/* --------------------------------------------------------------------------- Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. LICENSE TERMS The free distribution and use of this software is allowed (with or without changes) provided that: 1. source code distributions include the above copyright notice, this list of conditions and the following disclaimer; 2. binary distributions include the above copyright notice, this list of conditions and the following disclaimer in their documentation; 3. the name of the copyright holder is not used to endorse products built using this software without specific written permission. DISCLAIMER This software is provided 'as is' with no explicit or implied warranties in respect of its properties, including, but not limited to, correctness and/or fitness for purpose. --------------------------------------------------------------------------- Issue Date: 20/12/2007 */ #include "Aesopt.h" #include "Aestab.h" #ifdef USE_VIA_ACE_IF_PRESENT # include "aes_via_ace.h" #endif #if defined(__cplusplus) extern "C" { #endif /* Initialise the key schedule from the user supplied key. The key length can be specified in bytes, with legal values of 16, 24 and 32, or in bits, with legal values of 128, 192 and 256. These values correspond with Nk values of 4, 6 and 8 respectively. The following macros implement a single cycle in the key schedule generation process. The number of cycles needed for each cx->n_col and nk value is: nk = 4 5 6 7 8 ------------------------------ cx->n_col = 4 10 9 8 7 7 cx->n_col = 5 14 11 10 9 9 cx->n_col = 6 19 15 12 11 11 cx->n_col = 7 21 19 16 13 14 cx->n_col = 8 29 23 19 17 14 */ #if (FUNCS_IN_C & ENC_KEYING_IN_C) #if defined(AES_128) || defined(AES_VAR) #define ke4(k,i) \ { k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \ k[4*(i)+5] = ss[1] ^= ss[0]; \ k[4*(i)+6] = ss[2] ^= ss[1]; \ k[4*(i)+7] = ss[3] ^= ss[2]; \ } AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint_32t ss[4]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); #if ENC_UNROLL == NONE { uint_32t i; for(i = 0; i < 9; ++i) ke4(cx->ks, i); } #else ke4(cx->ks, 0); ke4(cx->ks, 1); ke4(cx->ks, 2); ke4(cx->ks, 3); ke4(cx->ks, 4); ke4(cx->ks, 5); ke4(cx->ks, 6); ke4(cx->ks, 7); ke4(cx->ks, 8); #endif ke4(cx->ks, 9); cx->inf.l = 0; cx->inf.b[0] = 10 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_192) || defined(AES_VAR) #define kef6(k,i) \ { k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \ k[6*(i)+ 7] = ss[1] ^= ss[0]; \ k[6*(i)+ 8] = ss[2] ^= ss[1]; \ k[6*(i)+ 9] = ss[3] ^= ss[2]; \ } #define ke6(k,i) \ { kef6(k,i); \ k[6*(i)+10] = ss[4] ^= ss[3]; \ k[6*(i)+11] = ss[5] ^= ss[4]; \ } AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint_32t ss[6]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); cx->ks[4] = ss[4] = word_in(key, 4); cx->ks[5] = ss[5] = word_in(key, 5); #if ENC_UNROLL == NONE { uint_32t i; for(i = 0; i < 7; ++i) ke6(cx->ks, i); } #else ke6(cx->ks, 0); ke6(cx->ks, 1); ke6(cx->ks, 2); ke6(cx->ks, 3); ke6(cx->ks, 4); ke6(cx->ks, 5); ke6(cx->ks, 6); #endif kef6(cx->ks, 7); cx->inf.l = 0; cx->inf.b[0] = 12 * 16; #ifdef USE_VIA_ACE_IF_PRESENT if(VIA_ACE_AVAILABLE) cx->inf.b[1] = 0xff; #endif #if defined( AES_ERR_CHK ) return EXIT_SUCCESS; #endif } #endif #if defined(AES_256) || defined(AES_VAR) #define kef8(k,i) \ { k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \ k[8*(i)+ 9] = ss[1] ^= ss[0]; \ k[8*(i)+10] = ss[2] ^= ss[1]; \ k[8*(i)+11] = ss[3] ^= ss[2]; \ } #define ke8(k,i) \ { kef8(k,i); \ k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ k[8*(i)+13] = ss[5] ^= ss[4]; \ k[8*(i)+14] = ss[6] ^= ss[5]; \ k[8*(i)+15] = ss[7] ^= ss[6]; \ } AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]) { uint_32t ss[8]; cx->ks[0] = ss[0] = word_in(key, 0); cx->ks[1] = ss[1] = word_in(key, 1); cx->ks[2] = ss[2] = word_in(key, 2); cx->ks[3] = ss[3] = word_in(key, 3); cx->ks[4] = ss[4] = word_in(key, 4); cx->ks[5] = ss[5] = word_in(key, 5); cx->ks[6] = ss[6] = word_in(key
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>VeraCrypt - Free Open source disk encryption with strong security for the Paranoid</title>
<meta name="description" content="VeraCrypt is free open-source disk encryption software for Windows, Mac OS X and Linux. In case an attacker forces you to reveal the password, VeraCrypt provides plausible deniability. In contrast to file encryption, data encryption performed by VeraCrypt is real-time (on-the-fly), automatic, transparent, needs very little memory, and does not involve temporary unencrypted files."/>
<meta name="keywords" content="encryption, security"/>
<link href="styles.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div>
<a href="https://www.veracrypt.fr/en/Home.html"><img src="VeraCrypt128x128.png" alt="VeraCrypt"/></a>
</div>
<div id="menu">
<ul>
<li><a href="Home.html">Home</a></li>
<li><a href="/code/">Source Code</a></li>
<li><a href="Downloads.html">Downloads</a></li>
<li><a class="active" href="Documentation.html">Documentation</a></li>
<li><a href="Donation.html">Donate</a></li>
<li><a href="https://sourceforge.net/p/veracrypt/discussion/" target="_blank">Forums</a></li>
</ul>
</div>
<div>
<p>
<a href="Documentation.html">Documentation</a>
<img src="arrow_right.gif" alt=">>" style="margin-top: 5px">
<a href="Security%20Requirements%20and%20Precautions.html">Security Requirements and Precautions</a>
<img src="arrow_right.gif" alt=">>" style="margin-top: 5px">
<a href="Authenticity%20and%20Integrity.html">Authenticity and Integrity</a>
</p></div>
<div class="wikidoc">
<div>
<h1>Authenticity and Integrity</h1>
<p>VeraCrypt uses encryption to preserve the <em>confidentiality</em> of data it encrypts. VeraCrypt neither preserves nor verifies the integrity or authenticity of data it encrypts or decrypts. Hence, if you allow an adversary to modify data encrypted by VeraCrypt,
he can set the value of any 16-byte block of the data to a random value or to a previous value, which he was able to obtain in the past. Note that the adversary cannot choose the value that you will obtain when VeraCrypt decrypts the modified block —
the value will be random — unless the attacker restores an older version of the encrypted block, which he was able to obtain in the past. It is your responsibility to verify the integrity and authenticity of data encrypted or decrypted by VeraCrypt (for
example, by using appropriate third-party software).<br>
<br>
See also: <a href="Physical%20Security.html">
<em>Physical Security</em></a>, <a href="Security%20Model.html">
<em>Security Model</em></a></p>
</div>
</div><div class="ClearBoth"></div></body></html>