/* LzmaEnc.c -- LZMA Encoder Igor Pavlov : Public domain */ #include "Precomp.h" #include /* #define SHOW_STAT */ /* #define SHOW_STAT2 */ #if defined(SHOW_STAT) || defined(SHOW_STAT2) #include #endif #include "CpuArch.h" #include "LzmaEnc.h" #include "LzFind.h" #ifndef Z7_ST #include "LzFindMt.h" #endif /* the following LzmaEnc_* declarations is internal LZMA interface for LZMA2 encoder */ SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle p, ISeqInStreamPtr inStream, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig); SRes LzmaEnc_MemPrepare(CLzmaEncHandle p, const Byte *src, SizeT srcLen, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig); SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle p, BoolInt reInit, Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize); const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle p); void LzmaEnc_Finish(CLzmaEncHandle p); void LzmaEnc_SaveState(CLzmaEncHandle p); void LzmaEnc_RestoreState(CLzmaEncHandle p); #ifdef SHOW_STAT static unsigned g_STAT_OFFSET = 0; #endif /* for good normalization speed we still reserve 256 MB before 4 GB range */ #define kLzmaMaxHistorySize ((UInt32)15 << 28) // #define kNumTopBits 24 #define kTopValue ((UInt32)1 << 24) #define kNumBitModelTotalBits 11 #define kBitModelTotal (1 << kNumBitModelTotalBits) #define kNumMoveBits 5 #define kProbInitValue (kBitModelTotal >> 1) #define kNumMoveReducingBits 4 #define kNumBitPriceShiftBits 4 // #define kBitPrice (1 << kNumBitPriceShiftBits) #define REP_LEN_COUNT 64 void LzmaEncProps_Init(CLzmaEncProps *p) { p->level = 5; p->dictSize = p->mc = 0; p->reduceSize = (UInt64)(Int64)-1; p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1; p->numHashOutBits = 0; p->writeEndMark = 0; p->affinity = 0; } void LzmaEncProps_Normalize(CLzmaEncProps *p) { int level = p->level; if (level < 0) level = 5; p->level = level; if (p->dictSize == 0) p->dictSize = (unsigned)level <= 4 ? (UInt32)1 << (level * 2 + 16) : (unsigned)level <= sizeof(size_t) / 2 + 4 ? (UInt32)1 << (level + 20) : (UInt32)1 << (sizeof(size_t) / 2 + 24); if (p->dictSize > p->reduceSize) { UInt32 v = (UInt32)p->reduceSize; const UInt32 kReduceMin = ((UInt32)1 << 12); if (v < kReduceMin) v = kReduceMin; if (p->dictSize > v) p->dictSize = v; } if (p->lc < 0) p->lc = 3; if (p->lp < 0) p->lp = 0; if (p->pb < 0) p->pb = 2; if (p->algo < 0) p->algo = (unsigned)level < 5 ? 0 : 1; if (p->fb < 0) p->fb = (unsigned)level < 7 ? 32 : 64; if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1); if (p->numHashBytes < 0) p->numHashBytes = (p->btMode ? 4 : 5); if (p->mc == 0) p->mc = (16 + ((unsigned)p->fb >> 1)) >> (p->btMode ? 0 : 1); if (p->numThreads < 0) p->numThreads = #ifndef Z7_ST ((p->btMode && p->algo) ? 2 : 1); #else 1; #endif } UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2) { CLzmaEncProps props = *props2; LzmaEncProps_Normalize(&props); return props.dictSize; } /* x86/x64: BSR: IF (SRC == 0) ZF = 1, DEST is undefined; AMD : DEST is unchanged; IF (SRC != 0) ZF = 0; DEST is index of top non-zero bit BSR is slow in some processors LZCNT: IF (SRC == 0) CF = 1, DEST is size_in_bits_of_register(src) (32 or 64) IF (SRC != 0) CF = 0, DEST = num_lead_zero_bits IF (DEST == 0) ZF = 1; LZCNT works only in new processors starting from Haswell. if LZCNT is not supported by processor, then it's executed as BSR. LZCNT can be faster than BSR, if supported. */ // #define LZMA_LOG_BSR #if defined(MY_CPU_ARM_OR_ARM64) /* || defined(MY_CPU_X86_OR_AMD64) */ #if (defined(__clang__) && (__clang_major__ >= 6)) \ || (defined(__GNUC__) && (__GNUC__ >= 6)) #define LZMA_LOG_BSR #elif defined(_MSC_VER) && (_MSC_VER >= 1300) // #if defined(MY_CPU_ARM_OR_ARM64) #define LZMA_LOG_BSR // #endif #endif #endif // #include #ifdef LZMA_LOG_BSR #if defined(__clang__) \ || defined(__GNUC__) /* C code: : (30 - __builtin_clz(x)) gcc9/gcc10 for x64 /x86 : 30 - (bsr(x) xor 31) clang10 for x64 : 31 + (bsr(x) xor -32) */ #define MY_clz(x) ((unsigned)__builtin_clz(x)) // __lzcnt32 // __builtin_ia32_lzcnt_u32 #else // #if defined(_MSC_VER) #ifdef MY_CPU_ARM_OR_ARM64 #define MY_clz _CountLeadingZeros #else // if defined(MY_CPU_X86_OR_AMD64) // #define MY_clz __lzcnt // we can use lzcnt (unsupported by old CPU) // _BitScanReverse code is not optimal for some MSVC compilers #define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); zz--; \ res = (zz + zz) + (pos >> zz); } #endif // MY_CPU_X86_OR_AMD64 #endif // _MSC_VER #ifndef BSR2_RET #define BSR2_RET(pos, res) { unsigned zz = 30 - MY_clz(pos); \ res = (zz + zz) + (pos >> zz); } #endif unsigned GetPosSlot1(UInt32 pos); unsigned GetPosSlot1(UInt32 pos) { unsigned res; BSR2_RET(pos, res) return res; } #define GetPosSlot2(pos, res) { BSR2_RET(pos, res) } #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res) } #else // ! LZMA_LOG_BSR #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) static void LzmaEnc_FastPosInit(Byte *g_FastPos) { unsigned slot; g_FastPos[0] = 0; g_FastPos[1] = 1; g_FastPos += 2; for (slot = 2; slot < kNumLogBits * 2; slot++) { size_t k = ((size_t)1 << ((slot >> 1) - 1)); size_t j; for (j = 0; j < k; j++) g_FastPos[j] = (Byte)slot; g_FastPos += k; } } /* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */ /* #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \ (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ res = p->g_FastPos[pos >> zz] + (zz * 2); } */ /* #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \ (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \ res = p->g_FastPos[pos >> zz] + (zz * 2); } */ #define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \ res = p->g_FastPos[pos >> zz] + (zz * 2); } /* #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ p->g_FastPos[pos >> 6] + 12 : \ p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } */ #define GetPosSlot1(pos) p->g_FastPos[pos] #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); } #endif // LZMA_LOG_BSR #define LZMA_NUM_REPS 4 typedef UInt16 CState; typedef UInt16 CExtra; typedef struct { UInt32 price; CState state; CExtra extra; // 0 : normal // 1 : LIT : MATCH // > 1 : MATCH (extra-1) : LIT : REP0 (len) UInt32 len; UInt32 dist; UInt32 reps[LZMA_NUM_REPS]; } COptimal; // 18.06 #define kNumOpts (1 << 11) #define kPackReserve (kNumOpts * 8) // #define kNumOpts (1 << 12) // #define kPackReserve (1 + kNumOpts * 2) #define kNumLenToPosStates 4 #define kNumPosSlotBits 6 // #define kDicLogSizeMin 0 #define kDicLogSizeMax 32 #define kDistTableSizeMax (kDicLogSizeMax * 2) #define kNumAlignBits 4 #define kAlignTableSize (1 << kNumAlignBits) #define kAlignMask (kAlignTableSize - 1) #define kStartPosModelIndex 4 #define kEndPosModelIndex 14 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) typedef #ifdef Z7_LZMA_PROB32 UInt32 #else UInt16 #endif CLzmaProb; #define LZMA_PB_MAX 4 #define LZMA_LC_MAX 8 #define LZMA_LP_MAX 4 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) #define kLenNumLowBits 3 #define kLenNumLowSymbols (1 << kLenNumLowBits) #define kLenNumHighBits 8 #define kLenNumHighSymbols (1 << kLenNumHighBits) #define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols) #define LZMA_MATCH_LEN_MIN 2 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) #define kNumStates 12 typedef struct { CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)]; CLzmaProb high[kLenNumHighSymbols]; } CLenEnc; typedef struct { unsigned tableSize; UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; // UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2]; // UInt32 prices2[kLenNumSymbolsTotal]; } CLenPriceEnc; #define GET_PRICE_LEN(p, posState, len) \ ((p)->prices[posState][(size_t)(len) - LZMA_MATCH_LEN_MIN]) /* #define GET_PRICE_LEN(p, posState, len) \ ((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9))) */ typedef struct { UInt32 range; unsigned cache; UInt64 low; UInt64 cacheSize; Byte *buf; Byte *bufLim; Byte *bufBase; ISeqOutStreamPtr outStream; UInt64 processed; SRes