;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2012, Intel Corporation
;
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are
; met:
;
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
;
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the
; distribution.
;
; * Neither the name of the Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived from
; this software without specific prior written permission.
;
;
; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Example YASM command lines:
; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_avx2_rorx2.obj -g cv8 sha256_avx2_rorx2.asm
; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_avx2_rorx2.o sha256_avx2_rorx2.asm
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; This code is described in an Intel White-Paper:
; "Fast SHA-256 Implementations on Intel Architecture Processors"
;
; To find it, surf to http://www.intel.com/p/en_US/embedded
; and search for that title.
; The paper is expected to be released roughly at the end of April, 2012
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This code schedules 2 blocks at a time, with 4 lanes per block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Modified by kerukuro for use in cppcrypto.
%define VMOVDQ vmovdqu ;; assume buffers not aligned
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros
; addm [mem], reg
; Add reg to mem using reg-mem add and store
%macro addm 2
add %2, %1
mov %1, %2
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define X0 ymm4
%define X1 ymm5
%define X2 ymm6
%define X3 ymm7
; XMM versions of above
%define XWORD0 xmm4
%define XWORD1 xmm5
%define XWORD2 xmm6
%define XWORD3 xmm7
%define XTMP0 ymm0
%define XTMP1 ymm1
%define XTMP2 ymm2
%define XTMP3 ymm3
%define XTMP4 ymm8
%define XFER ymm9
%define XTMP5 ymm11
%define SHUF_00BA ymm10 ; shuffle xBxA -> 00BA
%define SHUF_DC00 ymm12 ; shuffle xDxC -> DC00
%define BYTE_FLIP_MASK ymm13
%define X_BYTE_FLIP_MASK xmm13 ; XMM version of BYTE_FLIP_MASK
%ifndef WINABI
%define NUM_BLKS rdx ; 3rd arg
%define CTX rsi ; 2nd arg
%define INP rdi ; 1st arg
%define c ecx
%define d r8d
%define e edx ; clobbers NUM_BLKS
%define y3 edi ; clobbers INP
%else
%define NUM_BLKS r8 ; 3rd arg
%define CTX rdx ; 2nd arg
%define INP rcx ; 1st arg
%define c edi
%define d esi
%define e r8d ; clobbers NUM_BLKS
%define y3 ecx ; clobbers INP
%endif
%define TBL rbp
%define SRND CTX ; SRND is same register as CTX
%define a eax
%define b ebx
%define f r9d
%define g r10d
%define h r11d
%define old_h r11d
%define T1 r12d
%define y0 r13d
%define y1 r14d
%define y2 r15d
_XFER_SIZE equ 2*64*4 ; 2 blocks, 64 rounds, 4 bytes/round
%ifndef WINABI
_XMM_SAVE_SIZE equ 0
%else
_XMM_SAVE_SIZE equ 8*16
%endif
_INP_END_SIZE equ 8
_INP_SIZE equ 8
_CTX_SIZE equ 8
_RSP_SIZE equ 8
_XFER equ 0
_XMM_SAVE equ _XFER + _XFER_SIZE
_INP_END equ _XMM_SAVE + _XMM_SAVE_SIZE
_INP equ _INP_END + _INP_END_SIZE
_CTX equ _INP + _INP_SIZE
_RSP equ _CTX + _CTX_SIZE
STACK_SIZE equ _RSP + _RSP_SIZE
; rotate_Xs
; Rotate values of symbols X0...X3
%macro rotate_Xs 0
%xdefine X_ X0
%xdefine X0 X1
%xdefine X1 X2
%xdefine X2 X3
%xdefine X3 X_
%endm
; ROTATE_ARGS
; Rotate values of symbols a...h
%macro ROTATE_ARGS 0
%xdefine old_h h
%xdefine TMP_ h
%xdefine h g
%xdefine g f
%xdefine f e
%xdefine e d
%xdefine d c
%xdefine c b
%xdefine b a
%xdefine a TMP_
%endm
%macro FOUR_ROUNDS_AND_SCHED 1
%define %%XFER %1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
add h, dword[%%XFER+0*4] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
vpalignr XTMP0, X3, X2, 4 ; XTMP0 = W[-7]
mov y2, f ; y2 = f ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
xor y2, g ; y2 = f^g ; CH
vpaddd XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16]; y1 = (e >> 6) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
add d, h ; d = k + w + h + d ; --
and y3, b ; y3 = (a|c)&b ; MAJA
vpalignr XTMP1, X1, X0, 4 ; XTMP1 = W[-15]
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpsrld XTMP2, XTMP1, 7
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
vpslld XTMP3, XTMP1, (32-7)
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
vpor XTMP3, XTMP3, XTMP2 ; XTMP3 = W[-15] ror 7
vpsrld XTMP2, XTMP1,18
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
add h, dword[%%XFER+1*4] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
