diff options
Diffstat (limited to 'src/Crypto/Aesopt.h')
-rw-r--r-- | src/Crypto/Aesopt.h | 1468 |
1 files changed, 734 insertions, 734 deletions
diff --git a/src/Crypto/Aesopt.h b/src/Crypto/Aesopt.h index 1b793e43..cf7edbe2 100644 --- a/src/Crypto/Aesopt.h +++ b/src/Crypto/Aesopt.h @@ -1,734 +1,734 @@ -/*
- ---------------------------------------------------------------------------
- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
-
- LICENSE TERMS
-
- The free distribution and use of this software is allowed (with or without
- changes) provided that:
-
- 1. source code distributions include the above copyright notice, this
- list of conditions and the following disclaimer;
-
- 2. binary distributions include the above copyright notice, this list
- of conditions and the following disclaimer in their documentation;
-
- 3. the name of the copyright holder is not used to endorse products
- built using this software without specific written permission.
-
- DISCLAIMER
-
- This software is provided 'as is' with no explicit or implied warranties
- in respect of its properties, including, but not limited to, correctness
- and/or fitness for purpose.
- ---------------------------------------------------------------------------
- Issue Date: 20/12/2007
-
- This file contains the compilation options for AES (Rijndael) and code
- that is common across encryption, key scheduling and table generation.
-
- OPERATION
-
- These source code files implement the AES algorithm Rijndael designed by
- Joan Daemen and Vincent Rijmen. This version is designed for the standard
- block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
- and 32 bytes).
-
- This version is designed for flexibility and speed using operations on
- 32-bit words rather than operations on bytes. It can be compiled with
- either big or little endian internal byte order but is faster when the
- native byte order for the processor is used.
-
- THE CIPHER INTERFACE
-
- The cipher interface is implemented as an array of bytes in which lower
- AES bit sequence indexes map to higher numeric significance within bytes.
-
- uint_8t (an unsigned 8-bit type)
- uint_32t (an unsigned 32-bit type)
- struct aes_encrypt_ctx (structure for the cipher encryption context)
- struct aes_decrypt_ctx (structure for the cipher decryption context)
- AES_RETURN the function return type
-
- C subroutine calls:
-
- AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
- AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
- AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
- AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
- const aes_encrypt_ctx cx[1]);
-
- AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
- AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
- AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
- AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
- const aes_decrypt_ctx cx[1]);
-
- IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
- you call aes_init() before AES is used so that the tables are initialised.
-
- C++ aes class subroutines:
-
- Class AESencrypt for encryption
-
- Construtors:
- AESencrypt(void)
- AESencrypt(const unsigned char *key) - 128 bit key
- Members:
- AES_RETURN key128(const unsigned char *key)
- AES_RETURN key192(const unsigned char *key)
- AES_RETURN key256(const unsigned char *key)
- AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
-
- Class AESdecrypt for encryption
- Construtors:
- AESdecrypt(void)
- AESdecrypt(const unsigned char *key) - 128 bit key
- Members:
- AES_RETURN key128(const unsigned char *key)
- AES_RETURN key192(const unsigned char *key)
- AES_RETURN key256(const unsigned char *key)
- AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
-*/
-
-/* Adapted for TrueCrypt */
-
-#if !defined( _AESOPT_H )
-#define _AESOPT_H
-
-#ifdef TC_WINDOWS_BOOT
-#define ASM_X86_V2
-#endif
-
-#if defined( __cplusplus )
-#include "Aescpp.h"
-#else
-#include "Aes.h"
-#endif
-
-
-#include "Common/Endian.h"
-#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
-#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
-
-#if BYTE_ORDER == LITTLE_ENDIAN
-# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
-#endif
-
-#if BYTE_ORDER == BIG_ENDIAN
-# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
-#endif
-
-
-/* CONFIGURATION - THE USE OF DEFINES
-
- Later in this section there are a number of defines that control the
- operation of the code. In each section, the purpose of each define is
- explained so that the relevant form can be included or excluded by
- setting either 1's or 0's respectively on the branches of the related
- #if clauses. The following local defines should not be changed.
-*/
-
-#define ENCRYPTION_IN_C 1
-#define DECRYPTION_IN_C 2
-#define ENC_KEYING_IN_C 4
-#define DEC_KEYING_IN_C 8
-
-#define NO_TABLES 0
-#define ONE_TABLE 1
-#define FOUR_TABLES 4
-#define NONE 0
-#define PARTIAL 1
-#define FULL 2
-
-/* --- START OF USER CONFIGURED OPTIONS --- */
-
-/* 1. BYTE ORDER WITHIN 32 BIT WORDS
-
- The fundamental data processing units in Rijndael are 8-bit bytes. The
- input, output and key input are all enumerated arrays of bytes in which
- bytes are numbered starting at zero and increasing to one less than the
- number of bytes in the array in question. This enumeration is only used
- for naming bytes and does not imply any adjacency or order relationship
- from one byte to another. When these inputs and outputs are considered
- as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
- byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
- In this implementation bits are numbered from 0 to 7 starting at the
- numerically least significant end of each byte (bit n represents 2^n).
-
- However, Rijndael can be implemented more efficiently using 32-bit
- words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
- into word[n]. While in principle these bytes can be assembled into words
- in any positions, this implementation only supports the two formats in
- which bytes in adjacent positions within words also have adjacent byte
- numbers. This order is called big-endian if the lowest numbered bytes
- in words have the highest numeric significance and little-endian if the
- opposite applies.
