/* Legal Notice: Some portions of the source code contained in this file were derived from the source code of TrueCrypt 7.1a, which is Copyright (c) 2003-2012 TrueCrypt Developers Association and which is governed by the TrueCrypt License 3.0, also from the source code of Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux and which is governed by the 'License Agreement for Encryption for the Masses' Modifications and additions to the original source code (contained in this file) and all other portions of this file are Copyright (c) 2013-2017 IDRIX and are governed by the Apache License 2.0 the full text of which is contained in the file License.txt included in VeraCrypt binary and source code distribution packages. */ #include "Tcdefs.h" #if !defined(_UEFI) #if !defined(TC_WINDOWS_BOOT) #include #include #include #include #include "EncryptionThreadPool.h" #endif #include #include #include #ifndef DEVICE_DRIVER #include "Random.h" #else #include "cpu.h" #endif #endif // !defined(_UEFI) #include "Crc.h" #include "Crypto.h" #include "Endian.h" #include "Volumes.h" #include "Pkcs5.h" #if defined(_WIN32) && !defined(_UEFI) #include #include "../Boot/Windows/BootCommon.h" #endif /* Volume header v5 structure (used since TrueCrypt 7.0): */ // // Offset Length Description // ------------------------------------------ // Unencrypted: // 0 64 Salt // Encrypted: // 64 4 ASCII string 'VERA' // 68 2 Header version // 70 2 Required program version // 72 4 CRC-32 checksum of the (decrypted) bytes 256-511 // 76 16 Reserved (must contain zeroes) // 92 8 Size of hidden volume in bytes (0 = normal volume) // 100 8 Size of the volume in bytes (identical with field 92 for hidden volumes, valid if field 70 >= 0x600 or flag bit 0 == 1) // 108 8 Byte offset of the start of the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1) // 116 8 Size of the encrypted area within the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1) // 124 4 Flags: bit 0 set = system encryption; bit 1 set = non-system in-place encryption, bits 2-31 are reserved (set to zero) // 128 4 Sector size in bytes // 132 120 Reserved (must contain zeroes) // 252 4 CRC-32 checksum of the (decrypted) bytes 64-251 // 256 256 Concatenated primary master key(s) and secondary master key(s) (XTS mode) /* Deprecated/legacy volume header v4 structure (used by TrueCrypt 6.x): */ // // Offset Length Description // ------------------------------------------ // Unencrypted: // 0 64 Salt // Encrypted: // 64 4 ASCII string 'VERA' // 68 2 Header version // 70 2 Required program version // 72 4 CRC-32 checksum of the (decrypted) bytes 256-511 // 76 16 Reserved (must contain zeroes) // 92 8 Size of hidden volume in bytes (0 = normal volume) // 100 8 Size of the volume in bytes (identical with field 92 for hidden volumes, valid if field 70 >= 0x600 or flag bit 0 == 1) // 108 8 Byte offset of the start of the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1) // 116 8 Size of the encrypted area within the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1) // 124 4 Flags: bit 0 set = system encryption; bit 1 set = non-system in-place encryption, bits 2-31 are reserved // 128 124 Reserved (must contain zeroes) // 252 4 CRC-32 checksum of the (decrypted) bytes 64-251 // 256 256 Concatenated primary master key(s) and secondary master key(s) (XTS mode) /* Deprecated/legacy volume header v3 structure (used by TrueCrypt 5.x): */ // // Offset Length Description // ------------------------------------------ // Unencrypted: // 0 64 Salt // Encrypted: // 64 4 ASCII string 'VERA' // 68 2 Header version // 70 2 Required program version // 72 4 CRC-32 checksum of the (decrypted) bytes 256-511 // 76 8 Volume creation time // 84 8 Header creation time // 92 8 Size of hidden volume in bytes (0 = normal volume) // 100 8 Size of the volume in bytes (identical with field 92 for hidden volumes) // 108 8 Start byte offset of the encrypted area of the volume // 116 8 Size of the encrypted area of the volume in bytes // 124 132 Reserved (must contain zeroes) // 256 256 Concatenated primary master key(s) and secondary master key(s) (XTS mode) /* Deprecated/legacy volume header v2 structure (used before TrueCrypt 5.0): */ // // Offset Length Description // ------------------------------------------ // Unencrypted: // 0 64 Salt // Encrypted: // 64 4 ASCII string 'VERA' // 68 2 Header version // 70 2 Required program version // 72 4 CRC-32 checksum of the (decrypted) bytes 256-511 // 76 8 Volume creation time // 84 8 Header creation time // 92 8 Size of hidden volume in bytes (0 = normal volume) // 100 156 Reserved (must contain zeroes) // 256 32 For LRW (deprecated/legacy), secondary key // For CBC (deprecated/legacy), data used to generate IV and whitening values // 288 224 Master key(s) uint16 GetHeaderField16 (uint8 *header, int offset) { return BE16 (*(uint16 *) (header + offset)); } uint32 GetHeaderField32 (uint8 *header, int offset) { return BE32 (*(uint32 *) (header + offset)); } UINT64_STRUCT GetHeaderField64 (uint8 *header, int offset) { UINT64_STRUCT uint64Struct; #ifndef TC_NO_COMPILER_INT64 