrypt all blocks in this data unit + + for (block = startBlock; block < endBlock; block++) + { + // Pre-whitening + *bufPtr++ ^= *whiteningValuesPtr64--; + *bufPtr++ ^= *whiteningValuesPtr64--; + } + + // Actual encryption + EncipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock); + + bufPtr = dataUnitBufPtr; + whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; + + for (block = startBlock; block < endBlock; block++) + { + // Post-whitening + *bufPtr++ ^= *whiteningValuesPtr64--; + *bufPtr++ ^= *whiteningValuesPtr64--; + } + + blockCount -= endBlock - startBlock; + startBlock = 0; + dataUnitNo++; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + } + + FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); + FAST_ERASE64 (whiteningValues, sizeof (whiteningValues)); +} + + +// Optimized for encryption algorithms not supporting intra-data-unit parallelization +static void EncryptBufferXTSNonParallel (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + unsigned __int8 finalCarry; + unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; + unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; + unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; + unsigned int startBlock = startCipherBlockNo, endBlock, block; + TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; + + /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the + finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block + number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented + as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if + the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is + derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */ + + // Convert the 64-bit data unit number into a little-endian 16-byte array. + // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. + dataUnitNo = startDataUnitNo->Value; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + *((unsigned __int64 *) byteBufUnitNo + 1) = 0; + + if (length % BYTES_PER_XTS_BLOCK) + TC_THROW_FATAL_EXCEPTION; + + blockCount = length / BYTES_PER_XTS_BLOCK; + + // Process all blocks in the buffer + while (blockCount > 0) + { + if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) + endBlock = startBlock + (unsigned int) blockCount; + else + endBlock = BLOCKS_PER_XTS_DATA_UNIT; + + whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + + // Encrypt the data unit number using the secondary key (in order to generate the first + // whitening value for this data unit) + *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); + *(whiteningValuePtr64 + 1) = 0; + EncipherBlock (cipher, whiteningValue, ks2); + + // Generate (and apply) subsequent whitening values for blocks in this data unit and + // encrypt all relevant blocks in this data unit + for (block = 0; block < endBlock; block++) + { + if (block >= startBlock) + { + // Pre-whitening + *bufPtr++ ^= *whiteningValuePtr64++; + *bufPtr-- ^= *whiteningValuePtr64--; + + // Actual encryption + EncipherBlock (cipher, bufPtr, ks); + + // Post-whitening + *bufPtr++ ^= *whiteningValuePtr64++; + *bufPtr++ ^= *whiteningValuePtr64; + } + else + whiteningValuePtr64++; + + // Derive the next whitening value + +#if BYTE_ORDER == LITTLE_ENDIAN + + // Little-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x8000000000000000) ? + 135 : 0; + + *whiteningValuePtr64-- <<= 1; + + if (*whiteningValuePtr64 & 0x8000000000000000) + *(whiteningValuePtr64 + 1) |= 1; + + *whiteningValuePtr64 <<= 1; +#else + + // Big-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x80) ? + 135 : 0; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); + + whiteningValuePtr64--; + + if (*whiteningValuePtr64 & 0x80) + *(whiteningValuePtr64 + 1) |= 0x0100000000000000; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); +#endif + + whiteningValue[0] ^= finalCarry; + } + + blockCount -= endBlock - startBlock; + startBlock = 0; + dataUnitNo++; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + } + + FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); +} + + +// For descriptions of the input parameters, see EncryptBufferXTS(). +void DecryptBufferXTS (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + if (CipherSupportsIntraDataUnitParallelization (cipher)) + DecryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher); + else + DecryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher); +} + + +// Optimized for encryption algorithms supporting intra-data-unit parallelization +static void DecryptBufferXTSParallel (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + unsigned __int8 finalCarry; + unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE]; + unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; + unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; + unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues; + unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; + unsigned __int64 *dataUnitBufPtr; + unsigned int startBlock = startCipherBlockNo, endBlock, block; + unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1; + TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; + + // Convert the 64-bit data unit number into a little-endian 16-byte array. + // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. + dataUnitNo = startDataUnitNo->Value; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + *((unsigned __int64 *) byteBufUnitNo + 1) = 0; + + if (length % BYTES_PER_XTS_BLOCK) + TC_THROW_FATAL_EXCEPTION; + + blockCount = length / BYTES_PER_XTS_BLOCK; + + // Process all blocks in the buffer + while (blockCount > 0) + { + if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) + endBlock = startBlock + (unsigned int) blockCount; + else + endBlock = BLOCKS_PER_XTS_DATA_UNIT; + + whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; + whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + + // Encrypt the data unit number using the secondary key (in order to generate the first + // whitening value for this data unit) + *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); + *(whiteningValuePtr64 + 1) = 0; + EncipherBlock (cipher, whiteningValue, ks2); + + // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit + // whitening values are stored in memory as a sequence of 64-bit integers in reverse order. + for (block = 0; block < endBlock; block++) + { + if (block >= startBlock) + { + *whiteningValuesPtr64-- = *whiteningValuePtr64++; + *whiteningValuesPtr64-- = *whiteningValuePtr64; + } + else + whiteningValuePtr64++; + + // Derive the next whitening value + +#if BYTE_ORDER == LITTLE_ENDIAN + + // Little-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x8000000000000000) ? + 135 : 0; + + *whiteningValuePtr64-- <<= 1; + + if (*whiteningValuePtr64 & 0x8000000000000000) + *(whiteningValuePtr64 + 1) |= 1; + + *whiteningValuePtr64 <<= 1; + +#else + // Big-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x80) ? + 135 : 0; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); + + whiteningValuePtr64--; + + if (*whiteningValuePtr64 & 0x80) + *(whiteningValuePtr64 + 1) |= 0x0100000000000000; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); +#endif + + whiteningValue[0] ^= finalCarry; + } + + dataUnitBufPtr = bufPtr; + whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; + + // Decrypt blocks in this data unit + + for (block = startBlock; block < endBlock; block++) + { + *bufPtr++ ^= *whiteningValuesPtr64--; + *bufPtr++ ^= *whiteningValuesPtr64--; + } + + DecipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock); + + bufPtr = dataUnitBufPtr; + whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; + + for (block = startBlock; block < endBlock; block++) + { + *bufPtr++ ^= *whiteningValuesPtr64--; + *bufPtr++ ^= *whiteningValuesPtr64--; + } + + blockCount -= endBlock - startBlock; + startBlock = 0; + dataUnitNo++; + + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + } + + FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); + FAST_ERASE64 (whiteningValues, sizeof (whiteningValues)); +} + + +// Optimized for encryption algorithms not supporting intra-data-unit parallelization +static void DecryptBufferXTSNonParallel (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + unsigned __int8 finalCarry; + unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; + unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; + unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + unsigned __int64 *bufPtr = (unsigned __int64 *) buffer; + unsigned int startBlock = startCipherBlockNo, endBlock, block; + TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo; + + // Convert the 64-bit data unit number into a little-endian 16-byte array. + // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. + dataUnitNo = startDataUnitNo->Value; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + *((unsigned __int64 *) byteBufUnitNo + 1) = 0; + + if (length % BYTES_PER_XTS_BLOCK) + TC_THROW_FATAL_EXCEPTION; + + blockCount = length / BYTES_PER_XTS_BLOCK; + + // Process all blocks in the buffer + while (blockCount > 0) + { + if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) + endBlock = startBlock + (unsigned int) blockCount; + else + endBlock = BLOCKS_PER_XTS_DATA_UNIT; + + whiteningValuePtr64 = (unsigned __int64 *) whiteningValue; + + // Encrypt the data unit number using the secondary key (in order to generate the first + // whitening value for this data unit) + *whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo); + *(whiteningValuePtr64 + 1) = 0; + EncipherBlock (cipher, whiteningValue, ks2); + + // Generate (and apply) subsequent whitening values for blocks in this data unit and + // decrypt all relevant blocks in this data unit + for (block = 0; block < endBlock; block++) + { + if (block >= startBlock) + { + // Post-whitening + *bufPtr++ ^= *whiteningValuePtr64++; + *bufPtr-- ^= *whiteningValuePtr64--; + + // Actual decryption + DecipherBlock (cipher, bufPtr, ks); + + // Pre-whitening + *bufPtr++ ^= *whiteningValuePtr64++; + *bufPtr++ ^= *whiteningValuePtr64; + } + else + whiteningValuePtr64++; + + // Derive the next whitening value + +#if BYTE_ORDER == LITTLE_ENDIAN + + // Little-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x8000000000000000) ? + 135 : 0; + + *whiteningValuePtr64-- <<= 1; + + if (*whiteningValuePtr64 & 0x8000000000000000) + *(whiteningValuePtr64 + 1) |= 1; + + *whiteningValuePtr64 <<= 1; + +#else + // Big-endian platforms + + finalCarry = + (*whiteningValuePtr64 & 0x80) ? + 135 : 0; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); + + whiteningValuePtr64--; + + if (*whiteningValuePtr64 & 0x80) + *(whiteningValuePtr64 + 1) |= 0x0100000000000000; + + *whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1); +#endif + + whiteningValue[0] ^= finalCarry; + } + + blockCount -= endBlock - startBlock; + startBlock = 