-
- This code can work in either order irrespective of the order used by the
- machine on which it runs. Normally the internal byte order will be set
- to the order of the processor on which the code is to be run but this
- define can be used to reverse this in special situations
-
- WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
- This define will hence be redefined later (in section 4) if necessary
-*/
-
-#if 1
-#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
-#elif 0
-#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
-#elif 0
-#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
-#else
-#error The algorithm byte order is not defined
-#endif
-
-/* 2. VIA ACE SUPPORT
-
- Define this option if support for the VIA ACE is required. This uses
- inline assembler instructions and is only implemented for the Microsoft,
- Intel and GCC compilers. If VIA ACE is known to be present, then defining
- ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
- code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
- it is detected (both present and enabled) but the normal AES code will
- also be present.
-
- When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
- aligned; other input/output buffers do not need to be 16 byte aligned
- but there are very large performance gains if this can be arranged.
- VIA ACE also requires the decryption key schedule to be in reverse
- order (which later checks below ensure).
-*/
-
-#if 0 && !defined( USE_VIA_ACE_IF_PRESENT )
-# define USE_VIA_ACE_IF_PRESENT
-#endif
-
-#if 0 && !defined( ASSUME_VIA_ACE_PRESENT )
-# define ASSUME_VIA_ACE_PRESENT
-# endif
-
-#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \
- defined( _MSC_VER ) && ( _MSC_VER <= 800 )
-# if defined( USE_VIA_ACE_IF_PRESENT )
-# undef USE_VIA_ACE_IF_PRESENT
-# endif
-# if defined( ASSUME_VIA_ACE_PRESENT )
-# undef ASSUME_VIA_ACE_PRESENT
-# endif
-#endif
-
-/* 3. ASSEMBLER SUPPORT
-
- This define (which can be on the command line) enables the use of the
- assembler code routines for encryption, decryption and key scheduling
- as follows:
-
- ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
- encryption and decryption and but with key scheduling in C
- ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
- encryption, decryption and key scheduling
- ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
- encryption and decryption and but with key scheduling in C
- ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
- encryption and decryption and but with key scheduling in C
-
- Change one 'if 0' below to 'if 1' to select the version or define
- as a compilation option.
-*/
-
-#if 0 && !defined( ASM_X86_V1C )
-# define ASM_X86_V1C
-#elif 0 && !defined( ASM_X86_V2 )
-# define ASM_X86_V2
-#elif 0 && !defined( ASM_X86_V2C )
-# define ASM_X86_V2C
-#elif 0 && !defined( ASM_AMD64_C )
-# define ASM_AMD64_C
-#endif
-
-#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
- && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
-//# error Assembler code is only available for x86 and AMD64 systems
-#endif
-
-/* 4. FAST INPUT/OUTPUT OPERATIONS.
-
- On some machines it is possible to improve speed by transferring the
- bytes in the input and output arrays to and from the internal 32-bit
- variables by addressing these arrays as if they are arrays of 32-bit
- words. On some machines this will always be possible but there may
- be a large performance penalty if the byte arrays are not aligned on
- the normal word boundaries. On other machines this technique will
- lead to memory access errors when such 32-bit word accesses are not
- properly aligned. The option SAFE_IO avoids such problems but will
- often be slower on those machines that support misaligned access
- (especially so if care is taken to align the input and output byte
- arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
- assumed that access to byte arrays as if they are arrays of 32-bit
- words will not cause problems when such accesses are misaligned.
-*/
-#if 1 && !defined( _MSC_VER )
-#define SAFE_IO
-#endif
-
-/* 5. LOOP UNROLLING
-
- The code for encryption and decrytpion cycles through a number of rounds
- that can be implemented either in a loop or by expanding the code into a
- long sequence of instructions, the latter producing a larger program but
- one that will often be much faster. The latter is called loop unrolling.
- There are also potential speed advantages in expanding two iterations in
- a loop with half the number of iterations, which is called partial loop
- unrolling. The following options allow partial or full loop unrolling
- to be set independently for encryption and decryption
-*/
-#if 1
-#define ENC_UNROLL FULL
-#elif 0
-#define ENC_UNROLL PARTIAL
-#else
-#define ENC_UNROLL NONE
-#endif
-
-#if 1
-#define DEC_UNROLL FULL
-#elif 0
-#define DEC_UNROLL PARTIAL
-#else
-#define DEC_UNROLL NONE
-#endif
-
-/* 6. FAST FINITE FIELD OPERATIONS
-
- If this section is included, tables are used to provide faster finite
- field arithmetic (this has no effect if FIXED_TABLES is defined).
-*/
-#if !defined (TC_WINDOWS_BOOT)
-#define FF_TABLES
-#endif
-
-/* 7. INTERNAL STATE VARIABLE FORMAT
-
- The internal state of Rijndael is stored in a number of local 32-bit
- word varaibles which can be defined either as an array or as individual
- names variables. Include this section if you want to store these local
- varaibles in arrays. Otherwise individual local variables will be used.
-*/
-#if 1
-#define ARRAYS
-#endif
-
-/* 8. FIXED OR DYNAMIC TABLES
-
- When this section is included the tables used by the code are compiled
- statically into the binary file. Otherwise the subroutine aes_init()
- must be called to compute them before the code is first used.
