VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/doc/html/Modes of Operation.html
blob: 3ea4e8c310fd43ade7889555a40b62e37c739527 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>VeraCrypt - Free Open source disk encryption with strong security for the Paranoid</title>
<meta name="description" content="VeraCrypt is free open-source disk encryption software for Windows, Mac OS X and Linux. In case an attacker forces you to reveal the password, VeraCrypt provides plausible deniability. In contrast to file encryption, data encryption performed by VeraCrypt is real-time (on-the-fly), automatic, transparent, needs very little memory, and does not involve temporary unencrypted files."/>
<meta name="keywords" content="encryption, security"/>
<link href="styles.css" rel="stylesheet" type="text/css" />
</head>
<body>

<div>                      
<a href="https://www.veracrypt.fr/en/Home.html"><img src="VeraCrypt128x128.png" alt="VeraCrypt"/></a>
</div>

<div id="menu">
	<ul>
	  <li><a href="Home.html">Home</a></li>
	  <li><a href="/code/">Source Code</a></li>
	  <li><a href="Downloads.html">Downloads</a></li>
	  <li><a class="active" href="Documentation.html">Documentation</a></li>
	  <li><a href="Donation.html">Donate</a></li>
	  <li><a href="https://sourceforge.net/p/veracrypt/discussion/" target="_blank">Forums</a></li>
	</ul>
</div>

<div>
<p>
<a href="Documentation.html">Documentation</a>           
<img src="arrow_right.gif" alt=">>" style="margin-top: 5px">
<a href="Technical%20Details.html">Technical Details</a>
<img src="arrow_right.gif" alt=">>" style="margin-top: 5px">
<a href="Modes%20of%20Operation.html">Modes of Operation</a>
</p></div>

<div class="wikidoc">
<h1>Modes of Operation</h1>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
<br style="text-align:left">
The mode of operation used by VeraCrypt for encrypted partitions, drives, and virtual volumes is XTS.
<br style="text-align:left">
<br style="text-align:left">
XTS mode is in fact XEX mode <a href="http://www.cs.ucdavis.edu/%7Erogaway/papers/offsets.pdf">
[12]</a>, which was designed by Phillip Rogaway in 2003, with a minor modification (XEX mode uses a single key for two different purposes, whereas XTS mode uses two independent keys).<br style="text-align:left">
<br style="text-align:left">
In 2010, XTS mode was approved by NIST for protecting the confidentiality of data on storage devices [24]. In 2007, it was also approved by the IEEE for cryptographic protection of data on block-oriented storage devices (IEEE 1619).</div>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
&nbsp;</div>
<h2 style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
<strong style="text-align:left">Description of XTS mode</strong>:</h2>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
<em style="text-align:left">C<sub style="text-align:left; font-size:85%">i</sub></em> =
<em style="text-align:left">E</em><sub style="text-align:left; font-size:85%"><em style="text-align:left">K</em>1</sub>(<em style="text-align:left">P<sub style="text-align:left; font-size:85%">i</sub></em> ^ (<em style="text-align:left">E</em><sub style="text-align:left; font-size:85%"><em style="text-align:left">K</em>2</sub>(<em style="text-align:left">n</em>)
<img src="gf2_mul.gif" alt="" width="10" height="10">
<em style="text-align:left">a<sup style="text-align:left; font-size:85%">i</sup></em>)) ^ (<em style="text-align:left">E</em><sub style="text-align:left; font-size:85%"><em style="text-align:left">K</em>2</sub>(<em style="text-align:left">n</em>)
<img src="gf2_mul.gif" alt="" width="10" height="10"><em style="text-align:left"> a<sup style="text-align:left; font-size:85%">i</sup></em>)</div>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
Where:</div>
<table style="border-collapse:separate; border-spacing:0px; width:608px; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; border:0px outset #999">
<tbody style="text-align:left">
<tr style="text-align:left">
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
&nbsp;<sup style="text-align:left; font-size:85%">&nbsp;<img src="gf2_mul.gif" alt="" width="10" height="10"></sup></td>
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
denotes multiplication of two polynomials over the binary field GF(2) modulo <em style="text-align:left">
x</em><sup style="text-align:left; font-size:85%">128</sup>&#43;<em style="text-align:left">x</em><sup style="text-align:left; font-size:85%">7</sup>&#43;<em style="text-align:left">x</em><sup style="text-align:left; font-size:85%">2</sup>&#43;<em style="text-align:left">x</em>&#43;1</td>
</tr>
<tr style="text-align:left">
<td style="width:30px; vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
<em style="text-align:left">K</em>1</td>
<td style="width:578px; vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
is the encryption key (256-bit for each supported cipher; i.e, AES, Serpent, and Twofish)</td>
</tr>
<tr style="text-align:left">
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
