VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/doc/html/ru/Streebog.html
blob: 6ca9f6f54f155a8049399a433c5a1101db6c39d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="ru" lang="ru">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>VeraCrypt - Бесплатное надёжное шифрование дисков с открытым исходным кодом</title>
<meta name="description" content="VeraCrypt это бесплатное программное обеспечение для шифрования дисков с открытым исходным кодом для Windows, Mac OS X (macOS) и Linux. В случае, если злоумышленник вынуждает вас раскрыть пароль, VeraCrypt обеспечивает правдоподобное отрицание наличия шифрования. В отличие от пофайлового шифрования, VeraCrypt шифрует данные в реальном времени (на лету), автоматически, прозрачно, требует очень мало памяти и не использует временные незашифрованные файлы."/>
<meta name="keywords" content="encryption, security, шифрование, безопасность"/>
<link href="styles.css" rel="stylesheet" type="text/css" />
</head>
<body>

<div>
<a href="Documentation.html"><img src="VeraCrypt128x128.png" alt="VeraCrypt"/></a>
</div>

<div id="menu">
	<ul>
	  <li><a href="Home.html">Начало</a></li>
	  <li><a href="/code/">Исходный код</a></li>
	  <li><a href="Downloads.html">Загрузить</a></li>
	  <li><a class="active" href="Documentation.html">Документация</a></li>
	  <li><a href="Donation.html">Поддержать разработку</a></li>
	  <li><a href="https://sourceforge.net/p/veracrypt/discussion/" target="_blank">Форум</a></li>
	</ul>
</div>

<div>
<p>
<a href="Documentation.html">Документация</a>
<img src="arrow_right.gif" alt=">>" style="margin-top: 5px">
<a href="Hash%20Algorithms.html">Алгоритмы хеширования</a>
<img src="arrow_right.gif" alt=">>" style="margin-top: 5px">
<a href="Streebog.html">Streebog</a>
</p></div>

<div class="wikidoc">
<h1>Хеш-алгоритм Streebog</h1>
<p>Streebog это семейство из двух алгоритмов хеширования – Streebog-256 и Streebog-512, определённых
в Национальном стандарте Российской Федерации&nbsp;<a href="https://www.tc26.ru/research/polozhenie/GOST_R_34_11-2012_eng.pdf">ГОСТ Р 34.11-2012</a>
– Информационная технология – Криптографическая защита информации – Функция хэширования. Он также
описан <a href="https://tools.ietf.org/html/rfc6986">здесь</a>. Это конкурент стандарта SHA-3,
разработанного Национальным институтом стандартов и технологий США (NIST).</p>
<p>В VeraCrypt используется только Streebog-512, размер вывода которого – 512 бит.</p>
</div>
</body></html>
='n528' href='#n528'>528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
/* crc32.c -- compute the CRC-32 of a data stream
 * Copyright (C) 1995-2022 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 *
 * This interleaved implementation of a CRC makes use of pipelined multiple
 * arithmetic-logic units, commonly found in modern CPU cores. It is due to
 * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution.
 */

/* @(#) $Id$ */

/*
  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
  protection on the static variables used to control the first-use generation
  of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
  first call get_crc_table() to initialize the tables before allowing more than
  one thread to use crc32().

  MAKECRCH can be #defined to write out crc32.h. A main() routine is also
  produced, so that this one source file can be compiled to an executable.
 */

#ifdef MAKECRCH
#  include <stdio.h>
#  ifndef DYNAMIC_CRC_TABLE
#    define DYNAMIC_CRC_TABLE
#  endif /* !DYNAMIC_CRC_TABLE */
#endif /* MAKECRCH */

#include "zutil.h"      /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */

 /*
  A CRC of a message is computed on N braids of words in the message, where
  each word consists of W bytes (4 or 8). If N is 3, for example, then three
  running sparse CRCs are calculated respectively on each braid, at these
  indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ...
  This is done starting at a word boundary, and continues until as many blocks
  of N * W bytes as are available have been processed. The results are combined
  into a single CRC at the end. For this code, N must be in the range 1..6 and
  W must be 4 or 8. The upper limit on N can be increased if desired by adding
  more #if blocks, extending the patterns apparent in the code. In addition,
  crc32.h would need to be regenerated, if the maximum N value is increased.