-*/
-#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
-#define FIXED_TABLES
-#endif
-
-/* 9. TABLE ALIGNMENT
-
- On some sytsems speed will be improved by aligning the AES large lookup
- tables on particular boundaries. This define should be set to a power of
- two giving the desired alignment. It can be left undefined if alignment
- is not needed. This option is specific to the Microsft VC++ compiler -
- it seems to sometimes cause trouble for the VC++ version 6 compiler.
-*/
-
-#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
-#define TABLE_ALIGN 32
-#endif
-
-/* 10. TABLE OPTIONS
-
- This cipher proceeds by repeating in a number of cycles known as 'rounds'
- which are implemented by a round function which can optionally be speeded
- up using tables. The basic tables are each 256 32-bit words, with either
- one or four tables being required for each round function depending on
- how much speed is required. The encryption and decryption round functions
- are different and the last encryption and decrytpion round functions are
- different again making four different round functions in all.
-
- This means that:
- 1. Normal encryption and decryption rounds can each use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
- 2. The last encryption and decryption rounds can also use either 0, 1
- or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
-
- Include or exclude the appropriate definitions below to set the number
- of tables used by this implementation.
-*/
-
-#if 1 /* set tables for the normal encryption round */
-#define ENC_ROUND FOUR_TABLES
-#elif 0
-#define ENC_ROUND ONE_TABLE
-#else
-#define ENC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the last encryption round */
-#define LAST_ENC_ROUND FOUR_TABLES
-#elif 0
-#define LAST_ENC_ROUND ONE_TABLE
-#else
-#define LAST_ENC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the normal decryption round */
-#define DEC_ROUND FOUR_TABLES
-#elif 0
-#define DEC_ROUND ONE_TABLE
-#else
-#define DEC_ROUND NO_TABLES
-#endif
-
-#if 1 /* set tables for the last decryption round */
-#define LAST_DEC_ROUND FOUR_TABLES
-#elif 0
-#define LAST_DEC_ROUND ONE_TABLE
-#else
-#define LAST_DEC_ROUND NO_TABLES
-#endif
-
-/* The decryption key schedule can be speeded up with tables in the same
- way that the round functions can. Include or exclude the following
- defines to set this requirement.
-*/
-#if 1
-#define KEY_SCHED FOUR_TABLES
-#elif 0
-#define KEY_SCHED ONE_TABLE
-#else
-#define KEY_SCHED NO_TABLES
-#endif
-
-/* ---- END OF USER CONFIGURED OPTIONS ---- */
-
-/* VIA ACE support is only available for VC++ and GCC */
-
-#if !defined( _MSC_VER ) && !defined( __GNUC__ )
-# if defined( ASSUME_VIA_ACE_PRESENT )
-# undef ASSUME_VIA_ACE_PRESENT
-# endif
-# if defined( USE_VIA_ACE_IF_PRESENT )
-# undef USE_VIA_ACE_IF_PRESENT
-# endif
-#endif
-
-#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
-#define USE_VIA_ACE_IF_PRESENT
-#endif
-
-#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
-#define AES_REV_DKS
-#endif
-
-/* Assembler support requires the use of platform byte order */
-
-#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
- && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
-#undef ALGORITHM_BYTE_ORDER
-#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
-#endif
-
-/* In this implementation the columns of the state array are each held in
- 32-bit words. The state array can be held in various ways: in an array
- of words, in a number of individual word variables or in a number of
- processor registers. The following define maps a variable name x and
- a column number c to the way the state array variable is to be held.
- The first define below maps the state into an array x[c] whereas the
- second form maps the state into a number of individual variables x0,
- x1, etc. Another form could map individual state colums to machine
- register names.