<em style="text-align:left">K</em>2</td>
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
is the secondary key (256-bit for each supported cipher; i.e, AES, Serpent, and Twofish)</td>
</tr>
<tr style="text-align:left">
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
<em style="text-align:left">i</em></td>
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
is the cipher block index within a data unit; &nbsp; for the first cipher block within a data unit,
<em style="text-align:left">i</em> = 0</td>
</tr>
<tr style="text-align:left">
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
<em style="text-align:left">n</em></td>
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
is the data unit index within the scope of <em style="text-align:left">K</em>1; &nbsp; for the first data unit,
<em style="text-align:left">n</em> = 0</td>
</tr>
<tr style="text-align:left">
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
<em style="text-align:left">a</em></td>
<td style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
is a primitive element of Galois Field (2<sup style="text-align:left; font-size:85%">128</sup>) that corresponds to polynomial
<em style="text-align:left">x</em> (i.e., 2)</td>
</tr>
<tr style="text-align:left">
<td colspan="2" style="vertical-align:top; color:#000000; text-align:left; font-size:11px; line-height:13px; font-family:Verdana,Arial,Helvetica,sans-serif; padding:0px">
<br style="text-align:left">
<span style="text-align:left; font-size:10px; line-height:12px">Note: The remaining symbols are defined in the section
<a href="Notation.html" style="text-align:left; color:#0080c0; text-decoration:none.html">
Notation</a>. </span></td>
</tr>
</tbody>
</table>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
<br style="text-align:left">
The size of each data unit is always 512 bytes (regardless of the sector size).</div>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
For further information pertaining to XTS mode, see e.g. <a href="http://www.cs.ucdavis.edu/%7Erogaway/papers/offsets.pdf" style="text-align:left; color:#0080c0; text-decoration:none">
[12]</a> and <a href="http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf" style="text-align:left; color:#0080c0; text-decoration:none">
[24]</a>.</div>
<div style="text-align:left; margin-top:19px; margin-bottom:19px; padding-top:0px; padding-bottom:0px">
<a href="Header%20Key%20Derivation.html" style="text-align:left; color:#0080c0; text-decoration:none; font-weight:bold.html">Next Section &gt;&gt;</a></div>
</div><div class="ClearBoth"></div></body></html>
NROLL PARTIAL #else #define DEC_UNROLL NONE #endif /* 6. FAST FINITE FIELD OPERATIONS If this section is included, tables are used to provide faster finite field arithmetic (this has no effect if FIXED_TABLES is defined). */ #if !defined (TC_WINDOWS_BOOT) #define FF_TABLES #endif /* 7. INTERNAL STATE VARIABLE FORMAT The internal state of Rijndael is stored in a number of local 32-bit word varaibles which can be defined either as an array or as individual names variables. Include this section if you want to store these local varaibles in arrays. Otherwise individual local variables will be used. */ #if 1 #define ARRAYS #endif /* 8. FIXED OR DYNAMIC TABLES When this section is included the tables used by the code are compiled statically into the binary file. Otherwise the subroutine aes_init() must be called to compute them before the code is first used. */ #if !defined (TC_WINDOWS_BOOT) && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 )) #define FIXED_TABLES #endif /* 9. TABLE ALIGNMENT On some sytsems speed will be improved by aligning the AES large lookup tables on particular boundaries. This define should be set to a power of two giving the desired alignment. It can be left undefined if alignment is not needed. This option is specific to the Microsft VC++ compiler - it seems to sometimes cause trouble for the VC++ version 6 compiler. */ #if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 ) #define TABLE_ALIGN 32 #endif /* 10. TABLE OPTIONS This cipher proceeds by repeating in a number of cycles known as 'rounds' which are implemented by a round function which can optionally be speeded up using tables. The basic tables are each 256 32-bit words, with either one or four tables being required for each round function depending on how much speed is required. The encryption and decryption round functions are different and the last encryption and decrytpion round functions are different again making four different round functions in all. This means that: 1. Normal encryption and decryption rounds can each use either 0, 1 or 4 tables and table spaces of 0, 1024 or 4096 bytes each. 2. The last encryption and decryption rounds can also use either 0, 1 or 4 tables and table spaces of 0, 1024 or 4096 bytes each. Include or exclude the appropriate definitions below to set the number of tables used by this implementation. */ #if 1 /* set tables for the normal encryption round */ #define ENC_ROUND FOUR_TABLES #elif 0 #define