res; } CRangeEnc; typedef struct { CLzmaProb *litProbs; unsigned state; UInt32 reps[LZMA_NUM_REPS]; CLzmaProb posAlignEncoder[1 << kNumAlignBits]; CLzmaProb isRep[kNumStates]; CLzmaProb isRepG0[kNumStates]; CLzmaProb isRepG1[kNumStates]; CLzmaProb isRepG2[kNumStates]; CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; CLzmaProb posEncoders[kNumFullDistances]; CLenEnc lenProbs; CLenEnc repLenProbs; } CSaveState; typedef UInt32 CProbPrice; struct CLzmaEnc { void *matchFinderObj; IMatchFinder2 matchFinder; unsigned optCur; unsigned optEnd; unsigned longestMatchLen; unsigned numPairs; UInt32 numAvail; unsigned state; unsigned numFastBytes; unsigned additionalOffset; UInt32 reps[LZMA_NUM_REPS]; unsigned lpMask, pbMask; CLzmaProb *litProbs; CRangeEnc rc; UInt32 backRes; unsigned lc, lp, pb; unsigned lclp; BoolInt fastMode; BoolInt writeEndMark; BoolInt finished; BoolInt multiThread; BoolInt needInit; // BoolInt _maxMode; UInt64 nowPos64; unsigned matchPriceCount; // unsigned alignPriceCount; int repLenEncCounter; unsigned distTableSize; UInt32 dictSize; SRes result; #ifndef Z7_ST BoolInt mtMode; // begin of CMatchFinderMt is used in LZ thread CMatchFinderMt matchFinderMt; // end of CMatchFinderMt is used in BT and HASH threads // #else // CMatchFinder matchFinderBase; #endif CMatchFinder matchFinderBase; // we suppose that we have 8-bytes alignment after CMatchFinder #ifndef Z7_ST Byte pad[128]; #endif // LZ thread CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; // we want {len , dist} pairs to be 8-bytes aligned in matches array UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2]; // we want 8-bytes alignment here UInt32 alignPrices[kAlignTableSize]; UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances]; CLzmaProb posAlignEncoder[1 << kNumAlignBits]; CLzmaProb isRep[kNumStates]; CLzmaProb isRepG0[kNumStates]; CLzmaProb isRepG1[kNumStates]; CLzmaProb isRepG2[kNumStates]; CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; CLzmaProb posEncoders[kNumFullDistances]; CLenEnc lenProbs; CLenEnc repLenProbs; #ifndef LZMA_LOG_BSR Byte g_FastPos[1 << kNumLogBits]; #endif CLenPriceEnc lenEnc; CLenPriceEnc repLenEnc; COptimal opt[kNumOpts]; CSaveState saveState; // BoolInt mf_Failure; #ifndef Z7_ST Byte pad2[128]; #endif }; #define MFB (p->matchFinderBase) /* #ifndef Z7_ST #define MFB (p->matchFinderMt.MatchFinder) #endif */ // #define GET_CLzmaEnc_p CLzmaEnc *p = (CLzmaEnc*)(void *)p; // #define GET_const_CLzmaEnc_p const CLzmaEnc *p = (const CLzmaEnc*)(const void *)p; #define COPY_ARR(dest, src, arr) memcpy((dest)->arr, (src)->arr, sizeof((src)->arr)); #define COPY_LZMA_ENC_STATE(d, s, p) \ (d)->state = (s)->state; \ COPY_ARR(d, s, reps) \ COPY_ARR(d, s, posAlignEncoder) \ COPY_ARR(d, s, isRep) \ COPY_ARR(d, s, isRepG0) \ COPY_ARR(d, s, isRepG1) \ COPY_ARR(d, s, isRepG2) \ COPY_ARR(d, s, isMatch) \ COPY_ARR(d, s, isRep0Long) \ COPY_ARR(d, s, posSlotEncoder) \ COPY_ARR(d, s, posEncoders) \ (d)->lenProbs = (s)->lenProbs; \ (d)->repLenProbs = (s)->repLenProbs; \ memcpy((d)->litProbs, (s)->litProbs, ((size_t)0x300 * sizeof(CLzmaProb)) << (p)->lclp); void LzmaEnc_SaveState(CLzmaEncHandle p) { // GET_CLzmaEnc_p CSaveState *v = &p->saveState; COPY_LZMA_ENC_STATE(v, p, p) } void LzmaEnc_RestoreState(CLzmaEncHandle p) { // GET_CLzmaEnc_p const CSaveState *v = &p->saveState; COPY_LZMA_ENC_STATE(p, v, p) } Z7_NO_INLINE SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props2) { // GET_CLzmaEnc_p CLzmaEncProps props = *props2; LzmaEncProps_Normalize(&props); if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX) return SZ_ERROR_PARAM; if (props.dictSize > kLzmaMaxHistorySize) props.dictSize = kLzmaMaxHistorySize; #ifndef LZMA_LOG_BSR { const UInt64 dict64 = props.dictSize; if (dict64 > ((UInt64)1 << kDicLogSizeMaxCompress)) return SZ_ERROR_PARAM; } #endif p->dictSize = props.dictSize; { unsigned fb = (unsigned)props.fb; if (fb < 5) fb = 5; if (fb > LZMA_MATCH_LEN_MAX) fb = LZMA_MATCH_LEN_MAX; p->numFastBytes = fb; } p->lc = (unsigned)props.lc; p->lp = (unsigned)props.lp; p->pb = (unsigned)props.pb; p->fastMode = (props.algo == 0); // p->_maxMode = True; MFB.btMode = (Byte)(props.btMode ? 1 : 0); // MFB.btMode = (Byte)(props.btMode); { unsigned numHashBytes = 4; if (props.btMode) { if (props.numHashBytes < 2) numHashBytes = 2; else if (props.numHashBytes < 4) numHashBytes = (unsigned)props.numHashBytes; } if (props.numHashBytes >= 5) numHashBytes = 5; MFB.numHashBytes = numHashBytes; // MFB.numHashBytes_Min = 2; MFB.numHashOutBits = (Byte)props.numHashOutBits; } MFB.cutValue = props.mc; p->writeEndMark = (BoolInt)props.writeEndMark; #ifndef Z7_ST /* if (newMultiThread != _multiThread) { ReleaseMatchFinder(); _multiThread = newMultiThread; } */ p->multiThread = (props.numThreads > 1); p->matchFinderMt.btSync.affinity = p->matchFinderMt.hashSync.affinity = props.affinity; #endif return SZ_OK; } void LzmaEnc_SetDataSize(CLzmaEncHandle p, UInt64 expectedDataSiize) { // GET_CLzmaEnc_p MFB.expectedDataSize = expectedDataSiize; } #define kState_Start 0 #define kState_LitAfterMatch 4 #define kState_LitAfterRep 5 #define kState_MatchAfterLit 7 #define kState_RepAfterLit 8 static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; static const Byte kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; static const Byte kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; #define IsLitState(s) ((s) < 7) #define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1) #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) #define kInfinityPrice (1 << 30) static void RangeEnc_Construct(CRangeEnc *p) { p->outStream = NULL; p->bufBase = NULL; } #define RangeEnc_GetProcessed(p) ( (p)->processed + (size_t)((p)->buf - (p)->bufBase) + (p)->cacheSize) #define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + (size_t)((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize) #define RC_BUF_SIZE (1 << 16) static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc) { if (!p->bufBase) { p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE); if (!p->bufBase) return 0; p->bufLim = p->bufBase + RC_BUF_SIZE; } return 1; } static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc) { ISzAlloc_Free(alloc, p->bufBase); p->bufBase = NULL; } static void RangeEnc_Init(CRangeEnc *p) { p->range = 0xFFFFFFFF; p->cache = 0; p->low = 0; p->cacheSize = 0; p->buf = p->bufBase; p->processed = 0; p->res = SZ_OK; } Z7_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p) { const size_t num = (size_t)(p->buf - p->bufBase); if (p->res == SZ_OK) { if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num)) p->res = SZ_ERROR_WRITE; } p->processed += num; p->buf = p->bufBase; } Z7_NO_INLINE static void Z7_FASTCALL RangeEnc_ShiftLow(CRangeEnc *p) { UInt32 low = (UInt32)p->low; unsigned high = (unsigned)(p->low >> 32); p->low = (UInt32)(low << 8); if (low < (UInt32)0xFF000000 || high != 0) { { Byte *buf = p->buf; *buf++ = (Byte)(p->cache + high); p->cache = (unsigned)(low >> 24); p->buf = buf; if (buf == p->bufLim) RangeEnc_FlushStream(p); if (p->cacheSize == 0) return; } high += 0xFF; for (;;) { Byte *buf = p->buf; *buf++ = (Byte)(high); p->buf = buf; if (buf == p->bufLim) RangeEnc_FlushStream(p); if (--p->cacheSize == 0) return; } } p->cacheSize++; } static void RangeEnc_FlushData(CRangeEnc *p) { int i; for (i = 0; i < 5; i++) RangeEnc_ShiftLow(p); } #define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); } #define RC_BIT_PRE(p, prob) \ ttt = *(prob); \ newBound = (range >> kNumBitModelTotalBits) * ttt; // #define Z7_LZMA_ENC_USE_BRANCH #ifdef Z7_LZMA_ENC_USE_BRANCH #define RC_BIT(p, prob, bit) { \ RC_BIT_PRE(p, prob) \ if (bit == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \ else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \ *(prob) = (CLzmaProb)ttt; \ RC_NORM(p) \ } #else #define RC_BIT(p, prob, bit) { \ UInt32 mask; \ RC_BIT_PRE(p, prob) \ mask = 0 - (UInt32)bit; \ range &= mask; \ mask &= newBound; \ range -= mask; \ (p)->low += mask; \ mask = (UInt32)bit - 1; \ range += newBound & mask; \ mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \ mask += ((1 << kNumMoveBits) - 1); \ ttt += (UInt32)((Int32)(mask - ttt) >> kNumMoveBits); \ *(prob) = (CLzmaProb)ttt; \ RC_NORM(p) \ } #endif #define RC_BIT_0_BASE(p, prob) \ range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); #define RC_BIT_1_BASE(p, prob) \ range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \ #define RC_BIT_0(p, prob) \ RC_BIT_0_BASE(p, prob) \ RC_NORM(p) #define RC_BIT_1(p, prob) \ RC_BIT_1_BASE(p, prob) \ RC_NORM(p) static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob) { UInt32 range, ttt, newBound; range = p->range; RC_BIT_PRE(p, prob) RC_BIT_0(p, prob) p->range = range; } static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym) { UInt32 range = p->range; sym |= 0x100; do { UInt32 ttt, newBound; // RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1); CLzmaProb *prob = probs + (sym >> 8); UInt32 bit = (sym >> 7) & 1; sym <<= 1; RC_BIT(p, prob, bit) } while (sym < 0x10000); p->range = range; } static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte) { UInt32 range = p->range; UInt32 offs = 0x100; sym |= 0x100; do { UInt32 ttt, newBound; CLzmaProb *prob; UInt32 bit; matchByte <<= 1; // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1); prob = probs + (offs + (matchByte & offs) + (sym >> 8)); bit = (sym >> 7) & 1; sym <<= 1; offs &= ~(matchByte ^ sym); RC_BIT(p, prob, bit) } while (sym < 0x10000); p->range = range; } static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices) { UInt32 i; for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++) { const unsigned kCyclesBits = kNumBitPriceShiftBits; UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1)); unsigned bitCount = 0; unsigned j; for (j = 0; j < kCyclesBits; j++) { w = w * w; bitCount <<= 1; while (w >= ((UInt32)1 << 16)) { w >>= 1; bitCount++; } } ProbPrices[i] = (CProbPrice)(((unsigned)kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); // printf("\n%3d: %5d", i, ProbPrices[i]); } } #define GET_PRICE(prob, bit) \ p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits] #define GET_PRICEa(prob, bit) \ ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits] #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] #define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits] #define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices) { UInt32 price = 0; sym |= 0x100; do { unsigned bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit); } while (sym >= 2); return price; } static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices) { UInt32 price = 0; UInt32 offs = 0x100; sym |= 0x100; do { matchByte <<= 1; price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1); sym <<= 1; offs &= ~(matchByte ^ sym); } while (sym < 0x10000); return price; } static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym) { UInt32 range = rc->range; unsigned m = 1; do { UInt32 ttt, newBound; unsigned bit = sym & 1; // RangeEnc_EncodeBit(rc, probs + m, bit); sym >>= 1; RC_BIT(rc, probs + m, bit) m = (m << 1) | bit; } while (--numBits); rc->range = range; } static void LenEnc_Init(CLenEnc *p) { unsigned i; for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++) p->low[i] = kProbInitValue; for (i = 0; i < kLenNumHighSymbols; i++) p->high[i] = kProbInitValue; } static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState) { UInt32 range, ttt, newBound; CLzmaProb *probs = p->low; range = rc->range; RC_BIT_PRE(rc, probs) if (sym >= kLenNumLowSymbols) { RC_BIT_1(rc, probs) probs += kLenNumLowSymbols; RC_BIT_PRE(rc, probs) if (sym >= kLenNumLowSymbols * 2) { RC_BIT_1(rc, probs) rc->range = range; // RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2); LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2); return; } sym -= kLenNumLowSymbols; } // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym); { unsigned m; unsigned bit; RC_BIT_0(rc, probs) probs += (posState << (1 + kLenNumLowBits)); bit = (sym >> 2) ; RC_BIT(rc, probs + 1, bit) m = (1 << 1) + bit; bit = (sym >> 1) & 1; RC_BIT(rc, probs + m, bit) m = (m << 1) + bit; bit = sym & 1; RC_BIT(rc, probs + m, bit) rc->range = range; } } static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices) { unsigned i; for (i = 0; i < 8; i += 2) { UInt32 price = startPrice; UInt32 prob; price += GET_PRICEa(probs[1 ], (i >> 2)); price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1); prob = probs[4 + (i >> 1)]; prices[i ] = price + GET_PRICEa_0(prob); prices[i + 1] = price + GET_PRICEa_1(prob); } } Z7_NO_INLINE static void Z7_FASTCALL LenPriceEnc_UpdateTables( CLenPriceEnc *p, unsigned numPosStates, const CLenEnc *enc, const CProbPrice *ProbPrices) { UInt32 b; { unsigned prob = enc->low[0]; UInt32 a, c; unsigned posState; b = GET_PRICEa_1(prob); a = GET_PRICEa_0(prob); c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]); for (posState = 0; posState < numPosStates; posState++) { UInt32 *prices = p->prices[posState]; const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits)); SetPrices_3(probs, a, prices, ProbPrices); SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices); } } /* { unsigned i; UInt32 b; a = GET_PRICEa_0(enc->low[0]); for (i = 0; i < kLenNumLowSymbols; i++) p->prices2[i] = a; a = GET_PRICEa_1(enc->low[0]); b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]); for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++) p->prices2[i] = b; a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]); } */ // p->counter = numSymbols; // p->counter = 64; { unsigned i = p->tableSize; if (i > kLenNumLowSymbols * 2) { const CLzmaProb *probs = enc->high; UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2; i -= kLenNumLowSymbols * 2 - 1; i >>= 1; b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]); do { /* p->prices2[i] = a + // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices); LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices); */ // UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices); unsigned sym = --i + (1 << (kLenNumHighBits - 1)); UInt32 price = b; do { const unsigned bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit); } while (sym >= 2); { const unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))]; prices[(size_t)i * 2 ] = price + GET_PRICEa_0(prob); prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob); } } while (i); { unsigned posState; const size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]); for (posState = 1; posState < numPosStates; posState++) memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num); } } } } /* #ifdef SHOW_STAT g_STAT_OFFSET += num; printf("\n MovePos %u", num); #endif */ #define MOVE_POS(p, num) { \ p->additionalOffset += (num); \ p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); } static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes) { unsigned numPairs; p->additionalOffset++; p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); { const UInt32 *d = p->matchFinder.GetMatches(p->matchFinderObj, p->matches); // if (!d) { p->mf_Failure = True; *numPairsRes = 0; return 0; } numPairs = (unsigned)(d - p->matches); } *numPairsRes = numPairs; #ifdef SHOW_STAT printf("\n i = %u numPairs = %u ", g_STAT_OFFSET, numPairs / 2); g_STAT_OFFSET++; { unsigned i; for (i = 0; i < numPairs; i += 2) printf("%2u %6u | ", p->matches[i], p->matches[i + 1]); } #endif if (numPairs == 0) return 0; { const unsigned len = p->matches[(size_t)numPairs - 2]; if (len != p->numFastBytes) return len; { UInt32 numAvail = p->numAvail; if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; { const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; const Byte *p2 = p1 + len; const ptrdiff_t dif = (ptrdiff_t)-1 - (ptrdiff_t)p->matches[(size_t)numPairs - 1]; const Byte *lim = p1 + numAvail; for (; p2 != lim && *p2 == p2[dif]; p2++) {} return (unsigned)(p2 - p1); } } } } #define MARK_LIT ((UInt32)(Int32)-1) #define MakeAs_Lit(p) { (p)->dist = MARK_LIT; (p)->extra = 0; } #define MakeAs_ShortRep(p) { (p)->dist = 0; (p)->extra = 0; } #define IsShortRep(p) ((p)->dist == 0) #define GetPrice_ShortRep(p, state, posState) \ ( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState])) #define GetPrice_Rep_0(p, state, posState) ( \ GET_PRICE_1(p->isMatch[state][posState]) \ + GET_PRICE_1(p->isRep0Long[state][posState])) \ + GET_PRICE_1(p->isRep[state]) \ + GET_PRICE_0(p->isRepG0[state]) Z7_FORCE_INLINE static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState) { UInt32 price; UInt32 prob = p->isRepG0[state]; if (repIndex == 0) { price = GET_PRICE_0(prob); price += GET_PRICE_1(p->isRep0Long[state][posState]); } else { price = GET_PRICE_1(prob); prob = p->isRepG1[state]; if (repIndex == 1) price += GET_PRICE_0(prob); else { price += GET_PRICE_1(prob); price += GET_PRICE(p->isRepG2[state], repIndex - 2); } } return price; } static unsigned Backward(CLzmaEnc *p, unsigned cur) { unsigned wr = cur + 1; p->optEnd = wr; for (;;) { UInt32 dist = p->opt[cur].dist; unsigned len = (unsigned)p->opt[cur].len; unsigned extra = (unsigned)p->opt[cur].extra; cur -= len; if (extra) { wr--; p->opt[wr].len = (UInt32)len; cur -= extra; len = extra; if (extra == 1) { p->opt[wr].dist = dist; dist = MARK_LIT; } else { p->opt[wr].dist = 0; len--; wr--; p->opt[wr].dist = MARK_LIT; p->opt[wr].len = 1; } } if (cur == 0) { p->backRes = dist; p->optCur = wr; return len; } wr--; p->opt[wr].dist = dist; p->opt[wr].len = (UInt32)len; } } #define LIT_PROBS(pos, prevByte) \ (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc)) static unsigned GetOptimum(CLzmaEnc *p, UInt32 position) { unsigned last, cur; UInt32 reps[LZMA_NUM_REPS]; unsigned repLens[LZMA_NUM_REPS]; UInt32 *matches; { UInt32 numAvail; unsigned numPairs, mainLen, repMaxIndex, i, posState; UInt32 matchPrice, repMatchPrice; const Byte *data; Byte curByte, matchByte; p->optCur = p->optEnd = 0; if (p->additionalOffset == 0) mainLen = ReadMatchDistances(p, &numPairs); else { mainLen = p->longestMatchLen; numPairs = p->numPairs; } numAvail = p->numAvail; if (numAvail < 2) { p->backRes = MARK_LIT; return 1; } if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; repMaxIndex = 0; for (i = 0; i < LZMA_NUM_REPS; i++) { unsigned len; const Byte *data2; reps[i] = p->reps[i]; data2 = data - reps[i]; if (data[0] != data2[0] || data[1] != data2[1]) { repLens[i] = 0; continue; } for (len = 2; len < numAvail && data[len] == data2[len]; len++) {} repLens[i] = len; if (len > repLens[repMaxIndex]) repMaxIndex = i; if (len == LZMA_MATCH_LEN_MAX) // 21.03 : optimization break; } if (repLens[repMaxIndex] >= p->numFastBytes) { unsigned len; p->backRes = (UInt32)repMaxIndex; len = repLens[repMaxIndex]; MOVE_POS(p, len - 1) return len; } matches = p->matches; #define MATCHES matches // #define MATCHES p->matches if (mainLen >= p->numFastBytes) { p->backRes = MATCHES[(size_t)numPairs - 1] + LZMA_NUM_REPS; MOVE_POS(p, mainLen - 1) return mainLen; } curByte = *data; matchByte = *(data - reps[0]); last = repLens[repMaxIndex]; if (last <= mainLen) last = mainLen; if (last < 2 && curByte != matchByte) { p->backRes = MARK_LIT; return 1; } p->opt[0].state = (CState)p->state; posState = (position & p->pbMask); { const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + (!IsLitState(p->state) ? LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices)); } MakeAs_Lit(&p->opt[1]) matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); // 18.06 if (matchByte == curByte && repLens[0] == 0) { UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState); if (shortRepPrice < p->opt[1].price) { p->opt[1].price = shortRepPrice; MakeAs_ShortRep(&p->opt[1]) } if (last < 2) { p->backRes = p->opt[1].dist; return 1; } } p->opt[1].len = 1; p->opt[0].reps[0] = reps[0]; p->opt[0].reps[1] = reps[1]; p->opt[0].reps[2] = reps[2]; p->opt[0].reps[3] = reps[3]; // ---------- REP ---------- for (i = 0; i < LZMA_NUM_REPS; i++) { unsigned repLen = repLens[i]; UInt32 price; if (repLen < 2) continue; price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState); do { UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen); COptimal *opt = &p->opt[repLen]; if (price2 < opt->price) { opt->price = price2; opt->len = (UInt32)repLen; opt->dist = (UInt32)i; opt->extra = 0; } } while (--repLen >= 2); } // ---------- MATCH ---------- { unsigned len = repLens[0] + 1; if (len <= mainLen) { unsigned offs = 0; UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); if (len < 2) len = 2; else while (len > MATCHES[offs]) offs += 2; for (; ; len++) { COptimal *opt; UInt32 dist = MATCHES[(size_t)offs + 1]; UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len); unsigned lenToPosState = GetLenToPosState(len); if (dist < kNumFullDistances) price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)]; else { unsigned slot; GetPosSlot2(dist, slot) price += p->alignPrices[dist & kAlignMask]; price += p->posSlotPrices[lenToPosState][slot]; } opt = &p->opt[len]; if (price < opt->price) { opt->price = price; opt->len = (UInt32)len; opt->dist = dist + LZMA_NUM_REPS; opt->extra = 0; } if (len == MATCHES[offs]) { offs += 2; if (offs == numPairs) break; } } } } cur = 0; #ifdef SHOW_STAT2 /* if (position >= 0) */ { unsigned i; printf("\n pos = %4X", position); for (i = cur; i <= last; i++) printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price); } #endif } // ---------- Optimal Parsing ---------- for (;;) { unsigned numAvail; UInt32 numAvailFull; unsigned newLen, numPairs, prev, state, posState, startLen; UInt32 litPrice, matchPrice, repMatchPrice; BoolInt nextIsLit; Byte curByte, matchByte; const Byte *data; COptimal *curOpt, *nextOpt; if (++cur == last) break; // 18.06 if (cur >= kNumOpts - 64) { unsigned j, best; UInt32 price = p->opt[cur].price; best = cur; for (j = cur + 1; j <= last; j++) { UInt32 price2 = p->opt[j].price; if (price >= price2) { price = price2; best = j; } } { unsigned delta = best - cur; if (delta != 0) { MOVE_POS(p, delta) } } cur = best; break; } newLen = ReadMatchDistances(p, &numPairs); if (newLen >= p->numFastBytes) { p->numPairs = numPairs; p->longestMatchLen = newLen; break; } curOpt = &p->opt[cur]; position++; // we need that check here, if skip_items in p->opt are possible /* if (curOpt->price >= kInfinityPrice) continue; */ prev = cur - curOpt->len; if (curOpt->len == 1) { state = (unsigned)p->opt[prev].state; if (IsShortRep(curOpt)) state = kShortRepNextStates[state]; else state = kLiteralNextStates[state]; } else { const COptimal *prevOpt; UInt32 b0; UInt32 dist = curOpt->dist; if (curOpt->extra) { prev -= (unsigned)curOpt->extra; state = kState_RepAfterLit; if (curOpt->extra == 1) state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit); } else { state = (unsigned)p->opt[prev].state; if (dist < LZMA_NUM_REPS) state = kRepNextStates[state]; else state = kMatchNextStates[state]; } prevOpt = &p->opt[prev]; b0 = prevOpt->reps[0]; if (dist < LZMA_NUM_REPS) { if (dist == 0) { reps[0] = b0; reps[1] = prevOpt->reps[1]; reps[2] = prevOpt->reps[2]; reps[3] = prevOpt->reps[3]; } else { reps[1] = b0; b0 = prevOpt->reps[1]; if (dist == 1) { reps[0] = b0; reps[2] = prevOpt->reps[2]; reps[3] = prevOpt->reps[3]; } else { reps[2] = b0; reps[0] = prevOpt->reps[dist]; reps[3] = prevOpt->reps[dist ^ 1]; } } } else { reps[0] = (dist - LZMA_NUM_REPS + 1); reps[1] = b0; reps[2] = prevOpt->reps[1]; reps[3] = prevOpt->reps[2]; } } curOpt->state = (CState)state; curOpt->reps[0] = reps[0]; curOpt->reps[1] = reps[1]; curOpt->reps[2] = reps[2]; curOpt->reps[3] = reps[3]; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; curByte = *data; matchByte = *(data - reps[0]); posState = (position & p->pbMask); /* The order of Price checks: < LIT <= SHORT_REP < LIT : REP_0 < REP [ : LIT : REP_0 ] < MATCH [ : LIT : REP_0 ] */ { UInt32 curPrice = curOpt->price; unsigned