-*/
-
-#if defined( ARRAYS )
-#define s(x,c) x[c]
-#else
-#define s(x,c) x##c
-#endif
-
-/* This implementation provides subroutines for encryption, decryption
- and for setting the three key lengths (separately) for encryption
- and decryption. Since not all functions are needed, masks are set
- up here to determine which will be implemented in C
-*/
-
-#if !defined( AES_ENCRYPT )
-# define EFUNCS_IN_C 0
-#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
- || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
-# define EFUNCS_IN_C ENC_KEYING_IN_C
-#elif !defined( ASM_X86_V2 )
-# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
-#else
-# define EFUNCS_IN_C 0
-#endif
-
-#if !defined( AES_DECRYPT )
-# define DFUNCS_IN_C 0
-#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
- || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
-# define DFUNCS_IN_C DEC_KEYING_IN_C
-#elif !defined( ASM_X86_V2 )
-# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
-#else
-# define DFUNCS_IN_C 0
-#endif
-
-#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
-
-/* END OF CONFIGURATION OPTIONS */
-
-#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
-
-/* Disable or report errors on some combinations of options */
-
-#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
-#undef LAST_ENC_ROUND
-#define LAST_ENC_ROUND NO_TABLES
-#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
-#undef LAST_ENC_ROUND
-#define LAST_ENC_ROUND ONE_TABLE
-#endif
-
-#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
-#undef ENC_UNROLL
-#define ENC_UNROLL NONE
-#endif
-
-#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
-#undef LAST_DEC_ROUND
-#define LAST_DEC_ROUND NO_TABLES
-#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
-#undef LAST_DEC_ROUND
-#define LAST_DEC_ROUND ONE_TABLE
-#endif
-
-#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
-#undef DEC_UNROLL
-#define DEC_UNROLL NONE
-#endif
-
-#if defined( bswap32 )
-#define aes_sw32 bswap32
-#elif defined( bswap_32 )
-#define aes_sw32 bswap_32
-#else
-#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
-#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
-#endif
-
-/* upr(x,n): rotates bytes within words by n positions, moving bytes to
- higher index positions with wrap around into low positions
- ups(x,n): moves bytes by n positions to higher index positions in
- words but without wrap around
- bval(x,n): extracts a byte from a word
-
- WARNING: The definitions given here are intended only for use with
- unsigned variables and with shift counts that are compile
- time constants
-*/
-
-#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
-#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
-#define ups(x,n) ((uint_32t) (x) << (8 * (n)))
-#define bval(x,n) ((uint_8t)((x) >> (8 * (n))))
-#define bytes2word(b0, b1, b2, b3) \
- (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
-#endif
-
-#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
-#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
-#define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
-#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n))))
-#define bytes2word(b0, b1, b2, b3) \
- (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
-#endif
-
-#if defined( SAFE_IO )
-
-#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
- ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
-#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
- ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
-
-#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
-
-#define word_in(x,c) (*((uint_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
-
-#else
-
-#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
-#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
-
-#endif
-
-/* the finite field modular polynomial and elements */
-
-#define WPOLY 0x011b
-#define BPOLY 0x1b
-
-/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
-
-#define m1 0x80808080
-#define m2 0x7f7f7f7f
-#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
-
-/* The following defines provide alternative definitions of gf_mulx that might
- give improved performance if a fast 32-bit multiply is not available. Note
- that a temporary variable u needs to be defined where gf_mulx is used.
-
-#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
-#define m4 (0x01010101 * BPOLY)
-#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
-*/
-
-/* Work out which tables are needed for the different options */
-
-#if defined( ASM_X86_V1C )
-#if defined( ENC_ROUND )
-#undef ENC_ROUND
-#endif
-#define ENC_ROUND FOUR_TABLES
-#if defined( LAST_ENC_ROUND )
-#undef LAST_ENC_ROUND
-#endif
-#define LAST_ENC_ROUND FOUR_TABLES
-#if defined( DEC_ROUND )
-#undef DEC_ROUND
-#endif
-#define DEC_ROUND FOUR_TABLES
-#if defined( LAST_DEC_ROUND )
-#undef LAST_DEC_ROUND
-#endif
-#define LAST_DEC_ROUND FOUR_TABLES
-#if defined( KEY_SCHED )
-#undef KEY_SCHED
-#define KEY_SCHED FOUR_TABLES
-#endif
-#endif
-
-#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
-#if ENC_ROUND == ONE_TABLE
-#define FT1_SET
-#elif ENC_ROUND == FOUR_TABLES
-#define FT4_SET
-#else
-#define SBX_SET
-#endif
-#if LAST_ENC_ROUND == ONE_TABLE
-#define FL1_SET
-#elif LAST_ENC_ROUND == FOUR_TABLES
-#define FL4_SET
-#elif !defined( SBX_SET )
-#define SBX_SET
-#endif
-#endif
-
-#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
-#if DEC_ROUND == ONE_TABLE
-#define IT1_SET
-#elif DEC_ROUND == FOUR_TABLES
-#define IT4_SET
-#else
-#define ISB_SET
-#endif
-#if LAST_DEC_ROUND == ONE_TABLE
-#define IL1_SET
-#elif LAST_DEC_ROUND == FOUR_TABLES
-#define IL4_SET
-#elif !defined(ISB_SET)
-#define ISB_SET
-#endif
-#endif
-
-#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
-#if KEY_SCHED == ONE_TABLE
-#define LS1_SET
-#elif KEY_SCHED == FOUR_TABLES
-#define LS4_SET
-#elif !defined( SBX_SET )
-#define SBX_SET
-#endif
-#endif
-
-#if (FUNCS_IN_C & DEC_KEYING_IN_C)
-#if KEY_SCHED == ONE_TABLE
-#define IM1_SET
-#elif KEY_SCHED == FOUR_TABLES
-#define IM4_SET
-#elif !defined( SBX_SET )
-#define SBX_SET
-#endif
-#endif
-
-/* generic definitions of Rijndael macros that use tables */
-
-#define no_table(x,box,vf,rf,c) bytes2word( \
- box[bval(vf(x,0,c),rf(0,c))], \
- box[bval(vf(x,1,c),rf(1,c))], \
- box[bval(vf(x,2,c),rf(2,c))], \
- box[bval(vf(x,3,c),rf(3,c))])
-
-#define one_table(x,op,tab,vf,rf,c) \