  N and W are chosen empirically by benchmarking the execution time on a given
  processor. The choices for N and W below were based on testing on Intel Kaby
  Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64
  Octeon II processors. The Intel, AMD, and ARM processors were all fastest
  with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4.
  They were all tested with either gcc or clang, all using the -O3 optimization
  level. Your mileage may vary.
 */

/* Define N */
#ifdef Z_TESTN
#  define N Z_TESTN
#else
#  define N 5
#endif
#if N < 1 || N > 6
#  error N must be in 1..6
#endif

/*
  z_crc_t must be at least 32 bits. z_word_t must be at least as long as
  z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and
  that bytes are eight bits.
 */

/*
  Define W and the associated z_word_t type. If W is not defined, then a
  braided calculation is not used, and the associated tables and code are not
  compiled.
 */
#ifdef Z_TESTW
#  if Z_TESTW-1 != -1
#    define W Z_TESTW
#  endif
#else
#  ifdef MAKECRCH
#    define W 8         /* required for MAKECRCH */
#  else
#    if defined(__x86_64__) || defined(__aarch64__)
#      define W 8
#    else
#      define W 4
#    endif
#  endif
#endif
#ifdef W
#  if W == 8 && defined(Z_U8)
     typedef Z_U8 z_word_t;
#  elif defined(Z_U4)
#    undef W
#    define W 4
     typedef Z_U4 z_word_t;
#  else
#    undef W
#  endif
#endif

/* If available, use the ARM processor CRC32 instruction. */
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8
#  define ARMCRC32
#endif

/* Local functions. */
local z_crc_t multmodp OF((z_crc_t a, z_crc_t b));
local z_crc_t x2nmodp OF((z_off64_t n, unsigned k));

#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
    local z_word_t byte_swap OF((z_word_t word));
#endif

#if defined(W) && !defined(ARMCRC32)
    local z_crc_t crc_word OF((z_word_t data));
    local z_word_t crc_word_big OF((z_word_t data));
#endif

#if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE))
/*
  Swap the bytes in a z_word_t to convert between little and big endian. Any
  self-respecting compiler will optimize this to a single machine byte-swap
  instruction, if one is available. This assumes that word_t is either 32 bits
  or 64 bits.
 */
local z_word_t byte_swap(word)
    z_word_t word;
{
#  if W == 8
    return
        (word & 0xff00000000000000) >> 56 |
        (word & 0xff000000000000) >> 40 |
        (word & 0xff0000000000) >> 24 |
        (word & 0xff00000000) >> 8 |
        (word & 0xff000000) << 8 |
        (word & 0xff0000) << 24 |
        (word & 0xff00) << 40 |
        (word & 0xff) << 56;
#  else   /* W == 4 */
    return
        (word & 0xff000000) >> 24 |
        (word & 0xff0000) >> 8 |
        (word & 0xff00) << 8 |
        (word & 0xff) << 24;
#  endif
}
#endif

/* CRC polynomial. */
#define POLY 0xedb88320         /* p(x) reflected, with x^32 implied */

#ifdef DYNAMIC_CRC_TABLE

local z_crc_t FAR crc_table[256];
local z_crc_t FAR x2n_table[32];
local void make_crc_table OF((void));
#ifdef W
   local z_word_t FAR crc_big_table[256];
   local z_crc_t FAR crc_braid_table[W][256];
   local z_word_t FAR crc_braid_big_table[W][256];
   local void braid OF((z_crc_t [][256], z_word_t [][256], int, int));
#endif
#ifdef MAKECRCH
   local void write_table OF((FILE *, const z_crc_t FAR *, int));
   local void write_table32hi OF((FILE *, const z_word_t FAR *, int));
   local void write_table64 OF((FILE *, const z_word_t FAR *, int));
#endif /* MAKECRCH */

/*
  Define a once() function depending on the availability of atomics. If this is
  compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in
  multiple threads, and if atomics are not available, then get_crc_table() must
  be called to initialize the tables and must return before any threads are
  allowed to compute or combine CRCs.
 */

/* Definition of once functionality. */
typedef struct once_s once_t;
local void once OF((once_t *, void (*)(void)));

/* Check for the availability of atomics. */
#if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \
    !defined(__STDC_NO_ATOMICS__)

#include <stdatomic.h>

/* Structure for once(), which must be initialized with ONCE_INIT. */
struct once_s {
    atomic_flag begun;
    atomic_int done;
};
#define ONCE_INIT {ATOMIC_FLAG_INIT, 0}