prob = p->isMatch[state][posState]; matchPrice = curPrice + GET_PRICE_1(prob); litPrice = curPrice + GET_PRICE_0(prob); } nextOpt = &p->opt[(size_t)cur + 1]; nextIsLit = False; // here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice) // 18.new.06 if ((nextOpt->price < kInfinityPrice // && !IsLitState(state) && matchByte == curByte) || litPrice > nextOpt->price ) litPrice = 0; else { const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); litPrice += (!IsLitState(state) ? LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) : LitEnc_GetPrice(probs, curByte, p->ProbPrices)); if (litPrice < nextOpt->price) { nextOpt->price = litPrice; nextOpt->len = 1; MakeAs_Lit(nextOpt) nextIsLit = True; } } repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); numAvailFull = p->numAvail; { unsigned temp = kNumOpts - 1 - cur; if (numAvailFull > temp) numAvailFull = (UInt32)temp; } // 18.06 // ---------- SHORT_REP ---------- if (IsLitState(state)) // 18.new if (matchByte == curByte) if (repMatchPrice < nextOpt->price) // 18.new // if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1)) if ( // nextOpt->price >= kInfinityPrice || nextOpt->len < 2 // we can check nextOpt->len, if skip items are not allowed in p->opt || (nextOpt->dist != 0 // && nextOpt->extra <= 1 // 17.old ) ) { UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState); // if (shortRepPrice <= nextOpt->price) // 17.old if (shortRepPrice < nextOpt->price) // 18.new { nextOpt->price = shortRepPrice; nextOpt->len = 1; MakeAs_ShortRep(nextOpt) nextIsLit = False; } } if (numAvailFull < 2) continue; numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes); // numAvail <= p->numFastBytes // ---------- LIT : REP_0 ---------- if (!nextIsLit && litPrice != 0 // 18.new && matchByte != curByte && numAvailFull > 2) { const Byte *data2 = data - reps[0]; if (data[1] == data2[1] && data[2] == data2[2]) { unsigned len; unsigned limit = p->numFastBytes + 1; if (limit > numAvailFull) limit = numAvailFull; for (len = 3; len < limit && data[len] == data2[len]; len++) {} { unsigned state2 = kLiteralNextStates[state]; unsigned posState2 = (position + 1) & p->pbMask; UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2); { unsigned offset = cur + len; if (last < offset) last = offset; // do { UInt32 price2; COptimal *opt; len--; // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2); price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len); opt = &p->opt[offset]; // offset--; if (price2 < opt->price) { opt->price = price2; opt->len = (UInt32)len; opt->dist = 0; opt->extra = 1; } } // while (len >= 3); } } } } startLen = 2; /* speed optimization */ { // ---------- REP ---------- unsigned repIndex = 0; // 17.old // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused for (; repIndex < LZMA_NUM_REPS; repIndex++) { unsigned len; UInt32 price; const Byte *data2 = data - reps[repIndex]; if (data[0] != data2[0] || data[1] != data2[1]) continue; for (len = 2; len < numAvail && data[len] == data2[len]; len++) {} // if (len < startLen) continue; // 18.new: speed optimization { unsigned offset = cur + len; if (last < offset) last = offset; } { unsigned len2 = len; price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState); do { UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2); COptimal *opt = &p->opt[cur + len2]; if (price2 < opt->price) { opt->price = price2; opt->len = (UInt32)len2; opt->dist = (UInt32)repIndex; opt->extra = 0; } } while (--len2 >= 2); } if (repIndex == 0) startLen = len + 1; // 17.old // startLen = len + 1; // 18.new /* if (_maxMode) */ { // ---------- REP : LIT : REP_0 ---------- // numFastBytes + 1 + numFastBytes unsigned len2 = len + 1; unsigned limit = len2 + p->numFastBytes; if (limit > numAvailFull) limit = numAvailFull; len2 += 2; if (len2 <= limit) if (data[len2 - 2] == data2[len2 - 2]) if (data[len2 - 1] == data2[len2 - 1]) { unsigned state2 = kRepNextStates[state]; unsigned posState2 = (position + len) & p->pbMask; price += GET_PRICE_LEN(&p->repLenEnc, posState, len) + GET_PRICE_0(p->isMatch[state2][posState2]) + LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]), data[len], data2[len], p->ProbPrices); // state2 = kLiteralNextStates[state2]; state2 = kState_LitAfterRep; posState2 = (posState2 + 1) & p->pbMask; price += GetPrice_Rep_0(p, state2, posState2); for (; len2 < limit && data[len2] == data2[len2]; len2++) {} len2 -= len; // if (len2 >= 3) { { unsigned offset = cur + len + len2; if (last < offset) last = offset; // do { UInt32 price2; COptimal *opt; len2--; // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2); price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2); opt = &p->opt[offset]; // offset--; if (price2 < opt->price) { opt->price = price2; opt->len = (UInt32)len2; opt->extra = (CExtra)(len + 1); opt->dist = (UInt32)repIndex; } } // while (len2 >= 3); } } } } } } // ---------- MATCH ---------- /* for (unsigned len = 2; len <= newLen; len++) */ if (newLen > numAvail) { newLen = numAvail; for (numPairs = 0; newLen > MATCHES[numPairs]; numPairs += 2); MATCHES[numPairs] = (UInt32)newLen; numPairs += 2; } // startLen = 2; /* speed optimization */ if (newLen >= startLen) { UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); UInt32 dist; unsigned offs, posSlot, len; { unsigned offset = cur + newLen; if (last < offset) last = offset; } offs = 0; while (startLen > MATCHES[offs]) offs += 2; dist = MATCHES[(size_t)offs + 1]; // if (dist >= kNumFullDistances) GetPosSlot2(dist, posSlot) for (len = /*2*/ startLen; ; len++) { UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len); { COptimal *opt; unsigned lenNorm = len - 2; lenNorm = GetLenToPosState2(lenNorm); if (dist < kNumFullDistances) price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)]; else price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask]; opt = &p->opt[cur + len]; if (price < opt->price) { opt->price = price; opt->len = (UInt32)len; opt->dist = dist + LZMA_NUM_REPS; opt->extra = 0; } } if (len == MATCHES[offs]) { // if (p->_maxMode) { // MATCH : LIT : REP_0 const Byte *data2 = data - dist - 1; unsigned len2 = len + 1; unsigned limit = len2 + p->numFastBytes; if (limit > numAvailFull) limit = numAvailFull; len2 += 2; if (len2 <= limit) if (data[len2 - 2] == data2[len2 - 2]) if (data[len2 - 1] == data2[len2 - 1]) { for (; len2 < limit && data[len2] == data2[len2]; len2++) {} len2 -= len; // if (len2 >= 3) { unsigned state2 = kMatchNextStates[state]; unsigned posState2 = (position + len) & p->pbMask; unsigned offset; price += GET_PRICE_0(p->isMatch[state2][posState2]); price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]), data[len], data2[len], p->ProbPrices); // state2 = kLiteralNextStates[state2]; state2 = kState_LitAfterMatch; posState2 = (posState2 + 1) & p->pbMask; price += GetPrice_Rep_0(p, state2, posState2); offset = cur + len + len2; if (last < offset) last = offset; // do { UInt32 price2; COptimal *opt; len2--; // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2); price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2); opt = &p->opt[offset]; // offset--; if (price2 < opt->price) { opt->price = price2; opt->len = (UInt32)len2; opt->extra = (CExtra)(len + 1); opt->dist = dist + LZMA_NUM_REPS; } } // while (len2 >= 3); } } offs += 2; if (offs == numPairs) break; dist = MATCHES[(size_t)offs + 1]; // if (dist >= kNumFullDistances) GetPosSlot2(dist, posSlot) } } } } do p->opt[last].price = kInfinityPrice; while (--last); return Backward(p, cur); } #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) static unsigned GetOptimumFast(CLzmaEnc *p) { UInt32 numAvail, mainDist; unsigned mainLen, numPairs, repIndex, repLen, i; const Byte *data; if (p->additionalOffset == 0) mainLen = ReadMatchDistances(p, &numPairs); else { mainLen = p->longestMatchLen; numPairs = p->numPairs; } numAvail = p->numAvail; p->backRes = MARK_LIT; if (numAvail < 2) return 