- ( tab[bval(vf(x,0,c),rf(0,c))] \
- ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
- ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
- ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
-
-#define four_tables(x,tab,vf,rf,c) \
- ( tab[0][bval(vf(x,0,c),rf(0,c))] \
- ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
- ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
- ^ tab[3][bval(vf(x,3,c),rf(3,c))])
-
-#define vf1(x,r,c) (x)
-#define rf1(r,c) (r)
-#define rf2(r,c) ((8+r-c)&3)
-
-/* perform forward and inverse column mix operation on four bytes in long word x in */
-/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
-
-#if defined( FM4_SET ) /* not currently used */
-#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
-#elif defined( FM1_SET ) /* not currently used */
-#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
-#else
-#define dec_fmvars uint_32t g2
-#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
-#endif
-
-#if defined( IM4_SET )
-#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
-#elif defined( IM1_SET )
-#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
-#else
-#define dec_imvars uint_32t g2, g4, g9
-#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
- (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
-#endif
-
-#if defined( FL4_SET )
-#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
-#elif defined( LS4_SET )
-#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
-#elif defined( FL1_SET )
-#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
-#elif defined( LS1_SET )
-#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
-#else
-#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
-#endif
-
-#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
-#define ISB_SET
-#endif
-
-#endif
+/* + --------------------------------------------------------------------------- + Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. + + LICENSE TERMS + + The free distribution and use of this software is allowed (with or without + changes) provided that: + + 1. source code distributions include the above copyright notice, this + list of conditions and the following disclaimer; + + 2. binary distributions include the above copyright notice, this list + of conditions and the following disclaimer in their documentation; + + 3. the name of the copyright holder is not used to endorse products + built using this software without specific written permission. + + DISCLAIMER + + This software is provided 'as is' with no explicit or implied warranties + in respect of its properties, including, but not limited to, correctness + and/or fitness for purpose. + --------------------------------------------------------------------------- + Issue Date: 20/12/2007 + + This file contains the compilation options for AES (Rijndael) and code + that is common across encryption, key scheduling and table generation. + + OPERATION + + These source code files implement the AES algorithm Rijndael designed by + Joan Daemen and Vincent Rijmen. This version is designed for the standard + block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 + and 32 bytes). + + This version is designed for flexibility and speed using operations on + 32-bit words rather than operations on bytes. It can be compiled with + either big or little endian internal byte order but is faster when the + native byte order for the processor is used. + + THE CIPHER INTERFACE + + The cipher interface is implemented as an array of bytes in which lower + AES bit sequence indexes map to higher numeric significance within bytes. + + uint_8t (an unsigned 8-bit type) + uint_32t (an unsigned 32-bit type) + struct aes_encrypt_ctx (structure for the cipher encryption context) + struct aes_decrypt_ctx (structure for the cipher decryption context) + AES_RETURN the function return type + + C subroutine calls: + + AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]); + AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, + const aes_encrypt_ctx cx[1]); + + AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]); + AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, + const aes_decrypt_ctx cx[1]); + + IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that + you call aes_init() before AES is used so that the tables are initialised. + + C++ aes class subroutines: + + Class AESencrypt for encryption + + Construtors: + AESencrypt(void) + AESencrypt(const unsigned char *key) - 128 bit key + Members: + AES_RETURN key128(const unsigned char *key) + AES_RETURN key192(const unsigned char *key) + AES_RETURN key256(const unsigned char *key) + AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const + + Class AESdecrypt for encryption + Construtors: + AESdecrypt(void) + AESdecrypt(const unsigned char *key) - 128 bit key + Members: + AES_RETURN key128(const unsigned char *key) + AES_RETURN key192(const unsigned char *key) + AES_RETURN key256(const unsigned char *key) + AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const +*/ + +/* Adapted for TrueCrypt */ + +#if !defined( _AESOPT_H ) +#define _AESOPT_H + +#ifdef TC_WINDOWS_BOOT +#define ASM_X86_V2 +#endif + +#if defined( __cplusplus ) +#include "Aescpp.h" +#else +#include "Aes.h" +#endif + + +#include "Common/Endian.h" +#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ +#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ + +#if BYTE_ORDER == LITTLE_ENDIAN +# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN +#endif + +#if BYTE_ORDER == BIG_ENDIAN +# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN +#endif + + +/* CONFIGURATION - THE USE OF DEFINES + + Later in this section there are a number of defines that control the + operation of the code. In each section, the purpose of each define is + explained so that the relevant form can be included or excluded by + setting either 1's or 0's respectively on the branches of the related + #if clauses. The following local defines should not be changed. +*/ + +#define ENCRYPTION_IN_C 1 +#define DECRYPTION_IN_C 2 +#define ENC_KEYING_IN_C 4 +#define DEC_KEYING_IN_C 8 + +#define NO_TABLES 0 +#define ONE_TABLE 1 +#define FOUR_TABLES 4 +#define NONE 0 +#define PARTIAL 1 +#define FULL 2 + +/* --- START OF USER CONFIGURED OPTIONS --- */ + +/* 1. BYTE ORDER WITHIN 32 BIT WORDS + + The fundamental data processing units in Rijndael are 8-bit