/*
  Run the provided init() function exactly once, even if multiple threads
  invoke once() at the same time. The state must be a once_t initialized with
  ONCE_INIT.
 */
local void once(state, init)
    once_t *state;
    void (*init)(void);
{
    if (!atomic_load(&state->done)) {
        if (atomic_flag_test_and_set(&state->begun))
            while (!atomic_load(&state->done))
                ;
        else {
            init();
            atomic_store(&state->done, 1);
        }
    }
}

#else   /* no atomics */

/* Structure for once(), which must be initialized with ONCE_INIT. */
struct once_s {
    volatile int begun;
    volatile int done;
};
#define ONCE_INIT {0, 0}

/* Test and set. Alas, not atomic, but tries to minimize the period of
   vulnerability. */
local int test_and_set OF((int volatile *));
local int test_and_set(flag)
    int volatile *flag;
{
    int was;

    was = *flag;
    *flag = 1;
    return was;
}

/* Run the provided init() function once. This is not thread-safe. */
local void once(state, init)
    once_t *state;
    void (*init)(void);
{
    if (!state->done) {
        if (test_and_set(&state->begun))
            while (!state->done)
                ;
        else {
            init();
            state->done = 1;
        }
    }
}

#endif

/* State for once(). */
local once_t made = ONCE_INIT;

/*
  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.

  Polynomials over GF(2) are represented in binary, one bit per coefficient,
  with the lowest powers in the most significant bit. Then adding polynomials
  is just exclusive-or, and multiplying a polynomial by x is a right shift by
  one. If we call the above polynomial p, and represent a byte as the
  polynomial q, also with the lowest power in the most significant bit (so the
  byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
  where a mod b means the remainder after dividing a by b.

  This calculation is done using the shift-register method of multiplying and
  taking the remainder. The register is initialized to zero, and for each
  incoming bit, x^32 is added mod p to the register if the bit is a one (where
  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
  (which is shifting right by one and adding x^32 mod p if the bit shifted out
  is a one). We start with the highest power (least significant bit) of q and
  repeat for all eight bits of q.

  The table is simply the CRC of all possible eight bit values. This is all the
  information needed to generate CRCs on data a byte at a time for all
  combinations of CRC register values and incoming bytes.
 */

local void make_crc_table()
{
    unsigned i, j, n;
    z_crc_t p;

    /* initialize the CRC of bytes tables */
    for (i = 0; i < 256; i++) {
        p = i;
        for (j = 0; j < 8; j++)
            p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
        crc_table[i] = p;
#ifdef W
        crc_big_table[i] = byte_swap(p);
#endif
    }

    /* initialize the x^2^n mod p(x) table */
    p = (z_crc_t)1 << 30;         /* x^1 */
    x2n_table[0] = p;
    for (n = 1; n < 32; n++)
        x2n_table[n] = p = multmodp(p, p);

#ifdef W
    /* initialize the braiding tables -- needs x2n_table[] */
    braid(crc_braid_table, crc_braid_big_table, N, W);
#endif

#ifdef MAKECRCH
    {
        /*
          The crc32.h header file contains tables for both 32-bit and 64-bit
          z_word_t's, and so requires a 64-bit type be available. In that case,
          z_word_t must be defined to be 64-bits. This code then also generates
          and writes out the tables for the case that z_word_t is 32 bits.
         */
#if !defined(W) || W != 8
#  error Need a 64-bit integer type in order to generate crc32.h.
#endif
        FILE *out;
        int k, n;
        z_crc_t ltl[8][256];
        z_word_t big[8][256];

        out = fopen("crc32.h", "w");
        if (out == NULL) return;

        /* write out little-endian CRC table to crc32.h */
        fprintf(out,
            "/* crc32.h -- tables for rapid CRC calculation\n"
            " * Generated automatically by crc32.c\n */\n"
            "\n"
            "local const z_crc_t FAR crc_table[] = {\n"
            "    ");
        write_table(out, crc_table, 256);
        fprintf(out,
            "};\n");

        /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */
        fprintf(out,
            "\n"
            "#ifdef W\n"
            "\n"
            "#if W == 8\n"
            "\n"
            "local const z_word_t FAR crc_big_table[] = {\n"
            "    ");
        write_table64(out, crc_big_table, 256);
        fprintf(out,
            "};\n");