uint64Struct.Value = BE64 (*(uint64 *) (header + offset)); #else uint64Struct.HighPart = BE32 (*(uint32 *) (header + offset)); uint64Struct.LowPart = BE32 (*(uint32 *) (header + offset + 4)); #endif return uint64Struct; } #ifndef TC_WINDOWS_BOOT typedef struct { char DerivedKey[MASTER_KEYDATA_SIZE]; BOOL Free; LONG KeyReady; int Pkcs5Prf; } KeyDerivationWorkItem; BOOL ReadVolumeHeaderRecoveryMode = FALSE; int ReadVolumeHeader (BOOL bBoot, char *encryptedHeader, Password *password, int selected_pkcs5_prf, int pim, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo) { char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; unsigned char* keyInfoBuffer = NULL; int keyInfoBufferSize = sizeof (KEY_INFO) + 16; size_t keyInfoBufferOffset; PKEY_INFO keyInfo; PCRYPTO_INFO cryptoInfo; CRYPTOPP_ALIGN_DATA(16) char dk[MASTER_KEYDATA_SIZE]; int enqPkcs5Prf, pkcs5_prf; uint16 headerVersion; int status = ERR_PARAMETER_INCORRECT; int primaryKeyOffset; int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1; #if !defined(_UEFI) TC_EVENT *keyDerivationCompletedEvent = NULL; TC_EVENT *noOutstandingWorkItemEvent = NULL; KeyDerivationWorkItem *keyDerivationWorkItems = NULL; int keyDerivationWorkItemsSize = 0; KeyDerivationWorkItem *item; size_t encryptionThreadCount = GetEncryptionThreadCount(); LONG *outstandingWorkItemCount = NULL; int i; int iterationsCount = 0; int memoryCost = 0; #endif size_t queuedWorkItems = 0; // allocate 16-bytes aligned buffer to hold KEY_INFO in a portable way keyInfoBuffer = TCalloc(keyInfoBufferSize); if (!keyInfoBuffer) return ERR_OUTOFMEMORY; keyInfoBufferOffset = 16 - (((uint64) keyInfoBuffer) % 16); keyInfo = (PKEY_INFO) (keyInfoBuffer + keyInfoBufferOffset); #if !defined(DEVICE_DRIVER) && !defined(_UEFI) VirtualLock (keyInfoBuffer, keyInfoBufferSize); #endif // if no PIM specified, use default value if (pim < 0) pim = 0; if (retHeaderCryptoInfo != NULL) { cryptoInfo = retHeaderCryptoInfo; } else { if (!retInfo) return ERR_PARAMETER_INCORRECT; cryptoInfo = *retInfo = crypto_open (); if (cryptoInfo == NULL) return ERR_OUTOFMEMORY; } #if !defined(_UEFI) /* use thread pool only if no PRF was specified */ if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1)) { keyDerivationCompletedEvent = TCalloc (sizeof (TC_EVENT)); if (!keyDerivationCompletedEvent) return ERR_OUTOFMEMORY; noOutstandingWorkItemEvent = TCalloc (sizeof (TC_EVENT)); if (!noOutstandingWorkItemEvent) { TCfree(keyDerivationCompletedEvent); return ERR_OUTOFMEMORY; } outstandingWorkItemCount = TCalloc (sizeof (LONG)); if (!outstandingWorkItemCount) { TCfree(keyDerivationCompletedEvent); TCfree(noOutstandingWorkItemEvent); return ERR_OUTOFMEMORY; } keyDerivationWorkItemsSize = sizeof (KeyDerivationWorkItem) * pkcs5PrfCount; keyDerivationWorkItems = TCalloc (keyDerivationWorkItemsSize); if (!keyDerivationWorkItems) { TCfree(keyDerivationCompletedEvent); TCfree(noOutstandingWorkItemEvent); TCfree(outstandingWorkItemCount); return ERR_OUTOFMEMORY; } for (i = 0; i < pkcs5PrfCount; ++i) keyDerivationWorkItems[i].Free = TRUE; *outstandingWorkItemCount = 0; #ifdef DEVICE_DRIVER KeInitializeEvent (keyDerivationCompletedEvent, SynchronizationEvent, FALSE); KeInitializeEvent (noOutstandingWorkItemEvent, SynchronizationEvent, TRUE); #else *keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!*keyDerivationCompletedEvent) { TCfree (keyDerivationWorkItems); TCfree(keyDerivationCompletedEvent); TCfree(noOutstandingWorkItemEvent); TCfree(outstandingWorkItemCount); return ERR_OUTOFMEMORY; } *noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL); if (!*noOutstandingWorkItemEvent) { CloseHandle (*keyDerivationCompletedEvent); TCfree (keyDerivationWorkItems); TCfree(keyDerivationCompletedEvent); TCfree(noOutstandingWorkItemEvent); TCfree(outstandingWorkItemCount); return ERR_OUTOFMEMORY; } VirtualLock (keyDerivationWorkItems, keyDerivationWorkItemsSize); #endif } #if !defined(DEVICE_DRIVER) VirtualLock (&dk, sizeof (dk)); VirtualLock (&header, sizeof (header)); #endif #endif // !defined(_UEFI) crypto_loadkey (keyInfo, password->Text, (int) password->Length); // PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password memcpy (keyInfo->salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE); // Test all available PKCS5 PRFs for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf) { // if a PRF is specified, we skip all other PRFs if (selected_pkcs5_prf != 0 && enqPkcs5Prf != selected_pkcs5_prf) continue; // we don't support Argon2 in pre-boot authentication if (bBoot && (enqPkcs5Prf == ARGON2)) continue; // For now, we don't included Argon2 in automatic detection if (selected_pkcs5_prf == 0 && enqPkcs5Prf == ARGON2) continue; #if !defined(_UEFI) if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1)) { // Enqueue key derivation on thread pool if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (item->Free) { item->Free = FALSE; item->KeyReady = FALSE; item->Pkcs5Prf = enqPkcs5Prf; iterationsCount = get_pkcs5_iteration_count (enqPkcs5Prf, pim, bBoot, &memoryCost); EncryptionThreadPoolBeginKeyDerivation (keyDerivationCompletedEvent, noOutstandingWorkItemEvent, &item->KeyReady, outstandingWorkItemCount, enqPkcs5Prf, keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, iterationsCount, memoryCost, item->DerivedKey); ++queuedWorkItems; break; } } if (enqPkcs5Prf < LAST_PRF_ID) continue; } else --enqPkcs5Prf; // Wait for completion of a key derivation while (queuedWorkItems > 0) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE) { pkcs5_prf = item->Pkcs5Prf; iterationsCount = get_pkcs5_iteration_count (pkcs5_prf, pim, bBoot, &memoryCost); keyInfo->noIterations = iterationsCount; keyInfo->memoryCost = memoryCost; memcpy (dk, item->DerivedKey, sizeof (dk)); item->Free = TRUE; --queuedWorkItems; goto KeyReady; } } if (queuedWorkItems > 0) TC_WAIT_EVENT (*keyDerivationCompletedEvent); } continue; KeyReady: ; } else #endif // !defined(_UEFI) { pkcs5_prf = enqPkcs5Prf; iterationsCount = get_pkcs5_iteration_count (enqPkcs5Prf, pim, bBoot, &memoryCost); keyInfo->noIterations = iterationsCount; keyInfo->memoryCost = memoryCost; switch (pkcs5_prf) { case SHA512: derive_key_sha512 (keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, PKCS5_SALT_SIZE, keyInfo->noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA256: derive_key_sha256 (keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, PKCS5_SALT_SIZE, keyInfo->noIterations, dk, GetMaxPkcs5OutSize()); break; #ifndef WOLFCRYPT_BACKEND case BLAKE2S: derive_key_blake2s (keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, PKCS5_SALT_SIZE, keyInfo->noIterations, dk, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, PKCS5_SALT_SIZE, keyInfo->noIterations, dk, GetMaxPkcs5OutSize()); break; case STREEBOG: derive_key_streebog(keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, PKCS5_SALT_SIZE, keyInfo->noIterations, dk, GetMaxPkcs5OutSize()); break; case ARGON2: derive_key_argon2(keyInfo->userKey, keyInfo->keyLength, keyInfo->salt, PKCS5_SALT_SIZE, keyInfo->noIterations, keyInfo->memoryCost, dk, GetMaxPkcs5OutSize()); break; #endif default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // Test all available modes of operation for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID; cryptoInfo->mode <= LAST_MODE_OF_OPERATION; cryptoInfo->mode++) { switch (cryptoInfo->mode) { default: primaryKeyOffset = 0; } // Test all available encryption algorithms for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea)) { int blockSize; if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode)) continue; // This encryption algorithm has never been available with this mode of operation blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea)); status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; // Init objects related to the mode of operation if (cryptoInfo->mode == XTS) { #ifndef TC_WINDOWS_DRIVER // Copy the secondary key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); #endif // Secondary key schedule if (!EAInitMode (cryptoInfo, dk + EAGetKeySize (cryptoInfo->ea))) { status = ERR_MODE_INIT_FAILED; goto err; } } else { continue; } // Copy the header for decryption memcpy (header, encryptedHeader, sizeof (header)); // Try to decrypt header DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); // Magic 'VERA' if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x56455241) continue; // Header version headerVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION); if (headerVersion > VOLUME_HEADER_VERSION) { status = ERR_NEW_VERSION_REQUIRED; goto err; } // Check CRC of the header fields if (!ReadVolumeHeaderRecoveryMode && headerVersion >= 4 && GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC)) continue; // Required program version cryptoInfo->RequiredProgramVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_REQUIRED_VERSION); cryptoInfo->LegacyVolume = cryptoInfo->RequiredProgramVersion < 0x10b; // Check CRC of the key set if (!ReadVolumeHeaderRecoveryMode && GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE)) continue; // Now we have the correct password, cipher, hash algorithm, and volume type // Check the version required to handle this volume if (cryptoInfo->RequiredProgramVersion > VERSION_NUM) { status = ERR_NEW_VERSION_REQUIRED; goto err; } // Header version cryptoInfo->HeaderVersion = headerVersion; #if 0 // Volume creation time (legacy) cryptoInfo->volume_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_CREATION_TIME).Value; // Header creation time (legacy) cryptoInfo->header_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_MODIFICATION_TIME).Value; #endif // Hidden volume size (if any) cryptoInfo->hiddenVolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE).Value; // Hidden volume status cryptoInfo->hiddenVolume = (cryptoInfo->hiddenVolumeSize != 0); // Volume size cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE); // Encrypted area size and length cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START); cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH); // Flags cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS); // Sector size if (headerVersion >= 5) cryptoInfo->SectorSize = GetHeaderField32 (header, TC_HEADER_OFFSET_SECTOR_SIZE); else