bytes. The + input, output and key input are all enumerated arrays of bytes in which + bytes are numbered starting at zero and increasing to one less than the + number of bytes in the array in question. This enumeration is only used + for naming bytes and does not imply any adjacency or order relationship + from one byte to another. When these inputs and outputs are considered + as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to + byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. + In this implementation bits are numbered from 0 to 7 starting at the + numerically least significant end of each byte (bit n represents 2^n). + + However, Rijndael can be implemented more efficiently using 32-bit + words by packing bytes into words so that bytes 4*n to 4*n+3 are placed + into word[n]. While in principle these bytes can be assembled into words + in any positions, this implementation only supports the two formats in + which bytes in adjacent positions within words also have adjacent byte + numbers. This order is called big-endian if the lowest numbered bytes + in words have the highest numeric significance and little-endian if the + opposite applies. + + This code can work in either order irrespective of the order used by the + machine on which it runs. Normally the internal byte order will be set + to the order of the processor on which the code is to be run but this + define can be used to reverse this in special situations + + WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set. + This define will hence be redefined later (in section 4) if necessary +*/ + +#if 1 +#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#elif 0 +#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN +#elif 0 +#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN +#else +#error The algorithm byte order is not defined +#endif + +/* 2. VIA ACE SUPPORT + + Define this option if support for the VIA ACE is required. This uses + inline assembler instructions and is only implemented for the Microsoft, + Intel and GCC compilers. If VIA ACE is known to be present, then defining + ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption + code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if + it is detected (both present and enabled) but the normal AES code will + also be present. + + When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte + aligned; other input/output buffers do not need to be 16 byte aligned + but there are very large performance gains if this can be arranged. + VIA ACE also requires the decryption key schedule to be in reverse + order (which later checks below ensure). +*/ + +#if 0 && !defined( USE_VIA_ACE_IF_PRESENT ) +# define USE_VIA_ACE_IF_PRESENT +#endif + +#if 0 && !defined( ASSUME_VIA_ACE_PRESENT ) +# define ASSUME_VIA_ACE_PRESENT +# endif + +#if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \ + defined( _MSC_VER ) && ( _MSC_VER <= 800 ) +# if defined( USE_VIA_ACE_IF_PRESENT ) +# undef USE_VIA_ACE_IF_PRESENT +# endif +# if defined( ASSUME_VIA_ACE_PRESENT ) +# undef ASSUME_VIA_ACE_PRESENT +# endif +#endif + +/* 3. ASSEMBLER SUPPORT + + This define (which can be on the command line) enables the use of the + assembler code routines for encryption, decryption and key scheduling + as follows: + + ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for + encryption and decryption and but with key scheduling in C + ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for + encryption, decryption and key scheduling + ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for + encryption and decryption and but with key scheduling in C + ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for + encryption and decryption and but with key scheduling in C + + Change one 'if 0' below to 'if 1' to select the version or define + as a compilation option. +*/ + +#if 0 && !defined( ASM_X86_V1C ) +# define ASM_X86_V1C +#elif 0 && !defined( ASM_X86_V2 ) +# define ASM_X86_V2 +#elif 0 && !defined( ASM_X86_V2C ) +# define ASM_X86_V2C +#elif 0 && !defined( ASM_AMD64_C ) +# define ASM_AMD64_C +#endif + +#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \ + && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 ) +//# error Assembler code is only available for x86 and AMD64 systems +#endif + +/* 4. FAST INPUT/OUTPUT OPERATIONS. + + On some machines it is possible to improve speed by transferring the + bytes in the input and output arrays to and from the internal 32-bit + variables by addressing these arrays as if they are arrays of 32-bit + words. On some machines this will always be possible but there may + be a large performance penalty if the byte arrays are not aligned on + the normal word boundaries. On other machines this technique will + lead to memory access errors when such 32-bit word accesses are not + properly aligned. The option SAFE_IO avoids such problems but will + often be slower on those machines that support misaligned access + (especially so if care is taken to align the input and output byte + arrays on 32-bit word boundaries). If SAFE_IO is not defined it is + assumed that access to byte arrays as if they are arrays of 32-bit + words will not cause problems when such accesses are misaligned. +*/ +#if 1 && !defined( _MSC_VER ) +#define SAFE_IO +#endif + +/* 5. LOOP UNROLLING + + The code for encryption and decrytpion cycles through a number of rounds + that can be implemented either in a loop or by expanding the code into a + long sequence of instructions, the latter producing a larger program but + one that will often be much faster. The latter is called loop unrolling. + There are also potential speed advantages in expanding two iterations in + a loop with half the number of iterations, which is called partial loop + unrolling. The following options allow partial or full loop unrolling + to be set independently for encryption and decryption +*/ +#if 1 +#define ENC_UNROLL FULL +#elif 0 +#define ENC_UNROLL PARTIAL +#else +#define ENC_UNROLL NONE +#endif + +#if 1 +#define DEC_UNROLL FULL +#elif 0 +#define DEC_UNROLL PARTIAL +#else +#define DEC_UNROLL NONE +#endif + +/* 6. FAST FINITE FIELD OPERATIONS + + If this section is included, tables are used to provide faster finite + field arithmetic (this has no effect if FIXED_TABLES is defined). +*/ +#if !defined (TC_WINDOWS_BOOT) +#define FF_TABLES +#endif + +/* 7. INTERNAL