0; + dataUnitNo++; + *((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo); + } + + FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); +} + + +#else // TC_NO_COMPILER_INT64 + +/* ---- The following code is to be used only when native 64-bit data types are not available. ---- */ + +#if BYTE_ORDER == BIG_ENDIAN +#error The TC_NO_COMPILER_INT64 version of the XTS code is not compatible with big-endian platforms +#endif + + +// Converts a 64-bit unsigned integer (passed as two 32-bit integers for compatibility with non-64-bit +// environments/platforms) into a little-endian 16-byte array. +static void Uint64ToLE16ByteArray (unsigned __int8 *byteBuf, unsigned __int32 highInt32, unsigned __int32 lowInt32) +{ + unsigned __int32 *bufPtr32 = (unsigned __int32 *) byteBuf; + + *bufPtr32++ = lowInt32; + *bufPtr32++ = highInt32; + + // We're converting a 64-bit number into a little-endian 16-byte array so we can zero the last 8 bytes + *bufPtr32++ = 0; + *bufPtr32 = 0; +} + + +// Encrypts or decrypts all blocks in the buffer in XTS mode. For descriptions of the input parameters, +// see the 64-bit version of EncryptBufferXTS(). +static void EncryptDecryptBufferXTS32 (const unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startBlock, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher, + BOOL decryption) +{ + TC_LARGEST_COMPILER_UINT blockCount; + UINT64_STRUCT dataUnitNo; + unsigned int block; + unsigned int endBlock; + unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK]; + unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK]; + unsigned __int32 *bufPtr32 = (unsigned __int32 *) buffer; + unsigned __int32 *whiteningValuePtr32 = (unsigned __int32 *) whiteningValue; + unsigned __int8 finalCarry; + unsigned __int32 *const finalDwordWhiteningValuePtr = whiteningValuePtr32 + sizeof (whiteningValue) / sizeof (*whiteningValuePtr32) - 1; + + // Store the 64-bit data unit number in a way compatible with non-64-bit environments/platforms + dataUnitNo.HighPart = startDataUnitNo->HighPart; + dataUnitNo.LowPart = startDataUnitNo->LowPart; + + blockCount = length / BYTES_PER_XTS_BLOCK; + + // Convert the 64-bit data unit number into a little-endian 16-byte array. + // (Passed as two 32-bit integers for compatibility with non-64-bit environments/platforms.) + Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart); + + // Generate whitening values for all blocks in the buffer + while (blockCount > 0) + { + if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) + endBlock = startBlock + (unsigned int) blockCount; + else + endBlock = BLOCKS_PER_XTS_DATA_UNIT; + + // Encrypt the data unit number using the secondary key (in order to generate the first + // whitening value for this data unit) + memcpy (whiteningValue, byteBufUnitNo, BYTES_PER_XTS_BLOCK); + EncipherBlock (cipher, whiteningValue, ks2); + + // Generate (and apply) subsequent whitening values for blocks in this data unit and + // encrypt/decrypt all relevant blocks in this data unit + for (block = 0; block < endBlock; block++) + { + if (block >= startBlock) + { + whiteningValuePtr32 = (unsigned __int32 *) whiteningValue; + + // Whitening + *bufPtr32++ ^= *whiteningValuePtr32++; + *bufPtr32++ ^= *whiteningValuePtr32++; + *bufPtr32++ ^= *whiteningValuePtr32++; + *bufPtr32 ^= *whiteningValuePtr32; + + bufPtr32 -= BYTES_PER_XTS_BLOCK / sizeof (*bufPtr32) - 1; + + // Actual encryption/decryption + if (decryption) + DecipherBlock (cipher, bufPtr32, ks); + else + EncipherBlock (cipher, bufPtr32, ks); + + whiteningValuePtr32 = (unsigned __int32 *) whiteningValue; + + // Whitening + *bufPtr32++ ^= *whiteningValuePtr32++; + *bufPtr32++ ^= *whiteningValuePtr32++; + *bufPtr32++ ^= *whiteningValuePtr32++; + *bufPtr32++ ^= *whiteningValuePtr32; + } + + // Derive the next whitening value + + finalCarry = 0; + + for (whiteningValuePtr32 = finalDwordWhiteningValuePtr; + whiteningValuePtr32 >= (unsigned __int32 *) whiteningValue; + whiteningValuePtr32--) + { + if (*whiteningValuePtr32 & 0x80000000) // If the following shift results in a carry + { + if (whiteningValuePtr32 != finalDwordWhiteningValuePtr) // If not processing the highest double word + { + // A regular carry + *(whiteningValuePtr32 + 1) |= 1; + } + else + { + // The highest byte shift will result in a carry + finalCarry = 135; + } + } + + *whiteningValuePtr32 <<= 1; + } + + whiteningValue[0] ^= finalCarry; + } + + blockCount -= endBlock - startBlock; + startBlock = 0; + + // Increase the data unit number by one + if (!++dataUnitNo.LowPart) + { + dataUnitNo.HighPart++; + } + + // Convert the 64-bit data unit number into a little-endian 16-byte array. + Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart); + } + + FAST_ERASE64 (whiteningValue, sizeof (whiteningValue)); +} + + +// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS() above. +void EncryptBufferXTS (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + // Encrypt all plaintext blocks in the buffer + EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, FALSE); +} + + +// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS(). +void DecryptBufferXTS (unsigned __int8 *buffer, + TC_LARGEST_COMPILER_UINT length, + const UINT64_STRUCT *startDataUnitNo, + unsigned int startCipherBlockNo, + unsigned __int8 *ks, + unsigned __int8 *ks2, + int cipher) +{ + // Decrypt all ciphertext blocks in the buffer + EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, TRUE); +} + +#endif // TC_NO_COMPILER_INT64 |