cryptoInfo->SectorSize = TC_SECTOR_SIZE_LEGACY; if (cryptoInfo->SectorSize < TC_MIN_VOLUME_SECTOR_SIZE || cryptoInfo->SectorSize > TC_MAX_VOLUME_SECTOR_SIZE || cryptoInfo->SectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0) { status = ERR_PARAMETER_INCORRECT; goto err; } // Preserve scheduled header keys if requested if (retHeaderCryptoInfo) { if (retInfo == NULL) { cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo->noIterations; cryptoInfo->memoryCost = keyInfo->memoryCost; cryptoInfo->volumePim = pim; goto ret; } cryptoInfo = *retInfo = crypto_open (); if (cryptoInfo == NULL) { status = ERR_OUTOFMEMORY; goto err; } memcpy (cryptoInfo, retHeaderCryptoInfo, sizeof (*cryptoInfo)); } // Master key data memcpy (keyInfo->master_keydata, header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE); #ifdef TC_WINDOWS_DRIVER { blake2s_state ctx; #ifndef _WIN64 NTSTATUS saveStatus = STATUS_INVALID_PARAMETER; KFLOATING_SAVE floatingPointState; if (HasSSE2()) saveStatus = KeSaveFloatingPointState (&floatingPointState); #endif blake2s_init (&ctx); blake2s_update (&ctx, keyInfo->master_keydata, MASTER_KEYDATA_SIZE); blake2s_update (&ctx, header, sizeof(header)); blake2s_final (&ctx, cryptoInfo->master_keydata_hash); burn(&ctx, sizeof (ctx)); #ifndef _WIN64 if (NT_SUCCESS (saveStatus)) KeRestoreFloatingPointState (&floatingPointState); #endif } #else memcpy (cryptoInfo->master_keydata, keyInfo->master_keydata, MASTER_KEYDATA_SIZE); #endif // PKCS #5 cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo->noIterations; cryptoInfo->memoryCost = keyInfo->memoryCost; cryptoInfo->volumePim = pim; // Init the cipher with the decrypted master key status = EAInit (cryptoInfo->ea, keyInfo->master_keydata + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; #ifndef TC_WINDOWS_DRIVER // The secondary master key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, keyInfo->master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); #endif if (!EAInitMode (cryptoInfo, keyInfo->master_keydata + EAGetKeySize (cryptoInfo->ea))) { status = ERR_MODE_INIT_FAILED; goto err; } // check that first half of keyInfo.master_keydata is different from the second half. If they are the same return error if (memcmp (keyInfo->master_keydata, keyInfo->master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)) == 0) { cryptoInfo->bVulnerableMasterKey = TRUE; if (retHeaderCryptoInfo) retHeaderCryptoInfo->bVulnerableMasterKey = TRUE; } status = ERR_SUCCESS; goto ret; } } } status = ERR_PASSWORD_WRONG; err: if (cryptoInfo != retHeaderCryptoInfo) { crypto_close(cryptoInfo); *retInfo = NULL; } ret: burn (dk, sizeof(dk)); burn (header, sizeof(header)); #if !defined(DEVICE_DRIVER) && !defined(_UEFI) VirtualUnlock (&dk, sizeof (dk)); VirtualUnlock (&header, sizeof (header)); #endif #if !defined(_UEFI) if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1)) { EncryptionThreadPoolBeginReadVolumeHeaderFinalization (keyDerivationCompletedEvent, noOutstandingWorkItemEvent, outstandingWorkItemCount, keyInfoBuffer, keyInfoBufferSize, keyDerivationWorkItems, keyDerivationWorkItemsSize); } else #endif { burn (keyInfo, sizeof (KEY_INFO)); #if !defined(DEVICE_DRIVER) && !defined(_UEFI) VirtualUnlock (keyInfoBuffer, keyInfoBufferSize); #endif TCfree(keyInfoBuffer); } return status; } #if defined(_WIN32) && !defined(_UEFI) void ComputeBootloaderFingerprint (uint8 *bootLoaderBuf, unsigned int bootLoaderSize, uint8* fingerprint) { // compute Whirlpool+SHA512 fingerprint of bootloader including MBR // we skip user configuration fields: // TC_BOOT_SECTOR_PIM_VALUE_OFFSET = 400 // TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_OFFSET = 402 // => TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_SIZE = 4 // TC_BOOT_SECTOR_USER_MESSAGE_OFFSET = 406 // => TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH = 24 // TC_BOOT_SECTOR_USER_CONFIG_OFFSET = 438 // // we have: TC_BOOT_SECTOR_USER_MESSAGE_OFFSET = TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_OFFSET + TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_SIZE #ifndef WOLFCRYPT_BACKEND WHIRLPOOL_CTX whirlpool; sha512_ctx sha2; WHIRLPOOL_init (&whirlpool); sha512_begin (&sha2); WHIRLPOOL_add (bootLoaderBuf, TC_BOOT_SECTOR_PIM_VALUE_OFFSET, &whirlpool); sha512_hash (bootLoaderBuf, TC_BOOT_SECTOR_PIM_VALUE_OFFSET, &sha2); WHIRLPOOL_add (bootLoaderBuf + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH, (TC_BOOT_SECTOR_USER_CONFIG_OFFSET - (TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH)), &whirlpool); sha512_hash (bootLoaderBuf + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH, (TC_BOOT_SECTOR_USER_CONFIG_OFFSET - (TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH)), &sha2); WHIRLPOOL_add (bootLoaderBuf + TC_SECTOR_SIZE_BIOS, (bootLoaderSize - TC_SECTOR_SIZE_BIOS), &whirlpool); sha512_hash (bootLoaderBuf + TC_SECTOR_SIZE_BIOS, (bootLoaderSize - TC_SECTOR_SIZE_BIOS), &sha2); WHIRLPOOL_finalize (&whirlpool, fingerprint); sha512_end (&fingerprint [WHIRLPOOL_DIGESTSIZE], &sha2); #else sha512_ctx sha2_512; sha256_ctx sha2_256; sha512_begin (&sha2_512); sha256_begin (&sha2_256); sha512_hash (bootLoaderBuf, TC_BOOT_SECTOR_PIM_VALUE_OFFSET, &sha2_512); sha256_hash (bootLoaderBuf, TC_BOOT_SECTOR_PIM_VALUE_OFFSET, &sha2_256); sha512_hash (bootLoaderBuf + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH, (TC_BOOT_SECTOR_USER_CONFIG_OFFSET - (TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH)), &sha2_512); sha256_hash (bootLoaderBuf + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH, (TC_BOOT_SECTOR_USER_CONFIG_OFFSET - (TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH)), &sha2_256); sha512_hash (bootLoaderBuf + TC_SECTOR_SIZE_BIOS, (bootLoaderSize - TC_SECTOR_SIZE_BIOS), &sha2_512); sha256_hash (bootLoaderBuf + TC_SECTOR_SIZE_BIOS, (bootLoaderSize - TC_SECTOR_SIZE_BIOS), &sha2_256); sha512_end (&fingerprint, &sha2_512); sha256_end (&fingerprint [SHA512_DIGESTSIZE], &sha2_256); sha256_end (&fingerprint [SHA512_DIGESTSIZE + SHA256_DIGESTSIZE], &sha2_256); #endif } #endif #else // TC_WINDOWS_BOOT int ReadVolumeHeader (BOOL bBoot, char *header, Password *password, int pim, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo) { #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE char dk[32 * 2]; // 2 * 256-bit key #else char dk[32 * 2 * 3]; // 6 * 256-bit key #endif PCRYPTO_INFO cryptoInfo; int status = ERR_SUCCESS; uint32 iterations = pim; iterations <<= 16; iterations |= bBoot; if (retHeaderCryptoInfo != NULL) cryptoInfo = retHeaderCryptoInfo; else cryptoInfo = *retInfo = crypto_open (); // PKCS5 PRF #ifdef TC_WINDOWS_BOOT_SHA2 derive_key_sha256 (password->Text, (int) password->Length, header + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE, iterations, dk, sizeof (dk)); #else derive_key_blake2s (password->Text, (int) password->Length, header + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE, iterations, dk, sizeof (dk)); #endif // Mode of operation cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID; #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE cryptoInfo->ea = 1; #else // Test all available encryption algorithms for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea)) #endif { #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #if defined (TC_WINDOWS_BOOT_SERPENT) && !defined (WOLFCRYPT_BACKEND) serpent_set_key (dk, cryptoInfo->ks); #elif defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (WOLFCRYPT_BACKEND) twofish_set_key ((TwofishInstance *) cryptoInfo->ks, (const u4byte *) dk); #elif defined (TC_WINDOWS_BOOT_CAMELLIA) && !defined (WOLFCRYPT_BACKEND) camellia_set_key (dk, cryptoInfo->ks); #else status = EAInit (dk, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; #endif #else status = EAInit (cryptoInfo->ea, dk, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; #endif // Secondary key schedule #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #if defined (TC_WINDOWS_BOOT_SERPENT) && !defined (WOLFCRYPT_BACKEND) serpent_set_key (dk + 32, cryptoInfo->ks2); #elif defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (WOLFCRYPT_BACKEND) twofish_set_key ((TwofishInstance *)cryptoInfo->ks2, (const u4byte *) (dk + 32)); #elif defined (TC_WINDOWS_BOOT_CAMELLIA) && !defined (WOLFCRYPT_BACKEND) camellia_set_key (dk + 32, cryptoInfo->ks2); #else EAInit (dk + 32, cryptoInfo->ks2); #endif #else EAInit (cryptoInfo->ea, dk + EAGetKeySize (cryptoInfo->ea), cryptoInfo->ks2); #endif // Try to decrypt header DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); // Check magic 'VERA' and CRC-32 of header fields and master keydata if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x56455241 || (GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION) >= 4 && GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC)) || GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE)) { EncryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE status = ERR_PASSWORD_WRONG; goto err; #else continue; #endif } // Header decrypted status = 0; // Hidden volume status cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE); cryptoInfo->hiddenVolume = (cryptoInfo->VolumeSize.LowPart != 0 || cryptoInfo->VolumeSize.HighPart != 0); // Volume size cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE); // Encrypted area size and length cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START); cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH); // Flags cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS); #ifdef TC_WINDOWS_BOOT_SHA2 cryptoInfo->pkcs5 = SHA256; #else cryptoInfo->pkcs5 = BLAKE2S; #endif memcpy (dk, header + HEADER_MASTER_KEYDATA_OFFSET, sizeof (dk)); EncryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); if (retHeaderCryptoInfo) goto ret; // Init the encryption algorithm with the decrypted master key #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #if defined (TC_WINDOWS_BOOT_SERPENT) && !defined (WOLFCRYPT_BACKEND) serpent_set_key (dk, cryptoInfo->ks); #elif defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (WOLFCRYPT_BACKEND) twofish_set_key ((TwofishInstance *) cryptoInfo->ks, (const u4byte *) dk); #elif defined (TC_WINDOWS_BOOT_CAMELLIA) && !defined (WOLFCRYPT_BACKEND) camellia_set_key (dk, cryptoInfo->ks); #else status = EAInit (dk, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; #endif #else status = EAInit (cryptoInfo->ea, dk, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; #endif // The secondary master key (if cascade, multiple concatenated) #ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE #if defined (TC_WINDOWS_BOOT_SERPENT) && !defined (WOLFCRYPT_BACKEND) serpent_set_key (dk + 32, cryptoInfo->ks2); #elif defined (TC_WINDOWS_BOOT_TWOFISH) && !defined (WOLFCRYPT_BACKEND) twofish_set_key ((TwofishInstance *)cryptoInfo->ks2, (const u4byte *) (dk + 32)); #elif defined (TC_WINDOWS_BOOT_CAMELLIA) && !defined (WOLFCRYPT_BACKEND) camellia_set_key (dk + 32, cryptoInfo->ks2); #else EAInit (dk + 32, cryptoInfo->ks2); #endif #else EAInit (cryptoInfo->ea, dk + EAGetKeySize (cryptoInfo->ea), cryptoInfo->ks2); #endif goto ret; } status = ERR_PASSWORD_WRONG; err: if (cryptoInfo != retHeaderCryptoInfo) { crypto_close(cryptoInfo); *retInfo = NULL; } ret: burn (dk, sizeof(dk)); return status; } #endif // TC_WINDOWS_BOOT #if !defined (DEVICE_DRIVER) && !defined (TC_WINDOWS_BOOT) #ifdef VOLFORMAT # include "../Format/TcFormat.h" # include "Dlgcode.h" #endif // Creates a volume header in memory #if defined(_UEFI) int CreateVolumeHeaderInMemory(BOOL bBoot, char *header, int ea, int mode, Password *password, int pkcs5_prf, int pim, char *masterKeydata, PCRYPTO_INFO *retInfo, unsigned __int64 volumeSize, unsigned __int64 hiddenVolumeSize, unsigned __int64 encryptedAreaStart, unsigned __int64 encryptedAreaLength, uint16 requiredProgramVersion, uint32 headerFlags, uint32 sectorSize, BOOL bWipeMode) #else int CreateVolumeHeaderInMemory (HWND hwndDlg, BOOL bBoot, char *header, int ea, int mode, Password *password, int pkcs5_prf, int pim, char *masterKeydata, PCRYPTO_INFO *retInfo, unsigned __int64 volumeSize, unsigned __int64 hiddenVolumeSize, unsigned __int64 encryptedAreaStart, unsigned __int64 encryptedAreaLength, uint16 requiredProgramVersion, uint32 headerFlags, uint32 sectorSize, BOOL bWipeMode) #endif // !defined(_UEFI) { unsigned char *p = (unsigned char *) header; static CRYPTOPP_ALIGN_DATA(16) KEY_INFO keyInfo; int nUserKeyLen = password? password->Length : 0; PCRYPTO_INFO cryptoInfo = crypto_open (); static char dk[MASTER_KEYDATA_SIZE]; int x; int retVal = 0; int primaryKeyOffset; if (cryptoInfo == NULL) return ERR_OUTOFMEMORY; // if no PIM specified, use default value if (pim < 0) pim = 0; // we don't support Argon2 in pre-boot authentication if (bBoot && (pkcs5_prf == ARGON2)) { crypto_close (cryptoInfo); return ERR_PARAMETER_INCORRECT; } memset (header, 0, TC_VOLUME_HEADER_EFFECTIVE_SIZE); #if !defined(_UEFI) VirtualLock (&keyInfo, sizeof (keyInfo)); VirtualLock (&dk, sizeof (dk)); #endif // !defined(_UEFI) /* Encryption setup */ if (masterKeydata == NULL) { // We have no master key data (creating a new volume) so we'll use the TrueCrypt RNG to generate them int bytesNeeded; switch (mode) { default: bytesNeeded = EAGetKeySize (ea) * 2; // Size of primary + secondary key(s) } #if !defined(_UEFI) if (!RandgetBytes (hwndDlg, keyInfo.master_keydata, bytesNeeded, TRUE)) #else if (!RandgetBytes(keyInfo.master_keydata, bytesNeeded, TRUE)) #endif { crypto_close (cryptoInfo); retVal = ERR_CIPHER_INIT_WEAK_KEY; goto err; } // check that first half of keyInfo.master_keydata is different from the second half. If they are the same return error // cf CCSS,NSA comment at page 3: https://csrc.nist.gov/csrc/media/Projects/crypto-publication-review-project/documents/initial-comments/sp800-38e-initial-public-comments-2021.pdf if (memcmp (keyInfo.master_keydata, &keyInfo.master_keydata[bytesNeeded/2], bytesNeeded/2) == 0) { crypto_close (cryptoInfo); retVal = ERR_CIPHER_INIT_WEAK_KEY; goto err; } } else { // We already have existing master key data (the header is being re-encrypted) memcpy (keyInfo.master_keydata, masterKeydata, MASTER_KEYDATA_SIZE); } // User key if (password) { memcpy (keyInfo.userKey, password->Text, nUserKeyLen); keyInfo.keyLength = nUserKeyLen; keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, pim, bBoot, &keyInfo.memoryCost); } else { keyInfo.keyLength = 0; keyInfo.noIterations = 0; keyInfo.memoryCost = 0; } // User selected encryption algorithm cryptoInfo->ea = ea; // User selected PRF cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo.noIterations; cryptoInfo->memoryCost = keyInfo.memoryCost; cryptoInfo->volumePim = pim; // Mode of operation cryptoInfo->mode = mode; // Salt for header key derivation #if !defined(_UEFI) if (!RandgetBytes(hwndDlg, keyInfo.salt, PKCS5_SALT_SIZE, !bWipeMode)) #else if (!RandgetBytes(keyInfo.salt, PKCS5_SALT_SIZE, !bWipeMode)) #endif { crypto_close (cryptoInfo); retVal = ERR_CIPHER_INIT_WEAK_KEY; goto err; } if (password) { // PBKDF2 (PKCS5) is used to derive primary header key(s) and secondary header key(s) (XTS) from the password/keyfiles switch (pkcs5_prf) { case SHA512: derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA256: derive_key_sha256 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; #ifndef WOLFCRYPT_BACKEND case