1; // if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused if (numAvail > LZMA_MATCH_LEN_MAX) numAvail = LZMA_MATCH_LEN_MAX; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; repLen = repIndex = 0; for (i = 0; i < LZMA_NUM_REPS; i++) { unsigned len; const Byte *data2 = data - p->reps[i]; if (data[0] != data2[0] || data[1] != data2[1]) continue; for (len = 2; len < numAvail && data[len] == data2[len]; len++) {} if (len >= p->numFastBytes) { p->backRes = (UInt32)i; MOVE_POS(p, len - 1) return len; } if (len > repLen) { repIndex = i; repLen = len; } } if (mainLen >= p->numFastBytes) { p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS; MOVE_POS(p, mainLen - 1) return mainLen; } mainDist = 0; /* for GCC */ if (mainLen >= 2) { mainDist = p->matches[(size_t)numPairs - 1]; while (numPairs > 2) { UInt32 dist2; if (mainLen != p->matches[(size_t)numPairs - 4] + 1) break; dist2 = p->matches[(size_t)numPairs - 3]; if (!ChangePair(dist2, mainDist)) break; numPairs -= 2; mainLen--; mainDist = dist2; } if (mainLen == 2 && mainDist >= 0x80) mainLen = 1; } if (repLen >= 2) if ( repLen + 1 >= mainLen || (repLen + 2 >= mainLen && mainDist >= (1 << 9)) || (repLen + 3 >= mainLen && mainDist >= (1 << 15))) { p->backRes = (UInt32)repIndex; MOVE_POS(p, repLen - 1) return repLen; } if (mainLen < 2 || numAvail <= 2) return 1; { unsigned len1 = ReadMatchDistances(p, &p->numPairs); p->longestMatchLen = len1; if (len1 >= 2) { UInt32 newDist = p->matches[(size_t)p->numPairs - 1]; if ( (len1 >= mainLen && newDist < mainDist) || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist)) || (len1 > mainLen + 1) || (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist))) return 1; } } data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; for (i = 0; i < LZMA_NUM_REPS; i++) { unsigned len, limit; const Byte *data2 = data - p->reps[i]; if (data[0] != data2[0] || data[1] != data2[1]) continue; limit = mainLen - 1; for (len = 2;; len++) { if (len >= limit) return 1; if (data[len] != data2[len]) break; } } p->backRes = mainDist + LZMA_NUM_REPS; if (mainLen != 2) { MOVE_POS(p, mainLen - 2) } return mainLen; } static void WriteEndMarker(CLzmaEnc *p, unsigned posState) { UInt32 range; range = p->rc.range; { UInt32 ttt, newBound; CLzmaProb *prob = &p->isMatch[p->state][posState]; RC_BIT_PRE(&p->rc, prob) RC_BIT_1(&p->rc, prob) prob = &p->isRep[p->state]; RC_BIT_PRE(&p->rc, prob) RC_BIT_0(&p->rc, prob) } p->state = kMatchNextStates[p->state]; p->rc.range = range; LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState); range = p->rc.range; { // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1); CLzmaProb *probs = p->posSlotEncoder[0]; unsigned m = 1; do { UInt32 ttt, newBound; RC_BIT_PRE(p, probs + m) RC_BIT_1(&p->rc, probs + m) m = (m << 1) + 1; } while (m < (1 << kNumPosSlotBits)); } { // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits); UInt32 range = p->range; unsigned numBits = 30 - kNumAlignBits; do { range >>= 1; p->rc.low += range; RC_NORM(&p->rc) } while (--numBits); } { // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); CLzmaProb *probs = p->posAlignEncoder; unsigned m = 1; do { UInt32 ttt, newBound; RC_BIT_PRE(p, probs + m) RC_BIT_1(&p->rc, probs + m) m = (m << 1) + 1; } while (m < kAlignTableSize); } p->rc.range = range; } static SRes CheckErrors(CLzmaEnc *p) { if (p->result != SZ_OK) return p->result; if (p->rc.res != SZ_OK) p->result = SZ_ERROR_WRITE; #ifndef Z7_ST if ( // p->mf_Failure || (p->mtMode && ( // p->matchFinderMt.failure_LZ_LZ || p->matchFinderMt.failure_LZ_BT)) ) { p->result = MY_HRES_ERROR_INTERNAL_ERROR; // printf("\nCheckErrors p->matchFinderMt.failureLZ\n"); } #endif if (MFB.result != SZ_OK) p->result = SZ_ERROR_READ; if (p->result != SZ_OK) p->finished = True; return p->result; } Z7_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos) { /* ReleaseMFStream(); */ p->finished = True; if (p->writeEndMark) WriteEndMarker(p, nowPos & p->pbMask); RangeEnc_FlushData(&p->rc); RangeEnc_FlushStream(&p->rc); return CheckErrors(p); } Z7_NO_INLINE static void FillAlignPrices(CLzmaEnc *p) { unsigned i; const CProbPrice *ProbPrices = p->ProbPrices; const CLzmaProb *probs = p->posAlignEncoder; // p->alignPriceCount = 0; for (i = 0; i < kAlignTableSize / 2; i++) { UInt32 price = 0; unsigned sym = i; unsigned m = 1; unsigned bit; UInt32 prob; bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit; bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit; bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit; prob = probs[m]; p->alignPrices[i ] = price + GET_PRICEa_0(prob); p->alignPrices[i + 8] = price + GET_PRICEa_1(prob); // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); } } Z7_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p) { // int y; for (y = 0; y < 100; y++) { UInt32 tempPrices[kNumFullDistances]; unsigned i, lps; const CProbPrice *ProbPrices = p->ProbPrices; p->matchPriceCount = 0; for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++) { unsigned posSlot = GetPosSlot1(i); unsigned footerBits = (posSlot >> 1) - 1; unsigned base = ((2 | (posSlot & 1)) << footerBits); const CLzmaProb *probs = p->posEncoders + (size_t)base * 2; // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices); UInt32 price = 0; unsigned m = 1; unsigned sym = i; unsigned offset = (unsigned)1 << footerBits; base += i; if (footerBits) do { unsigned bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit; } while (--footerBits); { unsigned prob = probs[m]; tempPrices[base ] = price + GET_PRICEa_0(prob); tempPrices[base + offset] = price + GET_PRICEa_1(prob); } } for (lps = 0; lps < kNumLenToPosStates; lps++) { unsigned slot; unsigned distTableSize2 = (p->distTableSize + 1) >> 1; UInt32 *posSlotPrices = p->posSlotPrices[lps]; const CLzmaProb *probs = p->posSlotEncoder[lps]; for (slot = 0; slot < distTableSize2; slot++) { // posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices); UInt32 price; unsigned bit; unsigned sym = slot + (1 << (kNumPosSlotBits - 1)); unsigned prob; bit = sym & 1; sym >>= 1; price = GET_PRICEa(probs[sym], bit); bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit); bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit); bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit); bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit); prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))]; posSlotPrices[(size_t)slot * 2 ] = price + GET_PRICEa_0(prob); posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob); } { UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits); for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++) { posSlotPrices[(size_t)slot * 2 ] += delta; posSlotPrices[(size_t)slot * 2 + 1] += delta; delta += ((UInt32)1 << kNumBitPriceShiftBits); } } { UInt32 *dp = p->distancesPrices[lps]; dp[0] = posSlotPrices[0]; dp[1] = posSlotPrices[1]; dp[2] = posSlotPrices[2]; dp[3] = posSlotPrices[3]; for (i = 4; i < kNumFullDistances; i += 2) { UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)]; dp[i ] = slotPrice + tempPrices[i]; dp[i + 1] = slotPrice + tempPrices[i + 1]; } } } // } } static void LzmaEnc_Construct(CLzmaEnc *p) { RangeEnc_Construct(&p->rc); MatchFinder_Construct(&MFB); #ifndef Z7_ST p->matchFinderMt.MatchFinder = &MFB; MatchFinderMt_Construct(&p->matchFinderMt); #endif { CLzmaEncProps props; LzmaEncProps_Init(&props); LzmaEnc_SetProps((CLzmaEncHandle)(void *)p, &props); } #ifndef LZMA_LOG_BSR LzmaEnc_FastPosInit(p->g_FastPos); #endif LzmaEnc_InitPriceTables(p->ProbPrices); p->litProbs = NULL; p->saveState.litProbs = NULL; } CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc) { void *p; p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc)); if (p) LzmaEnc_Construct((CLzmaEnc *)p); return p; } static void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc) { ISzAlloc_Free(alloc, p->litProbs); ISzAlloc_Free(alloc, p->saveState.litProbs); p->litProbs = NULL; p->saveState.litProbs = NULL; } static