ENC_ROUND ONE_TABLE #else #define ENC_ROUND NO_TABLES #endif #if 1 /* set tables for the last encryption round */ #define LAST_ENC_ROUND FOUR_TABLES #elif 0 #define LAST_ENC_ROUND ONE_TABLE #else #define LAST_ENC_ROUND NO_TABLES #endif #if 1 /* set tables for the normal decryption round */ #define DEC_ROUND FOUR_TABLES #elif 0 #define DEC_ROUND ONE_TABLE #else #define DEC_ROUND NO_TABLES #endif #if 1 /* set tables for the last decryption round */ #define LAST_DEC_ROUND FOUR_TABLES #elif 0 #define LAST_DEC_ROUND ONE_TABLE #else #define LAST_DEC_ROUND NO_TABLES #endif /* The decryption key schedule can be speeded up with tables in the same way that the round functions can. Include or exclude the following defines to set this requirement. */ #if 1 #define KEY_SCHED FOUR_TABLES #elif 0 #define KEY_SCHED ONE_TABLE #else #define KEY_SCHED NO_TABLES #endif /* ---- END OF USER CONFIGURED OPTIONS ---- */ /* VIA ACE support is only available for VC++ and GCC */ #if !defined( _MSC_VER ) && !defined( __GNUC__ ) # if defined( ASSUME_VIA_ACE_PRESENT ) # undef ASSUME_VIA_ACE_PRESENT # endif # if defined( USE_VIA_ACE_IF_PRESENT ) # undef USE_VIA_ACE_IF_PRESENT # endif #endif #if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT ) #define USE_VIA_ACE_IF_PRESENT #endif #if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS ) #define AES_REV_DKS #endif /* Assembler support requires the use of platform byte order */ #if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \ && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER) #undef ALGORITHM_BYTE_ORDER #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER #endif /* In this implementation the columns of the state array are each held in 32-bit words. The state array can be held in various ways: in an array of words, in a number of individual word variables or in a number of processor registers. The following define maps a variable name x and a column number c to the way the state array variable is to be held. The first define below maps the state into an array x[c] whereas the second form maps the state into a number of individual variables x0, x1, etc. Another form could map individual state colums to machine register names. */ #if defined( ARRAYS ) #define s(x,c) x[c] #else #define s(x,c) x##c #endif /* This implementation provides subroutines for encryption, decryption and for setting the three key lengths (separately) for encryption and decryption. Since not all functions are needed, masks are set up here to determine which will be implemented in C */ #if !defined( AES_ENCRYPT ) # define EFUNCS_IN_C 0 #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) # define EFUNCS_IN_C ENC_KEYING_IN_C #elif !defined( ASM_X86_V2 ) # define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C ) #else # define EFUNCS_IN_C 0 #endif #if !defined( AES_DECRYPT ) # define DFUNCS_IN_C 0 #elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \ || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) # define DFUNCS_IN_C DEC_KEYING_IN_C #elif !defined( ASM_X86_V2 ) # define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C ) #else # define DFUNCS_IN_C 0 #endif #define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C ) /* END OF CONFIGURATION OPTIONS */ #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2)) /* Disable or report errors on some combinations of options */ #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES #undef LAST_ENC_ROUND #define LAST_ENC_ROUND NO_TABLES #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES #undef LAST_ENC_ROUND #define LAST_ENC_ROUND ONE_TABLE #endif #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE #undef ENC_UNROLL #define ENC_UNROLL NONE #endif #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES #undef LAST_DEC_ROUND #define LAST_DEC_ROUND NO_TABLES #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES #undef LAST_DEC_ROUND #define LAST_DEC_ROUND ONE_TABLE #endif #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE #undef DEC_UNROLL #define DEC_UNROLL NONE #endif #if defined( bswap32 ) #define aes_sw32 bswap32 #elif defined( bswap_32 ) #define aes_sw32 bswap_32 #else #define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n))) #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00)) #endif /* upr(x,n): rotates bytes within words by n positions, moving bytes to higher index positions with wrap around into low positions ups(x,n): moves bytes by n positions to higher index positions in words but without wrap around bval(x,n): extracts a byte from a word WARNING: The definitions given here are intended only for use with unsigned variables and with shift counts that are compile time constants */ #if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN ) #define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n)))) #define ups(x,n) ((uint_32t) (x) << (8 * (n))) #define bval(x,n) ((uint_8t)((x) >> (8 * (n)))) #define bytes2word(b0, b1, b2, b3) \ (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0)) #endif #if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN ) #define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n)))) #define ups(x,n) ((uint_32t) (x) >> (8 * (n))) #define bval(x,n) ((uint_8t)((x) >> (24 - 8 * (n)))) #define bytes2word(b0, b1, b2, b3) \ (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3)) #endif #if defined( SAFE_IO ) #define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \ ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3]) #define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \ ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); } #elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER ) #define word_in(x,c) (*((uint_32t*)(x)+(c))) #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v)) #else #define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c))) #define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v)) #endif /* the finite field modular polynomial and elements */ #define WPOLY 0x011b #define BPOLY 0x1b /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ #define m1 0x80808080 #define m2 0x7f7f7f7f #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) /* The following defines provide alternative definitions of gf_mulx that might give improved performance if a fast 32-bit multiply is not available. Note that a temporary variable u needs to be defined where gf_mulx is used. #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6)) #define m4 (0x01010101 * BPOLY) #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4) */ /* Work out which tables are needed for the different options */ #if defined( ASM_X86_V1C ) #if defined( ENC_ROUND ) #undef ENC_ROUND #endif #define ENC_ROUND FOUR_TABLES #if defined( LAST_ENC_ROUND ) #undef LAST_ENC_ROUND #endif #define LAST_ENC_ROUND FOUR_TABLES #if defined( DEC_ROUND ) #undef DEC_ROUND #endif #define DEC_ROUND FOUR_TABLES #if defined( LAST_DEC_ROUND ) #undef LAST_DEC_ROUND #endif #define LAST_DEC_ROUND FOUR_TABLES #if defined( KEY_SCHED ) #undef KEY_SCHED #define KEY_SCHED FOUR_TABLES #endif #endif #if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C ) #if ENC_ROUND == ONE_TABLE #define FT1_SET #elif ENC_ROUND == FOUR_TABLES #define FT4_SET #else #define SBX_SET #endif #if LAST_ENC_ROUND == ONE_TABLE #define FL1_SET #elif LAST_ENC_ROUND == FOUR_TABLES #define FL4_SET #elif !defined( SBX_SET ) #define SBX_SET #endif #endif #if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C ) #if DEC_ROUND == ONE_TABLE #define IT1_SET #elif DEC_ROUND == FOUR_TABLES #define IT4_SET #else #define ISB_SET #endif #if LAST_DEC_ROUND == ONE_TABLE #define IL1_SET #elif LAST_DEC_ROUND == FOUR_TABLES #define IL4_SET #elif !defined(ISB_SET) #define ISB_SET #endif #endif #if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C) #if KEY_SCHED == ONE_TABLE #define LS1_SET #elif KEY_SCHED == FOUR_TABLES #define LS4_SET #elif !defined( SBX_SET ) #define SBX_SET #endif #endif #if (FUNCS_IN_C & DEC_KEYING_IN_C) #if KEY_SCHED == ONE_TABLE #define IM1_SET #elif KEY_SCHED == FOUR_TABLES #define IM4_SET #elif !defined( SBX_SET ) #define SBX_SET #endif #endif /* generic definitions of Rijndael macros that use tables */ #define no_table(x,box,vf,rf,c) bytes2word( \ box[bval(vf(x,0,c),rf(0,c))], \ box[bval(vf(x,1,c),rf(1,c))], \ box[bval(vf(x,2,c),rf(2,c))], \ box[bval(vf(x,3,c),rf(3,c))]) #define one_table(x,op,tab,vf,rf,c) \ ( tab[bval(vf(x,0,c),rf(0,c))] \ ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \ ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \ ^ op(tab[bval(vf(x,3,c),rf(3,c))],3)) #define four_tables(x,tab,vf,rf,c) \ ( tab[0][bval(vf(x,0,c),rf(0,c))] \ ^ tab[1][bval(vf(x,1,c),rf(1,c))] \ ^ tab[2][bval(vf(x,2,c),rf(2,c))] \ ^ tab[3][bval(vf(x,3,c),rf(3,c))]) #define vf1(x,r,c) (x) #define rf1(r,c) (r) #define rf2(r,c) ((8+r-c)&3) /* perform forward and inverse column mix operation on four bytes in long word x in */ /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */ #if defined( FM4_SET ) /* not currently used */ #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0) #elif defined( FM1_SET ) /* not currently used */ #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0) #else #define dec_fmvars uint_32t g2 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1)) #endif #if defined( IM4_SET ) #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0) #elif defined( IM1_SET ) #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0) #else #define dec_imvars uint_32t g2, g4, g9 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \ (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1)) #endif #if defined( FL4_SET ) #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c) #elif defined( LS4_SET ) #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c) #elif defined( FL1_SET ) #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c) #elif defined( LS1_SET ) #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c) #else #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c) #endif #if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET ) #define ISB_SET #endif #endif