/* --------------------------------------------------------------------------- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software is allowed (with or without changes) provided that: 1. source code distributions include the above copyright notice, this list of conditions and the following disclaimer; 2. binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their documentation; 3. the name of the copyright holder is not used to endorse products built using this software without specific written permission. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 20/12/2007 This file contains the compilation options for AES (Rijndael) and code that is common across encryption, key scheduling and table generation. OPERATION These source code files implement the AES algorithm Rijndael designed by Joan Daemen and Vincent Rijmen. This version is designed for the standard block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24 and 32 bytes). This version is designed for flexibility and speed using operations on 32-bit words rather than operations on bytes. It can be compiled with either big or little endian internal byte order but is faster when the native byte order for the processor is used. THE CIPHER INTERFACE The cipher interface is implemented as an array of bytes in which lower AES bit sequence indexes map to higher numeric significance within bytes. uint_8t (an unsigned 8-bit type) uint_32t (an unsigned 32-bit type) struct aes_encrypt_ctx (structure for the cipher encryption context) struct aes_decrypt_ctx (structure for the cipher decryption context) AES_RETURN the function return type C subroutine calls: AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]); AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]); AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]); AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]); AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]); AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]); AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]); AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]); IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that you call aes_init() before AES is used so that the tables are initialised. C++ aes class subroutines: Class AESencrypt for encryption Construtors: AESencrypt(void) AESencrypt(const unsigned char *key) - 128 bit key Members: AES_RETURN key128(const unsigned char *key) AES_RETURN key192(const unsigned char *key) AES_RETURN key256(const unsigned char *key) AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const Class AESdecrypt for encryption Construtors: AESdecrypt(void) AESdecrypt(const unsigned char *key) - 128 bit key Members: AES_RETURN key128(const unsigned char *key) AES_RETURN key192(const unsigned char *key) AES_RETURN key256(const unsigned char *key) AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const */ /* Adapted for TrueCrypt */ #if !defined( _AESOPT_H ) #define _AESOPT_H #ifdef TC_WINDOWS_BOOT #define ASM_X86_V2 #endif #if defined( __cplusplus ) #include "Aescpp.h" #else #include "Aes.h" #endif #include "Common/Endian.h" #define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */ #define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */ #if BYTE_ORDER == LITTLE_ENDIAN # define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN #endif #if BYTE_ORDER == BIG_ENDIAN # define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN #endif /* CONFIGURATION - THE USE OF DEFINES Later in this section there are a number of defines that control the operation of the code. In each section, the purpose of each define is explained so that the relevant form can be included or excluded by setting either 1's or 0's respectively on the branches of the related #if clauses. The following local defines should not be changed. */ #define ENCRYPTION_IN_C 1 #define DECRYPTION_IN_C 2 #define ENC_KEYING_IN_C 4 #define DEC_KEYING_IN_C 8 #define NO_TABLES 0 #define ONE_TABLE 1 #define FOUR_TABLES 4 #define NONE 0 #define PARTIAL 1 #define FULL 2 /* --- START OF USER CONFIGURED OPTIONS --- */ /* 1. BYTE ORDER WITHIN 32 BIT WORDS The fundamental data processing units in Rijndael are 8-bit bytes. The input, output and key input are all enumerated arrays of bytes in which bytes are numbered starting at zero and increasing to one less than the number of bytes in the array in question. This enumeration is only used for naming bytes and does not imply any adjacency or order relationship from one byte to another. When these inputs and outputs are considered as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte. In this implementation bits are numbered from 0 to 7 starting at the numerically least significant end of each byte (bit n represents 2^n). However, Rijndael can be implemented more efficiently using 32-bit words by packing bytes into words so that bytes 4*n to 4*n+3 are placed into word[n]. While in principle these bytes can be assembled into words in any positions, this implementation only supports the two formats in which bytes in adjacent positions within words also have adjacent byte numbers. This order is called big-endian if the lowest numbered bytes in words have the highest numeric significance and little-endian if the opposite applies. This code can work in either order irrespective of the order used by the machine on which it runs. Normally the internal byte order will be set to the order of the processor on which the code is to be run but this define can be used to reverse this in special situations WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set. This define will hence be redefined later (in section 4) if necessary */ #if 1 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER #elif 0 #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN #elif 0 #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN #else #error The algorithm byte order is not defined #endif /* 2. VIA ACE SUPPORT Define this option if support for the VIA ACE is required. This uses inline assembler instructions and is only implemented for the Microsoft, Intel and GCC compilers. If VIA ACE is known to be present, then defining ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if it is detected (both present and enabled) but the normal AES code will also be present. When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte aligned; other input/output buffers do not need to be 16 byte aligned but there are very large performance gains if this can be arranged. VIA ACE also requires the decryption key schedule to be in reverse order (which later checks below ensure). */ #if 0 && !defined( USE_VIA_ACE_IF_PRESENT ) # define USE_VIA_ACE_IF_PRESENT #endif #if 0 && !defined( ASSUME_VIA_ACE_PRESENT ) # define ASSUME_VIA_ACE_PRESENT # endif #if defined ( _WIN64 ) || defined( _WIN32_WCE ) || \ defined( _MSC_VER ) && ( _MSC_VER <= 800 ) # if defined( USE_VIA_ACE_IF_PRESENT ) # undef USE_VIA_ACE_IF_PRESENT # endif # if defined( ASSUME_VIA_ACE_PRESENT ) # undef ASSUME_VIA_ACE_PRESENT # endif #endif /* 3. ASSEMBLER SUPPORT This define (which can be on the command line) enables the use of the assembler code routines for encryption, decryption and key scheduling as follows: ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for encryption and decryption and but with key scheduling in C ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for encryption, decryption and key scheduling ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for encryption and decryption and but with key scheduling in C ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for encryption and decryption and but with key scheduling in C Change one 'if 0' below to 'if 1' to select the version or define as a compilation option. */ #if 0 && !defined( ASM_X86_V1C ) # define ASM_X86_V1C #elif 0 && !defined( ASM_X86_V2 ) # define ASM_X86_V2 #elif 0 && !defined( ASM_X86_V2C ) # define ASM_X86_V2C #elif 0 && !defined( ASM_AMD64_C ) # define ASM_AMD64_C #endif #if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \ && !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 ) //# error Assembler code is only available for x86 and AMD64 systems #endif /* 4. FAST INPUT/OUTPUT OPERATIONS. On some machines it is possible to improve speed by transferring the bytes in the input and output arrays to and from the internal 32-bit variables by addressing these arrays as if they are arrays of 32-bit words. On some machines this will always be possible but there may be a large performance penalty if the byte arrays are not aligned on the normal word boundaries. On other machines this technique will lead to memory access errors when such 32-bit word accesses are not properly aligned. The option SAFE_IO avoids such problems but will often be slower on those machines that support misaligned access (especially so if care is taken to align the input and output byte arrays on 32-bit word boundaries). If SAFE_IO is not defined it is assumed that access to byte arrays as if they are arrays of 32-bit words will not cause problems when such accesses are misaligned. */ #if 1 && !defined( _MSC_VER ) #define SAFE_IO #endif /* 5. LOOP UNROLLING The code for encryption and decrytpion cycles through a number of rounds that can be implemented either in a loop or by expanding the code into a long sequence of instructions, the latter producing a larger program but one that will often be much faster. The latter is called loop unrolling. There are also potential speed advantages in expanding two iterations in a loop with half the number of iterations, which is called partial loop unrolling. The following options allow partial or full loop unrolling to be set independently for encryption and decryption */ #if 1 #define ENC_UNROLL FULL #elif 0 #define ENC_UNROLL PARTIAL #else #define ENC_UNROLL NONE #endif #if 1 #define DEC_UNROLL FULL #elif 0 #define DEC_UNROLL PARTIAL #else #define DEC_UNROLL NONE #endif /* 6. FAST FINITE FIELD OPERATIONS If this section is included, tables are used to provide faster finite field arithmetic (this has no effect if FIXED_TABLES is defined). */ #if !defined (TC_WINDOWS_BOOT) #define FF_TABLES #endif /* 7. INTERNAL STATE VARIABLE FORMAT The internal state of Rijndael is stored in a number of local 32-bit word varaibles which can be defined either as an array or as individual names variables. Include this section if you want to store these local varaibles in arrays. Otherwise individual local variables will be used. */ #if 1 #define ARRAYS #endif /* 8. FIXED OR DYNAMIC TABLES When this section is included the tables used by the code are compiled statically into the binary file. Otherwise the subroutine aes_init() must be called to compute them before the code is first used. */ #if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 )) #define FIXED_TABLES #endif /* 9. TABLE ALIGNMENT On some sytsems speed will be improved by aligning the AES large lookup tables on particular boundaries. This define should be set to a power of two giving the desired alignment. It can be left undefined if alignment is not needed. This option is