void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig) { #ifndef Z7_ST MatchFinderMt_Destruct(&p->matchFinderMt, allocBig); #endif MatchFinder_Free(&MFB, allocBig); LzmaEnc_FreeLits(p, alloc); RangeEnc_Free(&p->rc, alloc); } void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig) { // GET_CLzmaEnc_p LzmaEnc_Destruct(p, alloc, allocBig); ISzAlloc_Free(alloc, p); } Z7_NO_INLINE static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize) { UInt32 nowPos32, startPos32; if (p->needInit) { #ifndef Z7_ST if (p->mtMode) { RINOK(MatchFinderMt_InitMt(&p->matchFinderMt)) } #endif p->matchFinder.Init(p->matchFinderObj); p->needInit = 0; } if (p->finished) return p->result; RINOK(CheckErrors(p)) nowPos32 = (UInt32)p->nowPos64; startPos32 = nowPos32; if (p->nowPos64 == 0) { unsigned numPairs; Byte curByte; if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) return Flush(p, nowPos32); ReadMatchDistances(p, &numPairs); RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]); // p->state = kLiteralNextStates[p->state]; curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset); LitEnc_Encode(&p->rc, p->litProbs, curByte); p->additionalOffset--; nowPos32++; } if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0) for (;;) { UInt32 dist; unsigned len, posState; UInt32 range, ttt, newBound; CLzmaProb *probs; if (p->fastMode) len = GetOptimumFast(p); else { unsigned oci = p->optCur; if (p->optEnd == oci) len = GetOptimum(p, nowPos32); else { const COptimal *opt = &p->opt[oci]; len = opt->len; p->backRes = opt->dist; p->optCur = oci + 1; } } posState = (unsigned)nowPos32 & p->pbMask; range = p->rc.range; probs = &p->isMatch[p->state][posState]; RC_BIT_PRE(&p->rc, probs) dist = p->backRes; #ifdef SHOW_STAT2 printf("\n pos = %6X, len = %3u pos = %6u", nowPos32, len, dist); #endif if (dist == MARK_LIT) { Byte curByte; const Byte *data; unsigned state; RC_BIT_0(&p->rc, probs) p->rc.range = range; data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; probs = LIT_PROBS(nowPos32, *(data - 1)); curByte = *data; state = p->state; p->state = kLiteralNextStates[state]; if (IsLitState(state)) LitEnc_Encode(&p->rc, probs, curByte); else LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0])); } else { RC_BIT_1(&p->rc, probs) probs = &p->isRep[p->state]; RC_BIT_PRE(&p->rc, probs) if (dist < LZMA_NUM_REPS) { RC_BIT_1(&p->rc, probs) probs = &p->isRepG0[p->state]; RC_BIT_PRE(&p->rc, probs) if (dist == 0) { RC_BIT_0(&p->rc, probs) probs = &p->isRep0Long[p->state][posState]; RC_BIT_PRE(&p->rc, probs) if (len != 1) { RC_BIT_1_BASE(&p->rc, probs) } else { RC_BIT_0_BASE(&p->rc, probs) p->state = kShortRepNextStates[p->state]; } } else { RC_BIT_1(&p->rc, probs) probs = &p->isRepG1[p->state]; RC_BIT_PRE(&p->rc, probs) if (dist == 1) { RC_BIT_0_BASE(&p->rc, probs) dist = p->reps[1]; } else { RC_BIT_1(&p->rc, probs) probs = &p->isRepG2[p->state]; RC_BIT_PRE(&p->rc, probs) if (dist == 2) { RC_BIT_0_BASE(&p->rc, probs) dist = p->reps[2]; } else { RC_BIT_1_BASE(&p->rc, probs) dist = p->reps[3]; p->reps[3] = p->reps[2]; } p->reps[2] = p->reps[1]; } p->reps[1] = p->reps[0]; p->reps[0] = dist; } RC_NORM(&p->rc) p->rc.range = range; if (len != 1) { LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState); --p->repLenEncCounter; p->state = kRepNextStates[p->state]; } } else { unsigned posSlot; RC_BIT_0(&p->rc, probs) p->rc.range = range; p->state = kMatchNextStates[p->state]; LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState); // --p->lenEnc.counter; dist -= LZMA_NUM_REPS; p->reps[3] = p->reps[2]; p->reps[2] = p->reps[1]; p->reps[1] = p->reps[0]; p->reps[0] = dist + 1; p->matchPriceCount++; GetPosSlot(dist, posSlot) // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot); { UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits); range = p->rc.range; probs = p->posSlotEncoder[GetLenToPosState(len)]; do { CLzmaProb *prob = probs + (sym >> kNumPosSlotBits); UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1; sym <<= 1; RC_BIT(&p->rc, prob, bit) } while (sym < (1 << kNumPosSlotBits * 2)); p->rc.range = range; } if (dist >= kStartPosModelIndex) { unsigned footerBits = ((posSlot >> 1) - 1); if (dist < kNumFullDistances) { unsigned base = ((2 | (posSlot & 1)) << footerBits); RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */)); } else { UInt32 pos2 = (dist | 0xF) << (32 - footerBits); range = p->rc.range; // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); /* do { range >>= 1; p->rc.low += range & (0 - ((dist >> --footerBits) & 1)); RC_NORM(&p->rc) } while (footerBits > kNumAlignBits); */ do { range >>= 1; p->rc.low += range & (0 - (pos2 >> 31)); pos2 += pos2; RC_NORM(&p->rc) } while (pos2 != 0xF0000000); // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); { unsigned m = 1; unsigned bit; bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit) m = (m << 1) + bit; bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit) m = (m << 1) + bit; bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit) m = (m << 1) + bit; bit = dist & 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit) p->rc.range = range; // p->alignPriceCount++; } } } } } nowPos32 += (UInt32)len; p->additionalOffset -= len; if (p->additionalOffset == 0) { UInt32 processed; if (!p->fastMode) { /* if (p->alignPriceCount >= 16) // kAlignTableSize FillAlignPrices(p); if (p->matchPriceCount >= 128) FillDistancesPrices(p); if (p->lenEnc.counter <= 0) LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices); */ if (p->matchPriceCount >= 64) { FillAlignPrices(p); // { int y; for (y = 0; y < 100; y++) { FillDistancesPrices(p); // }} LenPriceEnc_UpdateTables(&p->lenEnc, (unsigned)1 << p->pb, &p->lenProbs, p->ProbPrices); } if (p->repLenEncCounter <= 0) { p->repLenEncCounter = REP_LEN_COUNT; LenPriceEnc_UpdateTables(&p->repLenEnc, (unsigned)1 << p->pb, &p->repLenProbs, p->ProbPrices); } } if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) break; processed = nowPos32 - startPos32; if (maxPackSize) { if (processed + kNumOpts + 300 >= maxUnpackSize || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize) break; } else if (processed >= (1 << 17)) { p->nowPos64 += nowPos32 - startPos32; return CheckErrors(p); } } } p->nowPos64 += nowPos32 - startPos32; return Flush(p, nowPos32); } #define kBigHashDicLimit ((UInt32)1 << 24) static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig) { UInt32 beforeSize = kNumOpts; UInt32 dictSize; if (!RangeEnc_Alloc(&p->rc, alloc)) return SZ_ERROR_MEM; #ifndef Z7_ST p->mtMode = (p->multiThread && !p->fastMode && (MFB.btMode != 0)); #endif { const unsigned lclp = p->lc + p->lp; if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp) { LzmaEnc_FreeLits(p, alloc); p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((size_t)0x300 * sizeof(CLzmaProb)) << lclp); p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((size_t)0x300 * sizeof(CLzmaProb)) << lclp); if (!p->litProbs || !p->saveState.litProbs) { LzmaEnc_FreeLits(p, alloc); return SZ_ERROR_MEM; } p->lclp = lclp; } } MFB.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0); dictSize = p->dictSize; if (dictSize == ((UInt32)2 << 30) || dictSize == ((UInt32)3 << 30)) { /* 21.03 : here we reduce the dictionary for 2 reasons: 1) we don't want 32-bit back_distance matches in decoder for 2 GB dictionary. 2) we want to elimate useless last MatchFinder_Normalize3() for corner cases, where data size is aligned for 1 GB: 5/6/8 GB. That reducing must be >= 1 for such corner cases. */ dictSize -= 1; } if (beforeSize + dictSize < keepWindowSize) beforeSize = keepWindowSize - dictSize; /* in worst case we can look ahead for max(LZMA_MATCH_LEN_MAX, numFastBytes + 1 + numFastBytes) bytes. we send larger value for (keepAfter) to MantchFinder_Create(): (numFastBytes + LZMA_MATCH_LEN_MAX + 1) */ #ifndef Z7_ST if (p->mtMode) { RINOK(MatchFinderMt_Create(&p->matchFinderMt, dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX + 1 /* 18.04 */ , allocBig)) p->matchFinderObj = &p->matchFinderMt; MFB.bigHash = (Byte)(MFB.hashMask >= 0xFFFFFF ? 