/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, tomstdenis@gmail.com, http://libtom.org * */ /* Adapted for VeraCrypt */ #include <memory.h> #include "Common/Tcdefs.h" #include "Common/Endian.h" #include "Sha2Small.h" #pragma optimize ("tl", on) typedef unsigned __int32 uint32; typedef unsigned __int8 byte; #include <stdlib.h> #pragma intrinsic(_lrotr) #define RORc(x,n) _lrotr(x,n) /******************************************************************************/ /* The K array */ static const uint32 K[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Various logical functions */ #define Ch(x,y,z) (z ^ (x & (y ^ z))) #define Maj(x,y,z) (((x | y) & z) | (x & y)) #define S(x, n) RORc((x),(n)) #define R(x, n) ((x)>>(n)) #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #define STORE32H(x, y, i) { \ (y)[i] = (unsigned char)(((x)>>24)); \ (y)[i+1] = (unsigned char)(((x)>>16)); \ (y)[i+2] = (unsigned char)(((x)>>8)); \ (y)[i+3] = (unsigned char)((x)); \ } #define LOAD32H(x, y, i) { \ x = ((unsigned long)((y)[i])<<24) | \ ((unsigned long)((y)[i+1])<<16) | \ ((unsigned long)((y)[i+2])<<8) | \ ((unsigned long)((y)[i+3])); \ } /* compress 512-bits */ static void sha256_compress(sha256_ctx * ctx, unsigned char *buf) { uint32 S[8], W[64], t0, t1; uint32 t, w2, w15; int i; /* copy state into S */ for (i = 0; i < 8; i++) { S[i] = ctx->state[i]; } /* copy the state into 512-bits into W[0..15] */ for (i = 0; i < 16; i++) { LOAD32H(W[i], buf , (4*i)); } /* fill W[16..63] */ for (i = 16; i < 64; i++) { w2 = W[i - 2]; w15 = W[i - 15]; W[i] = Gamma1(w2) + W[i - 7] + Gamma0(w15) + W[i - 16]; } /* Compress */ #define RND(a,b,c,d,e,f,g,h,i) \ t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \ t1 = Sigma0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; for (i = 0; i < 64; ++i) { RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i); t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4]; S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t; } /* feedback */ for (i = 0; i < 8; i++) { ctx->state[i] += S[i]; } } /* init the sha256 state */ VOID_RETURN sha256_begin(sha256_ctx* ctx) { ctx->curlen = 0; ctx->state[0] = 0x6A09E667UL; ctx->state[1] = 0xBB67AE85UL; ctx->state[2] = 0x3C6EF372UL; ctx->state[3] = 0xA54FF53AUL; ctx->state[4] = 0x510E527FUL; ctx->state[5] = 0x9B05688CUL; ctx->state[6] = 0x1F83D9ABUL; ctx->state[7] = 0x5BE0CD19UL; ctx->highLength = 0; ctx->lowLength = 0; } VOID_RETURN sha256_hash(unsigned char* data, unsigned int len, sha256_ctx* ctx) { uint32 n; while (len > 0) { if (ctx->curlen == 0 && len >= 64) { sha256_compress(ctx, (unsigned char *)data); n = ctx->lowLength + 512; if (n < ctx->lowLength) { ctx->highLength++; } ctx->lowLength = n; data += 64; len -= 64; } else { n = min(len, 64 - ctx->curlen); memcpy(ctx->buf + ctx->curlen, data, (size_t)n); ctx->curlen += (unsigned int) n; data += (unsigned int) n; len -= (unsigned int) n; if (ctx->curlen == 64) { sha256_compress (ctx, ctx->buf); n = ctx->lowLength + 512; if (n < ctx->lowLength) { ctx->highLength++; } ctx->lowLength = n; ctx->curlen = 0; } } } return; } VOID_RETURN sha256_end(unsigned char* hval, sha256_ctx* ctx) { int i; uint32 n; /* increase the length of the message */ n = ctx->lowLength + (ctx->curlen << 3); if (n < ctx->lowLength) { ctx->highLength++; } ctx->highLength += (ctx->curlen >> 29); ctx->lowLength = n; /* append the '1' bit */ ctx->buf[ctx->curlen++] = (unsigned char)0x80; /* if the length is currently above 56 bytes we append zeros then compress. Then we can fall back to padding zeros and length encoding like normal. */ if (ctx->curlen > 56) { while (ctx->curlen < 64) { ctx->buf[ctx->curlen++] = (unsigned char)0; } sha256_compress(ctx, ctx->buf); ctx->curlen = 0; } /* pad upto 56 bytes of zeroes */ while (ctx->curlen < 56) { ctx->buf[ctx->curlen++] = (unsigned char)0; } /* store length */ STORE32H(ctx->highLength, ctx->buf, 56); STORE32H(ctx->lowLength, ctx->buf, 60); sha256_compress(ctx, ctx->buf); /* copy output */ for (i = 0; i < 8; i++) { STORE32H(ctx->state[i], hval, (4*i)); } } /******************************************************************************/