specific to the Microsft VC++ compiler - it seems to sometimes cause trouble for the VC++ version 6 compiler. */ #if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 ) #define TABLE_ALIGN 32 #endif /* 10. TABLE OPTIONS This cipher proceeds by repeating in a number of cycles known as 'rounds' which are implemented by a round function which can optionally be speeded up using tables. The basic tables are each 256 32-bit words, with either one or four tables being required for each round function depending on how much speed is required. The encryption and decryption round functions are different and the last encryption and decrytpion round functions are different again making four different round functions in all. This means that: 1. Normal encryption and decryption rounds can each use either 0, 1 or 4 tables and table spaces of 0, 1024 or 4096 bytes each. 2. The last encryption and decryption rounds can also use either 0, 1 or 4 tables and table spaces of 0, 1024 or 4096 bytes each. Include or exclude the appropriate definitions below to set the number of tables used by this implementation. */ #if 1 /* set tables for the normal encryption round */ #define ENC_ROUND FOUR_TABLES #elif 0 #define ENC_ROUND ONE_TABLE #else #define ENC_ROUND NO_TABLES #endif #if 1 /* set tables for the last encryption round */ #define LAST_ENC_ROUND FOUR_TABLES #elif 0 #define LAST_ENC_ROUND ONE_TABLE #else #define LAST_ENC_ROUND NO_TABLES #endif #if 1 /* set tables for the normal decryption round */ #define DEC_ROUND FOUR_TABLES #elif 0 #define DEC_ROUND ONE_TABLE #else #define DEC_ROUND NO_TABLES #endif #if 1 /* set tables for the last decryption round */ #define LAST_DEC_ROUND FOUR_TABLES #elif 0 #define LAST_DEC_ROUND ONE_TABLE #else #define LAST_DEC_ROUND NO_TABLES #endif /* The decryption key schedule can be speeded up with tables in the same way that the round functions can. Include or exclude the following defines to set this requirement. */ #if 1 #define KEY_SCHED FOUR_TABLES #elif 0 #define KEY_SCHED ONE_TABLE #else #define KEY_SCHED NO_TABLES #endif /* ---- END OF USER CONFIGURED OPTIONS ---- */ /* VIA ACE support is only available for VC++ and GCC */ #if !defined( _MSC_VER ) && !defined( __GNUC__ ) # if defined( ASSUME_VIA_ACE_PRESENT ) # undef ASSUME_VIA_ACE_PRESENT # endif # if defined( USE_VIA_ACE_IF_PRESENT ) # undef USE_VIA_ACE_IF_PRESENT # endif #endif #if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT ) #define USE_VIA_ACE_IF_PRESENT #endif #if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS ) #define AES_REV_DKS #endif /* Assembler support requires the use of platform byte order */ #if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \ && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) #undef ALGORITHM_BYTE_ORDER #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER #endif /* In this implementation the columns of the state array are each held in 32-bit words. The state array can be held in various ways: in an array of words, in a number of individual word variables or in a number of processor registers. The following define maps a variable name x and a column number c to the way the state array variable is to be held. The first define below maps the state into an array x[c] whereas the second form maps the state into a number of individual variables x0, x1, etc. Another form could map individual state colums to machine register names. */ #if defined( ARRAYS ) #define s(x,c) x[c] #else #define s(x,c) x##c #endif /* This implementation provides subroutines for encryption, decryption and for setting the three key lengths (separately) for encryption and decryption. Since not all functions are needed, masks are set up here to determine which will be implemented in C */ #if !defined( AES_ENCRYPT ) # define EFUNCS_IN_C 0 #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) # define EFUNCS_IN_C ENC_KEYING_IN_C #elif !defined( ASM_X86_V2 ) # define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C ) #else # define EFUNCS_IN_C 0 #endif #if !defined( AES_DECRYPT ) # define DFUNCS_IN_C 0 #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) # define DFUNCS_IN_C DEC_KEYING_IN_C #elif !defined( ASM_X86_V2 ) # define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C ) #else # define DFUNCS_IN_C 0 #endif #define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C ) /* END OF CONFIGURATION OPTIONS */ #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) /* Disable or report errors on some combinations of options */ #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES #undef LAST_ENC_ROUND #define LAST_ENC_ROUND NO_TABLES #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES #undef LAST_ENC_ROUND #define LAST_ENC_ROUND ONE_TABLE #endif #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE #undef ENC_UNROLL #define ENC_UNROLL NONE #endif #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES #undef LAST_DEC_ROUND #define LAST_DEC_ROUND NO_TABLES #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES #undef LAST_DEC_ROUND #define LAST_DEC_ROUND ONE_TABLE #endif #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE #undef DEC_UNROLL #define DEC_UNROLL NONE #endif #if defined( bswap32 ) #define aes_sw32 bswap32 #elif defined( bswap_32 ) #define aes_sw32 bswap_32 #else #define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n))) #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00)) #endif /* upr(x,n): rotates bytes within words by n positions, moving bytes to higher index positions with wrap around into low positions