1 : 0); MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder); } else #endif { if (!MatchFinder_Create(&MFB, dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX + 1 /* 21.03 */ , allocBig)) return SZ_ERROR_MEM; p->matchFinderObj = &MFB; MatchFinder_CreateVTable(&MFB, &p->matchFinder); } return SZ_OK; } static void LzmaEnc_Init(CLzmaEnc *p) { unsigned i; p->state = 0; p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1; RangeEnc_Init(&p->rc); for (i = 0; i < (1 << kNumAlignBits); i++) p->posAlignEncoder[i] = kProbInitValue; for (i = 0; i < kNumStates; i++) { unsigned j; for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) { p->isMatch[i][j] = kProbInitValue; p->isRep0Long[i][j] = kProbInitValue; } p->isRep[i] = kProbInitValue; p->isRepG0[i] = kProbInitValue; p->isRepG1[i] = kProbInitValue; p->isRepG2[i] = kProbInitValue; } { for (i = 0; i < kNumLenToPosStates; i++) { CLzmaProb *probs = p->posSlotEncoder[i]; unsigned j; for (j = 0; j < (1 << kNumPosSlotBits); j++) probs[j] = kProbInitValue; } } { for (i = 0; i < kNumFullDistances; i++) p->posEncoders[i] = kProbInitValue; } { const size_t num = (size_t)0x300 << (p->lp + p->lc); size_t k; CLzmaProb *probs = p->litProbs; for (k = 0; k < num; k++) probs[k] = kProbInitValue; } LenEnc_Init(&p->lenProbs); LenEnc_Init(&p->repLenProbs); p->optEnd = 0; p->optCur = 0; { for (i = 0; i < kNumOpts; i++) p->opt[i].price = kInfinityPrice; } p->additionalOffset = 0; p->pbMask = ((unsigned)1 << p->pb) - 1; p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc); // p->mf_Failure = False; } static void LzmaEnc_InitPrices(CLzmaEnc *p) { if (!p->fastMode) { FillDistancesPrices(p); FillAlignPrices(p); } p->lenEnc.tableSize = p->repLenEnc.tableSize = p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; p->repLenEncCounter = REP_LEN_COUNT; LenPriceEnc_UpdateTables(&p->lenEnc, (unsigned)1 << p->pb, &p->lenProbs, p->ProbPrices); LenPriceEnc_UpdateTables(&p->repLenEnc, (unsigned)1 << p->pb, &p->repLenProbs, p->ProbPrices); } static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig) { unsigned i; for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++) if (p->dictSize <= ((UInt32)1 << i)) break; p->distTableSize = i * 2; p->finished = False; p->result = SZ_OK; p->nowPos64 = 0; p->needInit = 1; RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig)) LzmaEnc_Init(p); LzmaEnc_InitPrices(p); return SZ_OK; } static SRes LzmaEnc_Prepare(CLzmaEncHandle p, ISeqOutStreamPtr outStream, ISeqInStreamPtr inStream, ISzAllocPtr alloc, ISzAllocPtr allocBig) { // GET_CLzmaEnc_p MatchFinder_SET_STREAM(&MFB, inStream) p->rc.outStream = outStream; return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig); } SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle p, ISeqInStreamPtr inStream, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig) { // GET_CLzmaEnc_p MatchFinder_SET_STREAM(&MFB, inStream) return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); } SRes LzmaEnc_MemPrepare(CLzmaEncHandle p, const Byte *src, SizeT srcLen, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig) { // GET_CLzmaEnc_p MatchFinder_SET_DIRECT_INPUT_BUF(&MFB, src, srcLen) LzmaEnc_SetDataSize(p, srcLen); return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); } void LzmaEnc_Finish(CLzmaEncHandle p) { #ifndef Z7_ST // GET_CLzmaEnc_p if (p->mtMode) MatchFinderMt_ReleaseStream(&p->matchFinderMt); #else UNUSED_VAR(p) #endif } typedef struct { ISeqOutStream vt; Byte *data; size_t rem; BoolInt overflow; } CLzmaEnc_SeqOutStreamBuf; static size_t SeqOutStreamBuf_Write(ISeqOutStreamPtr pp, const void *data, size_t size) { Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CLzmaEnc_SeqOutStreamBuf) if (p->rem < size) { size = p->rem; p->overflow = True; } if (size != 0) { memcpy(p->data, data, size); p->rem -= size; p->data += size; } return size; } /* UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle p) { GET_const_CLzmaEnc_p return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); } */ const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle p) { // GET_const_CLzmaEnc_p return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; } // (desiredPackSize == 0) is not allowed SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle p, BoolInt reInit, Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize) { // GET_CLzmaEnc_p UInt64 nowPos64; SRes res; CLzmaEnc_SeqOutStreamBuf outStream; outStream.vt.Write = SeqOutStreamBuf_Write; outStream.data = dest; outStream.rem = *destLen; outStream.overflow = False; p->writeEndMark = False; p->finished = False; p->result = SZ_OK; if (reInit) LzmaEnc_Init(p); LzmaEnc_InitPrices(p); RangeEnc_Init(&p->rc); p->rc.outStream = &outStream.vt; nowPos64 = p->nowPos64; res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize); *unpackSize = (UInt32)(p->nowPos64 - nowPos64); *destLen -= outStream.rem; if (outStream.overflow) return SZ_ERROR_OUTPUT_EOF; return res; } Z7_NO_INLINE static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgressPtr progress) { SRes res = SZ_OK; #ifndef Z7_ST Byte allocaDummy[0x300]; allocaDummy[0] = 0; allocaDummy[1] = allocaDummy[0]; #endif for (;;) { res = LzmaEnc_CodeOneBlock(p, 0, 0); if (res != SZ_OK || p->finished) break; if (progress) { res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc)); if (res != SZ_OK) { res = SZ_ERROR_PROGRESS; break; } } } LzmaEnc_Finish((CLzmaEncHandle)(void *)p); /* if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&MFB)) res = SZ_ERROR_FAIL; } */ return res; } SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStreamPtr outStream, ISeqInStreamPtr inStream, ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig) { // GET_CLzmaEnc_p RINOK(LzmaEnc_Prepare(p, outStream, inStream, alloc, allocBig)) return LzmaEnc_Encode2(p, progress); } SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *props, SizeT *size) { if (*size < LZMA_PROPS_SIZE) return SZ_ERROR_PARAM; *size = LZMA_PROPS_SIZE; { // GET_CLzmaEnc_p const UInt32 dictSize = p->dictSize; UInt32 v; props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc); // we write aligned dictionary value to properties for lzma decoder if (dictSize >= ((UInt32)1 << 21)) { const UInt32 kDictMask = ((UInt32)1 << 20) - 1; v = (dictSize + kDictMask) & ~kDictMask; if (v < dictSize) v = dictSize; } else { unsigned i = 11 * 2; do { v = (UInt32)(2 + (i & 1)) << (i >> 1); i++; } while (v < dictSize); } SetUi32(props + 1, v) return SZ_OK; } } unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle p) { // GET_CLzmaEnc_p return (unsigned)p->writeEndMark; } SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, int writeEndMark, ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig) { SRes res; // GET_CLzmaEnc_p CLzmaEnc_SeqOutStreamBuf outStream; outStream.vt.Write = SeqOutStreamBuf_Write; outStream.data = dest; outStream.rem = *destLen; outStream.overflow = False; p->writeEndMark = writeEndMark; p->rc.outStream = &outStream.vt; res = LzmaEnc_MemPrepare(p, src, srcLen, 0, alloc, allocBig); if (res == SZ_OK) { res = LzmaEnc_Encode2(p, progress); if (res == SZ_OK && p->nowPos64 != srcLen) res = SZ_ERROR_FAIL; } *destLen -= (SizeT)outStream.rem; if (outStream.overflow) return SZ_ERROR_OUTPUT_EOF; return res; } SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig) { CLzmaEncHandle p = LzmaEnc_Create(alloc); SRes res; if (!p) return SZ_ERROR_MEM; res = LzmaEnc_SetProps(p, props); if (res == SZ_OK) { res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize); if (res == SZ_OK) res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, writeEndMark, progress, alloc, allocBig); } LzmaEnc_Destroy(p, alloc, allocBig); return res; } /* #ifndef Z7_ST void LzmaEnc_GetLzThreads(CLzmaEncHandle p, HANDLE lz_threads[2]) { GET_const_CLzmaEnc_p lz_threads[0] = p->matchFinderMt.hashSync.thread; lz_threads[1] = p->matchFinderMt.btSync.thread; } #endif */