vpsrld XTMP4, XTMP1, 3 ; XTMP4 = W[-15] >> 3
mov y2, f ; y2 = f ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
xor y2, g ; y2 = f^g ; CH
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
and y2, e ; y2 = (f^g)&e ; CH
add d, h ; d = k + w + h + d ; --
vpslld XTMP1, XTMP1, (32-18)
and y3, b ; y3 = (a|c)&b ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
vpxor XTMP3, XTMP3, XTMP1
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpxor XTMP3, XTMP3, XTMP2 ; XTMP3 = W[-15] ror 7 ^ W[-15] ror 18
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
vpxor XTMP1, XTMP3, XTMP4 ; XTMP1 = s0
vpshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA}
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
vpaddd XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
vpsrld XTMP4, XTMP2, 10 ; XTMP4 = W[-2] >> 10 {BBAA}
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
add h, [%%XFER+2*4] ; h = k + w + h ; --
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] ror 19 {xBxA}
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
or y3, c ; y3 = a|c ; MAJA
mov y2, f ; y2 = f ; CH
xor y2, g ; y2 = f^g ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xBxA}
and y2, e ; y2 = (f^g)&e ; CH
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
vpxor XTMP2, XTMP2, XTMP3
add d, h ; d = k + w + h + d ; --
and y3, b ; y3 = (a|c)&b ; MAJA
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
vpxor XTMP4, XTMP4, XTMP2 ; XTMP4 = s1 {xBxA}
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpshufb XTMP4, XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
vpaddd XTMP0, XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
vpshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC}
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
add h, dword[%%XFER+3*4] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
vpsrld XTMP5, XTMP2, 10 ; XTMP5 = W[-2] >> 10 {DDCC}
mov y2, f ; y2 = f ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
xor y2, g ; y2 = f^g ; CH
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] ror 19 {xDxC}
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add d, h ; d = k + w + h + d ; --
and y3, b ; y3 = (a|c)&b ; MAJA
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xDxC}
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpxor XTMP2, XTMP2, XTMP3
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
add y2, y0 ; y2 = S1 + CH ; --
vpxor XTMP5, XTMP5, XTMP2 ; XTMP5 = s1 {xDxC}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
vpshufb XTMP5, XTMP5, SHUF_DC00 ; XTMP5 = s1 {DC00}
vpaddd X0, XTMP5, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
rotate_Xs
%endm
%macro DO_4ROUNDS 1
%define %%XFER %1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*0] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
;add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;
add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add old_h, y3 ; h = t1 + S0 + MAJ ; --
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*1] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
;add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add old_h, y3 ; h = t1 + S0 + MAJ ; --
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*2] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
;add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;
add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add old_h, y3 ; h = t1 + S0 + MAJ ; --
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*3] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; void sha256_rorx(void *input_data, UINT32 digest[8], UINT64 num_blks)
;; arg 1 : pointer to input data
;; arg 2 : pointer to digest
;; arg 3 : Num blocks
section .text
global sha256_rorx
global _sha256_rorx
align 32
sha256_rorx:
_sha256_rorx:
push rbx
%ifdef WINABI
push rsi
push rdi
%endif
push rbp
push r12
push r13
push r14
push r15
mov rax, rsp
sub rsp,STACK_SIZE
and rsp, -32
mov [rsp + _RSP], rax
%ifdef WINABI
vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6
vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7
vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8
vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9
vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10
vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11
vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12
vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13
%endif
shl NUM_BLKS, 6 ; convert to bytes
jz done_hash
lea NUM_BLKS, [NUM_BLKS + INP - 64] ; pointer to last block
mov [rsp + _INP_END], NUM_BLKS
cmp INP, NUM_BLKS
je only_one_block
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip]
vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
mov [rsp + _CTX], CTX
loop0:
lea TBL,[K256 wrt rip]
;; Load first 16 dwords from two blocks
VMOVDQ XTMP0, [INP + 0*32]
VMOVDQ XTMP1, [INP + 1*32]
VMOVDQ XTMP2, [INP + 2*32]
VMOVDQ XTMP3, [INP + 3*32]
;; byte swap data
vpshufb XTMP0, XTMP0, BYTE_FLIP_MASK
vpshufb XTMP1, XTMP1, BYTE_FLIP_MASK
vpshufb XTMP2, XTMP2, BYTE_FLIP_MASK
vpshufb XTMP3, XTMP3, BYTE_FLIP_MASK
;; transpose data into high/low halves
vperm2i128 X0, XTMP0, XTMP2, 0x20
vperm2i128 X1, XTMP0, XTMP2, 0x31
vperm2i128 X2, XTMP1, XTMP3, 0x20
vperm2i128 X3, XTMP1, XTMP3, 0x31
last_block_enter:
add INP, 64
mov [rsp + _INP], INP
;; schedule 48 input dwords, by doing 3 rounds of 12 each
xor SRND, SRND
align 16
loop1:
vpaddd XFER, X0, [TBL + SRND + 0*32]
vmovdqa [rsp + _XFER + SRND + 0*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 0*32
vpaddd XFER, X0, [TBL + SRND + 1*32]
vmovdqa [rsp + _XFER + SRND + 1*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 1*32
vpaddd XFER, X0, [TBL + SRND + 2*32]
vmovdqa [rsp + _XFER + SRND + 2*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 2*32
vpaddd XFER, X0, [TBL + SRND + 3*32]
vmovdqa [rsp + _XFER + SRND + 3*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 3*32
add SRND, 4*32
cmp SRND, 3 * 4*32
jb loop1
loop2:
;; Do last 16 rounds with no scheduling
vpaddd XFER, X0, [TBL + SRND + 0*32]
vmovdqa [rsp + _XFER + SRND + 0*32], XFER
DO_4ROUNDS rsp + _XFER + SRND + 0*32
vpaddd XFER, X1, [TBL + SRND + 1*32]
vmovdqa [rsp + _XFER + SRND + 1*32], XFER
DO_4ROUNDS rsp + _XFER + SRND + 1*32
add SRND, 2*32
vmovdqa X0, X2
vmovdqa X1, X3
cmp SRND, 4 * 4*32
jb loop2
mov CTX, [rsp + _CTX]
mov INP, [rsp + _INP]
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
cmp INP, [rsp + _INP_END]
ja done_hash
;;;; Do second block using previously scheduled results
xor SRND, SRND
align 16
loop3:
DO_4ROUNDS rsp + _XFER + SRND + 0*32 + 16
DO_4ROUNDS rsp + _XFER + SRND + 1*32 + 16
add SRND, 2*32
cmp SRND, 4 * 4*32
jb loop3
mov CTX, [rsp + _CTX]
mov INP, [rsp + _INP]
add INP, 64
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
cmp INP, [rsp + _INP_END]
jb loop0
ja done_hash
do_last_block:
;;;; do last block
lea TBL,[K256 wrt rip]
VMOVDQ XWORD0, [INP + 0*16]
VMOVDQ XWORD1, [INP + 1*16]
VMOVDQ XWORD2, [INP + 2*16]
VMOVDQ XWORD3, [INP + 3*16]
vpshufb XWORD0, XWORD0, X_BYTE_FLIP_MASK
vpshufb XWORD1, XWORD1, X_BYTE_FLIP_MASK
vpshufb XWORD2, XWORD2, X_BYTE_FLIP_MASK
vpshufb XWORD3, XWORD3, X_BYTE_FLIP_MASK
jmp last_block_enter
only_one_block:
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip]
vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
mov [rsp + _CTX], CTX
jmp do_last_block
done_hash:
%ifdef WINABI
vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16]
vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16]
vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16]
vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16]
vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16]
vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16]
vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16]
vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16]
%endif
mov rsp, [rsp + _RSP]
pop r15
pop r14
pop r13
pop r12
pop rbp
%ifdef WINABI
pop rdi
pop rsi
%endif
pop rbx
ret
section .data
align 64
K256:
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
PSHUFFLE_BYTE_FLIP_MASK:
ddq 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203
; shuffle xBxA -> 00BA
_SHUF_00BA:
ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100
; shuffle xDxC -> DC00
_SHUF_DC00:
ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF
%ifidn __OUTPUT_FORMAT__,elf
section .note.GNU-stack noalloc noexec nowrite progbits
%endif
%ifidn __OUTPUT_FORMAT__,elf32
section .note.GNU-stack noalloc noexec nowrite progbits
%endif
%ifidn __OUTPUT_FORMAT__,elf64
section .note.GNU-stack noalloc noexec nowrite progbits
%endif
span class="na">class="ClearBoth"></div></body></html>