        /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */
        fprintf(out,
            "\n"
            "#else /* W == 4 */\n"
            "\n"
            "local const z_word_t FAR crc_big_table[] = {\n"
            "    ");
        write_table32hi(out, crc_big_table, 256);
        fprintf(out,
            "};\n"
            "\n"
            "#endif\n");

        /* write out braid tables for each value of N */
        for (n = 1; n <= 6; n++) {
            fprintf(out,
            "\n"
            "#if N == %d\n", n);

            /* compute braid tables for this N and 64-bit word_t */
            braid(ltl, big, n, 8);

            /* write out braid tables for 64-bit z_word_t to crc32.h */
            fprintf(out,
            "\n"
            "#if W == 8\n"
            "\n"
            "local const z_crc_t FAR crc_braid_table[][256] = {\n");
            for (k = 0; k < 8; k++) {
                fprintf(out, "   {");
                write_table(out, ltl[k], 256);
                fprintf(out, "}%s", k < 7 ? ",\n" : "");
            }
            fprintf(out,
            "};\n"
            "\n"
            "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
            for (k = 0; k < 8; k++) {
                fprintf(out, "   {");
                write_table64(out, big[k], 256);
                fprintf(out, "}%s", k < 7 ? ",\n" : "");
            }
            fprintf(out,
            "};\n");

            /* compute braid tables for this N and 32-bit word_t */
            braid(ltl, big, n, 4);

            /* write out braid tables for 32-bit z_word_t to crc32.h */
            fprintf(out,
            "\n"
            "#else /* W == 4 */\n"
            "\n"
            "local const z_crc_t FAR crc_braid_table[][256] = {\n");
            for (k = 0; k < 4; k++) {
                fprintf(out, "   {");
                write_table(out, ltl[k], 256);
                fprintf(out, "}%s", k < 3 ? ",\n" : "");
            }
            fprintf(out,
            "};\n"
            "\n"
            "local const z_word_t FAR crc_braid_big_table[][256] = {\n");
            for (k = 0; k < 4; k++) {
                fprintf(out, "   {");
                write_table32hi(out, big[k], 256);
                fprintf(out, "}%s", k < 3 ? ",\n" : "");
            }
            fprintf(out,
            "};\n"
            "\n"
            "#endif\n"
            "\n"
            "#endif\n");
        }
        fprintf(out,
            "\n"
            "#endif\n");

        /* write out zeros operator table to crc32.h */
        fprintf(out,
            "\n"
            "local const z_crc_t FAR x2n_table[] = {\n"
            "    ");
        write_table(out, x2n_table, 32);
        fprintf(out,
            "};\n");
        fclose(out);
    }
#endif /* MAKECRCH */
}

#ifdef MAKECRCH

/*
   Write the 32-bit values in table[0..k-1] to out, five per line in
   hexadecimal separated by commas.
 */
local void write_table(out, table, k)
    FILE *out;
    const z_crc_t FAR *table;
    int k;
{
    int n;

    for (n = 0; n < k; n++)
        fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",
                (unsigned long)(table[n]),
                n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
}

/*
   Write the high 32-bits of each value in table[0..k-1] to out, five per line
   in hexadecimal separated by commas.
 */
local void write_table32hi(out, table, k)
FILE *out;
const z_word_t FAR *table;
int k;
{
    int n;

    for (n = 0; n < k; n++)
        fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ",
                (unsigned long)(table[n] >> 32),
                n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
}

/*
  Write the 64-bit values in table[0..k-1] to out, three per line in
  hexadecimal separated by commas. This assumes that if there is a 64-bit
  type, then there is also a long long integer type, and it is at least 64
  bits. If not, then the type cast and format string can be adjusted
  accordingly.
 */
local void write_table64(out, table, k)
    FILE *out;
    const z_word_t FAR *table;
    int k;
{
    int n;

    for (n = 0; n < k; n++)
        fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : "    ",
                (unsigned long long)(table[n]),
                n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
}

/* Actually do the deed. */
int main()
{
    make_crc_table();
    return 0;
}

#endif /* MAKECRCH */

#ifdef W
/*
  Generate the little and big-endian braid tables for the given n and z_word_t
  size w. Each array must have room for w blocks of 256 elements.
 */
local void braid(ltl, big, n, w)
    z_crc_t ltl[][256];
    z_word_t big[][256];
    int n;
    int w;
{
    int k;
    z_crc_t i, p, q;
    for (k = 0; k < w; k++) {
        p = x2nmodp((n * w + 3 - k) << 3, 0);
        ltl[k][0] = 0;
        big[w - 1 - k][0] = 0;
        for (i = 1; i < 256; i++) {
            ltl[k][i] = q = multmodp(i << 24, p);
            big[w - 1 - k][i] = byte_swap(q);
        }
    }
}
#endif

