/* --------------------------------------------------------------------------- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software is allowed (with or without changes) provided that: 1. source code distributions include the above copyright notice, this list of conditions and the following disclaimer; 2. binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their documentation; 3. the name of the copyright holder is not used to endorse products built using this software without specific written permission. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 20/12/2007 */ /* Adapted for TrueCrypt: - Added run-time table generator for Aes_x86_v2.asm */ #define DO_TABLES #include "Aes.h" #include "Aesopt.h" #if defined(FIXED_TABLES) #define sb_data(w) {\ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) } #define isb_data(w) {\ w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) } #define mm_data(w) {\ w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) } #define rc_data(w) {\ w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\ w(0x1b), w(0x36) } #define h0(x) (x) #define w0(p) bytes2word(p, 0, 0, 0) #define w1(p) bytes2word(0, p, 0, 0) #define w2(p) bytes2word(0, 0, p, 0) #define w3(p) bytes2word(0, 0, 0, p) #define u0(p) bytes2word(f2(p), p, p, f3(p)) #define u1(p) bytes2word(f3(p), f2(p), p, p) #define u2(p) bytes2word(p, f3(p), f2(p), p) #define u3(p) bytes2word(p, p, f3(p), f2(p)) #define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p)) #define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p)) #define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p)) #define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p)) #endif #if defined(FIXED_TABLES) || !defined(FF_TABLES) #define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY)) #define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY)) #define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \ ^ (((x>>5) & 4) * WPOLY)) #define f3(x) (f2(x) ^ x) #define f9(x) (f8(x) ^ x) #define fb(x) (f8(x) ^ f2(x) ^ x) #define fd(x) (f8(x) ^ f4(x) ^ x) #define fe(x) (f8(x) ^ f4(x) ^ f2(x)) #else #define f2(x) ((x) ? pow[log[x] + 0x19] : 0) #define f3(x) ((x) ? pow[log[x] + 0x01] : 0) #define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) #define fb(x) ((x) ? pow[log[x] + 0x68] : 0) #define fd(x) ((x) ? pow[log[x] + 0xee] : 0) #define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) #define fi(x) ((x) ? pow[ 255 - log[x]] : 0) #endif #include "Aestab.h" #if defined(__cplusplus) extern "C" { #endif #if defined(FIXED_TABLES) /* implemented in case of wrong call for fixed tables */ AES_RETURN aes_init(void) { return EXIT_SUCCESS; } #else /* dynamic table generation */ #if !defined(FF_TABLES) /* Generate the tables for the dynamic table option It will generally be sensible to use tables to compute finite field multiplies and inverses but where memory is scarse this code might sometimes be better. But it only has effect during initialisation so its pretty unimportant in overall terms. */ /* return 2 ^ (n - 1) where n is the bit number of the highest bit set in x with x in the range 1 < x < 0x00000200. This form is used so that locals within fi can be bytes rather than words */ static uint_8t hibit(const uint_32t x) { uint_8t r = (uint_8t)((x >> 1) | (x >> 2)); r |= (r >> 2); r |= (r >> 4); return (r + 1) >> 1; } /* return the inverse of the finite field element x */ static uint_8t fi(const uint_8t x) { uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; if(x < 2) return x; for(;;) { if(!n1) return v1; while(n2 >= n1) { n2 /= n1; p2 ^= p1 * n2; v2 ^= v1 * n2; n2 = hibit(p2); } if(!n2) return