ups(x,n): moves bytes by n positions to higher index positions in words but without wrap around bval(x,n): extracts a byte from a word WARNING: The definitions given here are intended only for use with unsigned variables and with shift counts that are compile time constants */ #if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN ) #define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n)))) #define ups(x,n) ((uint_32t) (x) << (8 * (n))) #define bval(x,n) ((uint_8t)((x) >> (8 * (n)))) #define bytes2word(b0, b1, b2, b3) \ (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0)) #endif #if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN ) #define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n)))) #define ups(x,n) ((uint_32t) (x) >> (8 * (n))) #define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n)))) #define bytes2word(b0, b1, b2, b3) \ (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3)) #endif #if defined( SAFE_IO ) #define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \ ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3]) #define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \ ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); } #elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER ) #define word_in(x,c) (*((uint_32t*)(x)+(c))) #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v)) #else #define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c))) #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v)) #endif /* the finite field modular polynomial and elements */ #define WPOLY 0x011b #define BPOLY 0x1b /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ #define m1 0x80808080 #define m2 0x7f7f7f7f #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) /* The following defines provide alternative definitions of gf_mulx that might give improved performance if a fast 32-bit multiply is not available. Note that a temporary variable u needs to be defined where gf_mulx is used. #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) #define m4 (0x01010101 * BPOLY) #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) */ /* Work out which tables are needed for the different options */ #if defined( ASM_X86_V1C ) #if defined( ENC_ROUND ) #undef ENC_ROUND #endif #define ENC_ROUND FOUR_TABLES #if defined( LAST_ENC_ROUND ) #undef LAST_ENC_ROUND #endif #define LAST_ENC_ROUND FOUR_TABLES #if defined( DEC_ROUND ) #undef DEC_ROUND #endif #define DEC_ROUND FOUR_TABLES #if defined( LAST_DEC_ROUND ) #undef LAST_DEC_ROUND #endif #define LAST_DEC_ROUND FOUR_TABLES #if defined( KEY_SCHED ) #undef KEY_SCHED #define KEY_SCHED FOUR_TABLES #endif #endif #if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C ) #if ENC_ROUND == ONE_TABLE #define FT1_SET #elif ENC_ROUND == FOUR_TABLES #define FT4_SET #else #define SBX_SET #endif #if LAST_ENC_ROUND == ONE_TABLE #define FL1_SET #elif LAST_ENC_ROUND == FOUR_TABLES #define FL4_SET #elif !defined( SBX_SET ) #define SBX_SET #endif #endif #if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C ) #if DEC_ROUND == ONE_TABLE #define IT1_SET #elif DEC_ROUND == FOUR_TABLES #define IT4_SET #else #define ISB_SET #endif #if LAST_DEC_ROUND == ONE_TABLE #define IL1_SET #elif LAST_DEC_ROUND == FOUR_TABLES #define IL4_SET #elif !defined(ISB_SET) #define ISB_SET #endif #endif #if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C) #if KEY_SCHED == ONE_TABLE #define LS1_SET #elif KEY_SCHED == FOUR_TABLES #define LS4_SET #elif !defined( SBX_SET ) #define SBX_SET #endif #endif #if (FUNCS_IN_C & DEC_KEYING_IN_C) #if KEY_SCHED == ONE_TABLE #define IM1_SET #elif KEY_SCHED == FOUR_TABLES #define IM4_SET #elif !defined( SBX_SET ) #define SBX_SET #endif #endif /* generic definitions of Rijndael macros that use tables */ #define no_table(x,box,vf,rf,c) bytes2word( \ box[bval(vf(x,0,c),rf(0,c))], \ box[bval(vf(x,1,c),rf(1,c))], \ box[bval(vf(x,2,c),rf(2,c))], \ box[bval(vf(x,3,c),rf(3,c))]) #define one_table(x,op,tab,vf,rf,c) \ ( tab[bval(vf(x,0,c),rf(0,c))] \ ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) #define four_tables(x,tab,vf,rf,c) \ ( tab[0][bval(vf(x,0,c),rf(0,c))] \ ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ ^ tab[3][bval(vf(x,3,c),rf(3,c))]) #define vf1(x,r,c) (x) #define rf1(r,c) (r) #define rf2(r,c) ((8+r-c)&3) /* perform forward and inverse column mix operation on four bytes in long word x in */ /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ #if defined( FM4_SET ) /* not currently used */ #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) #elif defined( FM1_SET ) /* not currently used */ #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) #else #define dec_fmvars uint_32t g2 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) #endif #if defined( IM4_SET ) #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) #elif defined( IM1_SET ) #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) #else #define dec_imvars uint_32t g2, g4, g9 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) #endif #if defined( FL4_SET ) #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) #elif defined( LS4_SET ) #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) #elif defined( FL1_SET ) #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) #elif defined( LS1_SET ) #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) #else #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) #endif #if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET ) #define ISB_SET #endif #endif 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460