STATE VARIABLE FORMAT + + The internal state of Rijndael is stored in a number of local 32-bit + word varaibles which can be defined either as an array or as individual + names variables. Include this section if you want to store these local + varaibles in arrays. Otherwise individual local variables will be used. +*/ +#if 1 +#define ARRAYS +#endif + +/* 8. FIXED OR DYNAMIC TABLES + + When this section is included the tables used by the code are compiled + statically into the binary file. Otherwise the subroutine aes_init() + must be called to compute them before the code is first used. +*/ +#if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 )) +#define FIXED_TABLES +#endif + +/* 9. TABLE ALIGNMENT + + On some sytsems speed will be improved by aligning the AES large lookup + tables on particular boundaries. This define should be set to a power of + two giving the desired alignment. It can be left undefined if alignment + is not needed. This option is specific to the Microsft VC++ compiler - + it seems to sometimes cause trouble for the VC++ version 6 compiler. +*/ + +#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 ) +#define TABLE_ALIGN 32 +#endif + +/* 10. TABLE OPTIONS + + This cipher proceeds by repeating in a number of cycles known as 'rounds' + which are implemented by a round function which can optionally be speeded + up using tables. The basic tables are each 256 32-bit words, with either + one or four tables being required for each round function depending on + how much speed is required. The encryption and decryption round functions + are different and the last encryption and decrytpion round functions are + different again making four different round functions in all. + + This means that: + 1. Normal encryption and decryption rounds can each use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + 2. The last encryption and decryption rounds can also use either 0, 1 + or 4 tables and table spaces of 0, 1024 or 4096 bytes each. + + Include or exclude the appropriate definitions below to set the number + of tables used by this implementation. +*/ + +#if 1 /* set tables for the normal encryption round */ +#define ENC_ROUND FOUR_TABLES +#elif 0 +#define ENC_ROUND ONE_TABLE +#else +#define ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last encryption round */ +#define LAST_ENC_ROUND FOUR_TABLES +#elif 0 +#define LAST_ENC_ROUND ONE_TABLE +#else +#define LAST_ENC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the normal decryption round */ +#define DEC_ROUND FOUR_TABLES +#elif 0 +#define DEC_ROUND ONE_TABLE +#else +#define DEC_ROUND NO_TABLES +#endif + +#if 1 /* set tables for the last decryption round */ +#define LAST_DEC_ROUND FOUR_TABLES +#elif 0 +#define LAST_DEC_ROUND ONE_TABLE +#else +#define LAST_DEC_ROUND NO_TABLES +#endif + +/* The decryption key schedule can be speeded up with tables in the same + way that the round functions can. Include or exclude the following + defines to set this requirement. +*/ +#if 1 +#define KEY_SCHED FOUR_TABLES +#elif 0 +#define KEY_SCHED ONE_TABLE +#else +#define KEY_SCHED NO_TABLES +#endif + +/* ---- END OF USER CONFIGURED OPTIONS ---- */ + +/* VIA ACE support is only available for VC++ and GCC */ + +#if !defined( _MSC_VER ) && !defined( __GNUC__ ) +# if defined( ASSUME_VIA_ACE_PRESENT ) +# undef ASSUME_VIA_ACE_PRESENT +# endif +# if defined( USE_VIA_ACE_IF_PRESENT ) +# undef USE_VIA_ACE_IF_PRESENT +# endif +#endif + +#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT ) +#define USE_VIA_ACE_IF_PRESENT +#endif + +#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS ) +#define AES_REV_DKS +#endif + +/* Assembler support requires the use of platform byte order */ + +#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \ + && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) +#undef ALGORITHM_BYTE_ORDER +#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER +#endif + +/* In this implementation the columns of the state array are each held in + 32-bit words. The state array can be held in various ways: in an array + of words, in a number of individual word variables or in a number of + processor registers. The following define maps a variable name x and + a column number c to the way the state array variable is to be held. + The first define below maps the state into an array x[c] whereas the + second form maps the state into a number of individual variables x0, + x1, etc. Another form could map individual state colums to machine + register names. +*/ + +#if defined( ARRAYS ) +#define s(x,c) x[c] +#else +#define s(x,c) x##c +#endif + +/* This implementation provides subroutines for encryption, decryption + and for setting the three key lengths (separately) for encryption + and decryption. Since not all functions are needed, masks are set + up here to determine which will be implemented in C +*/ + +#if !defined( AES_ENCRYPT ) +# define EFUNCS_IN_C 0 +#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ + || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) +# define EFUNCS_IN_C ENC_KEYING_IN_C +#elif !defined( ASM_X86_V2 ) +# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C ) +#else +# define EFUNCS_IN_C 0 +#endif + +#if !defined( AES_DECRYPT ) +# define DFUNCS_IN_C 0 +#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ + || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) +# define DFUNCS_IN_C DEC_KEYING_IN_C +#elif !defined( ASM_X86_V2 ) +# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C ) +#else +# define DFUNCS_IN_C 0 +#endif + +#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C ) + +/* END OF CONFIGURATION OPTIONS */ + +#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) + +/* Disable or report errors on some combinations of options */ + +#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND NO_TABLES +#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES +#undef LAST_ENC_ROUND +#define LAST_ENC_ROUND ONE_TABLE +#endif + +#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE +#undef ENC_UNROLL +#define ENC_UNROLL NONE +#endif + +#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND NO_TABLES +#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES +#undef LAST_DEC_ROUND +#define LAST_DEC_ROUND ONE_TABLE +#endif + +#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE +#undef DEC_UNROLL +#define DEC_UNROLL NONE +#endif + +#if defined( bswap32 ) +#define aes_sw32 bswap32 +#elif defined( bswap_32 ) +#define aes_sw32 bswap_32 +#else +#define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n))) +#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00)) +#endif + +/* upr(x,n): rotates bytes within words by n positions, moving bytes to + higher index positions with wrap around into low positions + ups(x,n): moves bytes by n positions to higher index positions in + words but without wrap around + bval(x,n): extracts a byte from a word + + WARNING: The definitions given here are intended only for use with + unsigned variables and with shift counts that are compile + time constants +*/ + +#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN ) +#define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n)))) +#define ups(x,n) ((uint_32t) (x) << (8 * (n))) +#define bval(x,n) ((uint_8t)((x) >> (8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0)) +#endif + +#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN ) +#define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n)))) +#define ups(x,n) ((uint_32t) (x) >> (8 * (n))) +#define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n)))) +#define bytes2word(b0, b1, b2, b3) \ + (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3)) +#endif + +#if defined( SAFE_IO ) + +#define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \ + ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3]) +#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \ + ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); } + +#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER ) + +#define word_in(x,c) (*((uint_32t*)(x)+(c))) +#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v)) + +#else + +#define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c))) +#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v)) + +#endif + +/* the finite field modular polynomial and elements */ + +#define WPOLY 0x011b +#define BPOLY 0x1b + +/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ + +#define m1 0x80808080 +#define m2 0x7f7f7f7f +#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) + +/* The following defines provide alternative definitions of gf_mulx that might + give improved performance if a fast 32-bit multiply is not available. Note + that a temporary variable u needs to be defined where gf_mulx is used. + +#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) +#define m4 (0x01010101 * BPOLY) +#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) +*/ + +/* Work out which tables are needed for the different options */ + +#if defined( ASM_X86_V1C ) +#if defined( ENC_ROUND ) +#undef ENC_ROUND +#endif +#define ENC_ROUND FOUR_TABLES +#if defined( LAST_ENC_ROUND ) +#undef LAST_ENC_ROUND +#endif +#define LAST_ENC_ROUND FOUR_TABLES +#if defined( DEC_ROUND ) +#undef DEC_ROUND +#endif +#define DEC_ROUND FOUR_TABLES +#if defined( LAST_DEC_ROUND ) +#undef LAST_DEC_ROUND +#endif +#define LAST_DEC_ROUND FOUR_TABLES +#if defined( KEY_SCHED ) +#undef KEY_SCHED +#define KEY_SCHED FOUR_TABLES +#endif +#endif + +#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C ) +#if ENC_ROUND == ONE_TABLE +#define FT1_SET +#elif ENC_ROUND == FOUR_TABLES +#define FT4_SET +#else +#define SBX_SET +#endif +#if LAST_ENC_ROUND == ONE_TABLE +#define FL1_SET +#elif LAST_ENC_ROUND == FOUR_TABLES +#define FL4_SET +#elif !defined( SBX_SET ) +#define SBX_SET +#endif +#endif + +#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C ) +#if DEC_ROUND == ONE_TABLE +#define IT1_SET +#elif DEC_ROUND == FOUR_TABLES +#define IT4_SET +#else +#define ISB_SET +#endif +#if LAST_DEC_ROUND == ONE_TABLE +#define IL1_SET +#elif LAST_DEC_ROUND == FOUR_TABLES +#define IL4_SET +#elif !defined(ISB_SET) +#define ISB_SET +#endif +#endif + +#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C) +#if KEY_SCHED == ONE_TABLE +#define LS1_SET +#elif KEY_SCHED == FOUR_TABLES +#define LS4_SET +#elif !defined( SBX_SET ) +#define SBX_SET +#endif +#endif + +#if (FUNCS_IN_C & DEC_KEYING_IN_C) +#if KEY_SCHED == ONE_TABLE +#define IM1_SET +#elif KEY_SCHED == FOUR_TABLES +#define IM4_SET +#elif !defined( SBX_SET ) +#define SBX_SET +#endif +#endif + +/* generic definitions of Rijndael macros that use tables */ + +#define no_table(x,box,vf,rf,c) bytes2word( \ + box[bval(vf(x,0,c),rf(0,c))], \ + box[bval(vf(x,1,c),rf(1,c))], \ + box[bval(vf(x,2,c),rf(2,c))], \ + box[bval(vf(x,3,c),rf(3,c))]) + +#define one_table(x,op,tab,vf,rf,c) \ + ( tab[bval(vf(x,0,c),rf(0,c))] \ + ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ + ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ + ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) + +#define four_tables(x,tab,vf,rf,c) \ + ( tab[0][bval(vf(x,0,c),rf(0,c))] \ + ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ + ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ + ^ tab[3][bval(vf(x,3,c),rf(3,c))]) + +#define vf1(x,r,c) (x) +#define rf1(r,c) (r) +#define rf2(r,c) ((8+r-c)&3) + +/* perform forward and inverse column mix operation on four bytes in long word x in */ +/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ + +#if defined( FM4_SET ) /* not currently used */ +#define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) +#elif defined( FM1_SET ) /* not currently used */ +#define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) +#else +#define dec_fmvars uint_32t g2 +#define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) +#endif + +#if defined( IM4_SET ) +#define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) +#elif defined( IM1_SET ) +#define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) +#else +#define dec_imvars uint_32t g2, g4, g9 +#define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ + (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) +#endif + +#if defined( FL4_SET ) +#define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) +#elif defined( LS4_SET ) +#define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) +#elif defined( FL1_SET ) +#define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) +#elif defined( LS1_SET ) +#define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) +#else +#define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) +#endif + +#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET ) +#define ISB_SET +#endif + +#endif |