BLAKE2S: derive_key_blake2s (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case STREEBOG: derive_key_streebog(keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case ARGON2: derive_key_argon2(keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, keyInfo.memoryCost, dk, GetMaxPkcs5OutSize()); break; #endif default: // Unknown/wrong ID crypto_close (cryptoInfo); TC_THROW_FATAL_EXCEPTION; } } else { // generate a random key #if !defined(_UEFI) if (!RandgetBytes(hwndDlg, dk, GetMaxPkcs5OutSize(), !bWipeMode)) #else if (!RandgetBytes(dk, GetMaxPkcs5OutSize(), !bWipeMode)) #endif { crypto_close (cryptoInfo); retVal = ERR_CIPHER_INIT_WEAK_KEY; goto err; } } /* Header setup */ // Salt mputBytes (p, keyInfo.salt, PKCS5_SALT_SIZE); // Magic mputLong (p, 0x56455241); // Header version mputWord (p, VOLUME_HEADER_VERSION); cryptoInfo->HeaderVersion = VOLUME_HEADER_VERSION; // Required program version to handle this volume mputWord (p, requiredProgramVersion != 0 ? requiredProgramVersion : TC_VOLUME_MIN_REQUIRED_PROGRAM_VERSION); // CRC of the master key data x = GetCrc32(keyInfo.master_keydata, MASTER_KEYDATA_SIZE); mputLong (p, x); // Reserved fields p += 2 * 8; // Size of hidden volume (if any) cryptoInfo->hiddenVolumeSize = hiddenVolumeSize; mputInt64 (p, cryptoInfo->hiddenVolumeSize); cryptoInfo->hiddenVolume = cryptoInfo->hiddenVolumeSize != 0; // Volume size cryptoInfo->VolumeSize.Value = volumeSize; mputInt64 (p, volumeSize); // Encrypted area start cryptoInfo->EncryptedAreaStart.Value = encryptedAreaStart; mputInt64 (p, encryptedAreaStart); // Encrypted area size cryptoInfo->EncryptedAreaLength.Value = encryptedAreaLength; mputInt64 (p, encryptedAreaLength); // Flags cryptoInfo->HeaderFlags = headerFlags; mputLong (p, headerFlags); // Sector size if (sectorSize < TC_MIN_VOLUME_SECTOR_SIZE || sectorSize > TC_MAX_VOLUME_SECTOR_SIZE || sectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0) { crypto_close (cryptoInfo); TC_THROW_FATAL_EXCEPTION; } cryptoInfo->SectorSize = sectorSize; mputLong (p, sectorSize); // CRC of the header fields x = GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC); p = header + TC_HEADER_OFFSET_HEADER_CRC; mputLong (p, x); // The master key data memcpy (header + HEADER_MASTER_KEYDATA_OFFSET, keyInfo.master_keydata, MASTER_KEYDATA_SIZE); /* Header encryption */ #ifndef TC_WINDOWS_DRIVER // The secondary key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); primaryKeyOffset = 0; #endif retVal = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks); if (retVal != ERR_SUCCESS) { crypto_close (cryptoInfo); goto err; } // Mode of operation if (!EAInitMode (cryptoInfo, dk + EAGetKeySize (cryptoInfo->ea))) { crypto_close (cryptoInfo); retVal = ERR_OUTOFMEMORY; goto err; } // Encrypt the entire header (except the salt) EncryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); /* cryptoInfo setup for further use (disk format) */ // Init with the master key(s) retVal = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks); if (retVal != ERR_SUCCESS) { crypto_close (cryptoInfo); goto err; } memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE); #ifndef TC_WINDOWS_DRIVER // The secondary master key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); #endif // Mode of operation if (!EAInitMode (cryptoInfo, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea))) { crypto_close (cryptoInfo); retVal = ERR_OUTOFMEMORY; goto err; } #ifdef VOLFORMAT if (!bInPlaceEncNonSys && (showKeys || (bBoot && !masterKeydata))) { BOOL dots3 = FALSE; int i, j; j = EAGetKeySize (ea); if (j > NBR_KEY_BYTES_TO_DISPLAY) { dots3 = TRUE; j = NBR_KEY_BYTES_TO_DISPLAY; } MasterKeyGUIView[0] = 0; for (i = 0; i < j; i++) { wchar_t tmp2[8] = {0}; StringCchPrintfW (tmp2, ARRAYSIZE(tmp2), L"%02X", (int) (unsigned char) keyInfo.master_keydata[i + primaryKeyOffset]); StringCchCatW (MasterKeyGUIView, ARRAYSIZE(MasterKeyGUIView), tmp2); } HeaderKeyGUIView[0] = 0; for (i = 0; i < NBR_KEY_BYTES_TO_DISPLAY; i++) { wchar_t tmp2[8]; StringCchPrintfW (tmp2, ARRAYSIZE(tmp2), L"%02X", (int) (unsigned char) dk[primaryKeyOffset + i]); StringCchCatW (HeaderKeyGUIView, ARRAYSIZE(HeaderKeyGUIView), tmp2); } if (dots3) { DisplayPortionsOfKeys (hHeaderKey, hMasterKey, HeaderKeyGUIView, MasterKeyGUIView, !showKeys); } else { SendMessage (hMasterKey, WM_SETTEXT, 0, (LPARAM) MasterKeyGUIView); SendMessage (hHeaderKey, WM_SETTEXT, 0, (LPARAM) HeaderKeyGUIView); } } #endif // #ifdef VOLFORMAT *retInfo = cryptoInfo; err: burn (dk, sizeof(dk)); burn (&keyInfo, sizeof (keyInfo)); #if !defined(_UEFI) VirtualUnlock (&keyInfo, sizeof (keyInfo)); VirtualUnlock (&dk, sizeof (dk)); #endif // !defined(_UEFI) return 0; } #if !defined(_UEFI) BOOL ReadEffectiveVolumeHeader (BOOL device, HANDLE fileHandle, uint8 *header, DWORD *bytesRead) { #if TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE #error TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE #endif uint8 sectorBuffer[TC_MAX_VOLUME_SECTOR_SIZE]; DISK_GEOMETRY geometry; if (!device) return ReadFile (fileHandle, header, TC_VOLUME_HEADER_EFFECTIVE_SIZE, bytesRead, NULL); if (!DeviceIoControl (fileHandle, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &geometry, sizeof (geometry), bytesRead, NULL)) return FALSE; if (geometry.BytesPerSector > sizeof (sectorBuffer) || geometry.BytesPerSector < TC_MIN_VOLUME_SECTOR_SIZE) { SetLastError (ERROR_INVALID_PARAMETER); return FALSE; } if (!ReadFile (fileHandle, sectorBuffer, max (TC_VOLUME_HEADER_EFFECTIVE_SIZE, geometry.BytesPerSector), bytesRead, NULL)) return FALSE; memcpy (header, sectorBuffer, min (*bytesRead, TC_VOLUME_HEADER_EFFECTIVE_SIZE)); if (*bytesRead > TC_VOLUME_HEADER_EFFECTIVE_SIZE) *bytesRead = TC_VOLUME_HEADER_EFFECTIVE_SIZE; return TRUE; } BOOL WriteEffectiveVolumeHeader (BOOL device, HANDLE fileHandle, uint8 *header) { #if TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE #error TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE #endif uint8 sectorBuffer[TC_MAX_VOLUME_SECTOR_SIZE]; DWORD bytesDone; DISK_GEOMETRY geometry; if (!device) { if (!WriteFile (fileHandle, header, TC_VOLUME_HEADER_EFFECTIVE_SIZE, &bytesDone, NULL)) return FALSE; if (bytesDone != TC_VOLUME_HEADER_EFFECTIVE_SIZE) { SetLastError (ERROR_INVALID_PARAMETER); return FALSE; } return TRUE; } if (!DeviceIoControl (fileHandle, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &geometry, sizeof (geometry), &bytesDone, NULL)) return FALSE; if (geometry.BytesPerSector > sizeof (sectorBuffer) || geometry.BytesPerSector < TC_MIN_VOLUME_SECTOR_SIZE) { SetLastError (ERROR_INVALID_PARAMETER); return FALSE; } if (geometry.BytesPerSector != TC_VOLUME_HEADER_EFFECTIVE_SIZE) { LARGE_INTEGER seekOffset; if (!ReadFile (fileHandle, sectorBuffer, geometry.BytesPerSector, &bytesDone, NULL)) return FALSE; if (bytesDone != geometry.BytesPerSector) { SetLastError (ERROR_INVALID_PARAMETER); return FALSE; } seekOffset.QuadPart = -(int) bytesDone; if (!SetFilePointerEx (fileHandle, seekOffset, NULL, FILE_CURRENT)) return FALSE; } memcpy (sectorBuffer, header, TC_VOLUME_HEADER_EFFECTIVE_SIZE); if (!WriteFile (fileHandle, sectorBuffer, geometry.BytesPerSector, &bytesDone, NULL)) return FALSE; if (bytesDone != geometry.BytesPerSector) { SetLastError (ERROR_INVALID_PARAMETER); return FALSE; } return TRUE; } // Writes randomly generated data to unused/reserved header areas. // When bPrimaryOnly is TRUE, then only the primary header area (not the backup header area) is filled with random data. // When bBackupOnly is TRUE, only the backup header area (not the primary header area) is filled with random data. int WriteRandomDataToReservedHeaderAreas (HWND hwndDlg, HANDLE dev, CRYPTO_INFO *cryptoInfo, uint64 dataAreaSize, BOOL bPrimaryOnly, BOOL bBackupOnly) { char temporaryKey[MASTER_KEYDATA_SIZE]; char originalK2[MASTER_KEYDATA_SIZE]; uint8 buf[TC_VOLUME_HEADER_GROUP_SIZE]; LARGE_INTEGER offset; int nStatus = ERR_SUCCESS; DWORD dwError; DWORD bytesDone; BOOL backupHeaders = bBackupOnly; if (bPrimaryOnly && bBackupOnly) TC_THROW_FATAL_EXCEPTION; memcpy (originalK2, cryptoInfo->k2, sizeof (cryptoInfo->k2)); while (TRUE) { // Temporary keys if (!RandgetBytes (hwndDlg, temporaryKey, EAGetKeySize (cryptoInfo->ea), FALSE) || !RandgetBytes (hwndDlg, cryptoInfo->k2, sizeof (cryptoInfo->k2), FALSE)) { nStatus = ERR_PARAMETER_INCORRECT; goto final_seq; } nStatus = EAInit (cryptoInfo->ea, temporaryKey, cryptoInfo->ks); if (nStatus != ERR_SUCCESS) goto final_seq; if (!EAInitMode (cryptoInfo, cryptoInfo->k2)) { nStatus = ERR_MODE_INIT_FAILED; goto final_seq; } offset.QuadPart = backupHeaders ? dataAreaSize + TC_VOLUME_HEADER_GROUP_SIZE : TC_VOLUME_HEADER_OFFSET; if (!SetFilePointerEx (dev, offset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto final_seq; } if (!ReadFile (dev, buf, sizeof (buf), &bytesDone, NULL)) { nStatus = ERR_OS_ERROR; goto final_seq; } if (bytesDone < TC_VOLUME_HEADER_EFFECTIVE_SIZE) { SetLastError (ERROR_INVALID_PARAMETER); nStatus = ERR_OS_ERROR; goto final_seq; } // encrypt random data instead of existing data for better entropy RandgetBytesFull (hwndDlg, buf + TC_VOLUME_HEADER_EFFECTIVE_SIZE, sizeof (buf) - TC_VOLUME_HEADER_EFFECTIVE_SIZE, FALSE, TRUE); EncryptBuffer (buf + TC_VOLUME_HEADER_EFFECTIVE_SIZE, sizeof (buf) - TC_VOLUME_HEADER_EFFECTIVE_SIZE, cryptoInfo); if (!SetFilePointerEx (dev, offset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto final_seq; } if (!WriteFile (dev, buf, sizeof (buf), &bytesDone, NULL)) { nStatus = ERR_OS_ERROR; goto final_seq; } if (bytesDone != sizeof (buf)) { nStatus = ERR_PARAMETER_INCORRECT; goto final_seq; } if (backupHeaders || bPrimaryOnly) break; backupHeaders = TRUE; } memcpy (cryptoInfo->k2, originalK2, sizeof (cryptoInfo->k2)); nStatus = EAInit (cryptoInfo->ea, cryptoInfo->master_keydata, cryptoInfo->ks); if (nStatus != ERR_SUCCESS) goto final_seq; if (!EAInitMode (cryptoInfo, cryptoInfo->k2)) { nStatus = ERR_MODE_INIT_FAILED; goto final_seq; } final_seq: dwError = GetLastError(); burn (temporaryKey, sizeof (temporaryKey)); burn (originalK2, sizeof (originalK2)); if (nStatus != ERR_SUCCESS) SetLastError (dwError); return nStatus; } #endif // !defined(_UEFI) #endif // !defined (DEVICE_DRIVER) && !defined (TC_WINDOWS_BOOT)