v2; while(n1 >= n2) { n1 /= n2; p1 ^= p2 * n1; v1 ^= v2 * n1; n1 = hibit(p1); } } } #endif /* The forward and inverse affine transformations used in the S-box */ #define fwd_affine(x) \ (w = (uint_32t)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(uint_8t)(w^(w>>8))) #define inv_affine(x) \ (w = (uint_32t)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(uint_8t)(w^(w>>8))) static int init = 0; #ifdef TC_WINDOWS_BOOT #pragma optimize ("l", on) uint_8t aes_enc_tab[256][8]; uint_8t aes_dec_tab[256][8]; #endif AES_RETURN aes_init(void) { uint_32t i, w; #ifdef TC_WINDOWS_BOOT if (init) return EXIT_SUCCESS; for (i = 0; i < 256; ++i) { uint_8t x = fwd_affine(fi((uint_8t)i)); aes_enc_tab[i][0] = 0; aes_enc_tab[i][1] = x; aes_enc_tab[i][2] = x; aes_enc_tab[i][3] = f3(x); aes_enc_tab[i][4] = f2(x); aes_enc_tab[i][5] = x; aes_enc_tab[i][6] = x; aes_enc_tab[i][7] = f3(x); x = fi((uint_8t)inv_affine((uint_8t)i)); aes_dec_tab[i][0] = fe(x); aes_dec_tab[i][1] = f9(x); aes_dec_tab[i][2] = fd(x); aes_dec_tab[i][3] = fb(x); aes_dec_tab[i][4] = fe(x); aes_dec_tab[i][5] = f9(x); aes_dec_tab[i][6] = fd(x); aes_dec_tab[i][7] = x; } #else // TC_WINDOWS_BOOT #if defined(FF_TABLES) uint_8t pow[512], log[256]; if(init) return EXIT_SUCCESS; /* log and power tables for GF(2^8) finite field with WPOLY as modular polynomial - the simplest primitive root is 0x03, used here to generate the tables */ i = 0; w = 1; do { pow[i] = (uint_8t)w; pow[i + 255] = (uint_8t)w; log[w] = (uint_8t)i++; w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); } while (w != 1); #else if(init) return EXIT_SUCCESS; #endif for(i = 0, w = 1; i < RC_LENGTH; ++i) { t_set(r,c)[i] = bytes2word(w, 0, 0, 0); w = f2(w); } for(i = 0; i < 256; ++i) { uint_8t b; b = fwd_affine(fi((uint_8t)i)); w = bytes2word(f2(b), b, b, f3(b)); #if defined( SBX_SET ) t_set(s,box)[i] = b; #endif #if defined( FT1_SET ) /* tables for a normal encryption round */ t_set(f,n)[i] = w; #endif #if defined( FT4_SET ) t_set(f,n)[0][i] = w; t_set(f,n)[1][i] = upr(w,1); t_set(f,n)[2][i] = upr(w,2); t_set(f,n)[3][i] = upr(w,3); #endif w = bytes2word(b, 0, 0, 0); #if defined( FL1_SET ) /* tables for last encryption round (may also */ t_set(f,l)[i] = w; /* be used in the key schedule) */ #endif #if defined( FL4_SET ) t_set(f,l)[0][i] = w; t_set(f,l)[1][i] = upr(w,1); t_set(f,l)[2][i] = upr(w,2); t_set(f,l)[3][i] = upr(w,3); #endif #if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/ t_set(l,s)[i] = w; /* not of the required form */ #endif #if defined( LS4_SET ) t_set(l,s)[0][i] = w; t_set(l,s)[1][i] = upr(w,1); t_set(l,s)[2][i] = upr(w,2); t_set(l,s)[3][i] = upr(w,3); #endif b = fi(inv_affine((uint_8t)i)); w = bytes2word(fe(b), f9(b), fd(b), fb(b)); #if defined( IM1_SET ) /* tables for the inverse mix column operation */ t_set(i,m)[b] = w; #endif #if defined( IM4_SET ) t_set(i,m)[0][b] = w; t_set(i,m)[1][b] = upr(w,1); t_set(i,m)[2][b] = upr(w,2); t_set(i,m)[3][b] = upr(w,3); #endif #if defined( ISB_SET ) t_set(i,box)[i] = b; #endif #if defined( IT1_SET ) /* tables for a normal decryption round */ t_set(i,n)[i] = w; #endif #if defined( IT4_SET ) t_set(i,n)[0][i] = w; t_set(i,n)[1][i] = upr(w,1); t_set(i,n)[2][i] = upr(w,2); t_set(i,n)[3][i] = upr(w,3); #endif w = bytes2word(b, 0, 0, 0); #if defined( IL1_SET ) /* tables for last decryption round */ t_set(i,l)[i] = w; #endif #if defined( IL4_SET ) t_set(i,l)[0][i] = w; t_set(i,l)[1][i] = upr(w,1); t_set(i,l)[2][i] = upr(w,2); t_set(i,l)[3][i] = upr(w,3); #endif } #endif // TC_WINDOWS_BOOT init = 1; return EXIT_SUCCESS; } #endif #if defined(__cplusplus) } #endif ='#n389'>389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953