/* * SHA-256 using CPU instructions in ARMv8 * * Contributed by Jeffrey Walton. Based on public domain code by * Johannes Schneiders, Skip Hovsmith and Barry O'Rourke. * * Further changes (C) 2020 Jack Lloyd * * Botan is released under the Simplified BSD License (see license.txt) */ /* Modified and adapted for VeraCrypt */ #include "Common/Tcdefs.h" #if !defined(_UEFI) #include #include #endif #include "cpu.h" #include "misc.h" #if CRYPTOPP_ARM_SHA2_AVAILABLE #include CRYPTOPP_ALIGN_DATA(64) static const uint32 K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; void sha256_compress_digest_armv8(void* input_data, uint32 digest[8], uint64 num_blks) { // Load initial values uint32x4_t STATE0 = vld1q_u32(&digest[0]); uint32x4_t STATE1 = vld1q_u32(&digest[4]); // Intermediate void* cast due to https://llvm.org/bugs/show_bug.cgi?id=20670 const uint32* input32 = (const uint32*)(const void*)input_data; while (num_blks > 0) { // Save current state const uint32x4_t ABCD_SAVE = STATE0; const uint32x4_t EFGH_SAVE = STATE1; uint32x4_t MSG0 = vld1q_u32(input32 + 0); uint32x4_t MSG1 = vld1q_u32(input32 + 4); uint32x4_t MSG2 = vld1q_u32(input32 + 8); uint32x4_t MSG3 = vld1q_u32(input32 + 12); MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0))); MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1))); MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2))); MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3))); uint32x4_t MSG_K, TSTATE; // Rounds 0-3 MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 0])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3); // Rounds 4-7 MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 1])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0); // Rounds 8-11 MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 2])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1); // Rounds 12-15 MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 3])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2); // Rounds 16-19 MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 4])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3); // Rounds 20-23 MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 5])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0); // Rounds 24-27 MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 6])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1); // Rounds 28-31 MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 7])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2); // Rounds 32-35 MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 8])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3); // Rounds 36-39 MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 9])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0); // Rounds 40-43 MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 10])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1); // Rounds 44-47 MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 11])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2); // Rounds 48-51 MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 12])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; // Rounds 52-55 MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 13])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; // Rounds 56-59 MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 14])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; // Rounds 60-63 MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 15])); TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); STATE0 = TSTATE; // Add back to state STATE0 = vaddq_u32(STATE0, ABCD_SAVE); STATE1 = vaddq_u32(STATE1, EFGH_SAVE); input32 += 64 / 4; num_blks--; } // Save state vst1q_u32(&digest[0], STATE0); vst1q_u32(&digest[4], STATE1); } #endif