/* * Support for SHA-256 x86 instrinsic * Based on public domain code by Sean Gulley * (https://github.com/mitls/hacl-star/tree/master/experimental/hash) * * Botan is released under the Simplified BSD License (see license.txt) */ /* November 10th 2024: Modified for VeraCrypt */ #include "Sha2.h" #include "Common/Endian.h" #include "cpu.h" #include "misc.h" #if defined(_UEFI) || defined(CRYPTOPP_DISABLE_ASM) #define NO_OPTIMIZED_VERSIONS #endif #ifndef NO_OPTIMIZED_VERSIONS #if CRYPTOPP_SHANI_AVAILABLE // void sha256_intel(void *mp, uint_32t state[8], uint_64t num_blks) { // Constants table - align for better performance CRYPTOPP_ALIGN_DATA(64) static const uint_32t K[64] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; const __m128i* K_mm = (const __m128i*)K; const __m128i* input_mm = (const __m128i*)mp; // Create byte shuffle mask for big-endian to little-endian conversion const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0b, 0x0405060700010203); // Load initial values __m128i STATE0 = _mm_loadu_si128((__m128i*)&state[0]); __m128i STATE1 = _mm_loadu_si128((__m128i*)&state[4]); // Adjust byte ordering STATE0 = _mm_shuffle_epi32(STATE0, 0xB1); // CDAB STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH __m128i TMP = _mm_alignr_epi8(STATE0, STATE1, 8); // ABEF STATE1 = _mm_blend_epi16(STATE1, STATE0, 0xF0); // CDGH STATE0 = TMP; while(num_blks > 0) { // Save current state const __m128i ABEF_SAVE = STATE0; const __m128i CDGH_SAVE = STATE1; __m128i MSG; __m128i TMSG0 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm), MASK); __m128i TMSG1 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 1), MASK); __m128i TMSG2 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 2), MASK); __m128i TMSG3 = _mm_shuffle_epi8(_mm_loadu_si128(input_mm + 3), MASK); // Rounds 0-3 MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); // Rounds 4-7 MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 1)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1); // Rounds 8-11 MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 2)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2); // Rounds 12-15 MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 3)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4)); TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3); TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3); // Rounds 16-19 MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 4)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4)); TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0); TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0); // Rounds 20-23 MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 5)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4)); TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1); TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1); // Rounds 24-27 MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 6)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4)); TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2); TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2); // Rounds 28-31 MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 7)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4)); TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3); TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3); // Rounds 32-35 MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 8)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4)); TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0); TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0); // Rounds 36-39 MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 9)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4)); TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1); TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1); // Rounds 40-43 MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 10)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4)); TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2); TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2); // Rounds 44-47 MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 11)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG0 = _mm_add_epi32(TMSG0, _mm_alignr_epi8(TMSG3, TMSG2, 4)); TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3); TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3); // Rounds 48-51 MSG = _mm_add_epi32(TMSG0, _mm_load_si128(K_mm + 12)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG1 = _mm_add_epi32(TMSG1, _mm_alignr_epi8(TMSG0, TMSG3, 4)); TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0); TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0); // Rounds 52-55 MSG = _mm_add_epi32(TMSG1, _mm_load_si128(K_mm + 13)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG2 = _mm_add_epi32(TMSG2, _mm_alignr_epi8(TMSG1, TMSG0, 4)); TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1); // Rounds 56-59 MSG = _mm_add_epi32(TMSG2, _mm_load_si128(K_mm + 14)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); TMSG3 = _mm_add_epi32(TMSG3, _mm_alignr_epi8(TMSG2, TMSG1, 4)); TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2); // Rounds 60-63 MSG = _mm_add_epi32(TMSG3, _mm_load_si128(K_mm + 15)); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, _mm_shuffle_epi32(MSG, 0x0E)); // Add values back to state STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE); STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE); input_mm += 4; num_blks--; } // Shuffle state back to correct order STATE0 = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG // Save state _mm_storeu_si128((__m128i*)&state[0], _mm_blend_epi16(STATE0, STATE1, 0xF0)); // DCBA _mm_storeu_si128((__m128i*)&state[4], _mm_alignr_epi8(STATE1, STATE0, 8)); // HGFE } #endif #endif