#else /* !DYNAMIC_CRC_TABLE */
/* ========================================================================
 * Tables for byte-wise and braided CRC-32 calculations, and a table of powers
 * of x for combining CRC-32s, all made by make_crc_table().
 */
#include "crc32.h"
#endif /* DYNAMIC_CRC_TABLE */

/* ========================================================================
 * Routines used for CRC calculation. Some are also required for the table
 * generation above.
 */

/*
  Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial,
  reflected. For speed, this requires that a not be zero.
 */
local z_crc_t multmodp(a, b)
    z_crc_t a;
    z_crc_t b;
{
    z_crc_t m, p;

    m = (z_crc_t)1 << 31;
    p = 0;
    for (;;) {
        if (a & m) {
            p ^= b;
            if ((a & (m - 1)) == 0)
                break;
        }
        m >>= 1;
        b = b & 1 ? (b >> 1) ^ POLY : b >> 1;
    }
    return p;
}

/*
  Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been
  initialized.
 */
local z_crc_t x2nmodp(n, k)
    z_off64_t n;
    unsigned k;
{
    z_crc_t p;

    p = (z_crc_t)1 << 31;           /* x^0 == 1 */
    while (n) {
        if (n & 1)
            p = multmodp(x2n_table[k & 31], p);
        n >>= 1;
        k++;
    }
    return p;
}

/* =========================================================================
 * This function can be used by asm versions of crc32(), and to force the
 * generation of the CRC tables in a threaded application.
 */
const z_crc_t FAR * ZEXPORT get_crc_table()
{
#ifdef DYNAMIC_CRC_TABLE
    once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */
    return (const z_crc_t FAR *)crc_table;
}

/* =========================================================================
 * Use ARM machine instructions if available. This will compute the CRC about
 * ten times faster than the braided calculation. This code does not check for
 * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will
 * only be defined if the compilation specifies an ARM processor architecture
 * that has the instructions. For example, compiling with -march=armv8.1-a or
 * -march=armv8-a+crc, or -march=native if the compile machine has the crc32
 * instructions.
 */
#ifdef ARMCRC32

/*
   Constants empirically determined to maximize speed. These values are from
   measurements on a Cortex-A57. Your mileage may vary.
 */
#define Z_BATCH 3990                /* number of words in a batch */
#define Z_BATCH_ZEROS 0xa10d3d0c    /* computed from Z_BATCH = 3990 */
#define Z_BATCH_MIN 800             /* fewest words in a final batch */

unsigned long ZEXPORT crc32_z(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    z_size_t len;
{
    z_crc_t val;
    z_word_t crc1, crc2;
    const z_word_t *word;
    z_word_t val0, val1, val2;
    z_size_t last, last2, i;
    z_size_t num;

    /* Return initial CRC, if requested. */
    if (buf == Z_NULL) return 0;

#ifdef DYNAMIC_CRC_TABLE
    once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */

    /* Pre-condition the CRC */
    crc = (~crc) & 0xffffffff;

    /* Compute the CRC up to a word boundary. */
    while (len && ((z_size_t)buf & 7) != 0) {
        len--;
        val = *buf++;
        __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
    }

    /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */
    word = (z_word_t const *)buf;
    num = len >> 3;
    len &= 7;

    /* Do three interleaved CRCs to realize the throughput of one crc32x
       instruction per cycle. Each CRC is calculated on Z_BATCH words. The
       three CRCs are combined into a single CRC after each set of batches. */
    while (num >= 3 * Z_BATCH) {
        crc1 = 0;
        crc2 = 0;
        for (i = 0; i < Z_BATCH; i++) {
            val0 = word[i];
            val1 = word[i + Z_BATCH];
            val2 = word[i + 2 * Z_BATCH];
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
        }
        word += 3 * Z_BATCH;
        num -= 3 * Z_BATCH;
        crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1;
        crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2;
    }

    /* Do one last smaller batch with the remaining words, if there are enough
       to pay for the combination of CRCs. */
    last = num / 3;
    if (last >= Z_BATCH_MIN) {
        last2 = last << 1;
        crc1 = 0;
        crc2 = 0;
        for (i = 0; i < last; i++) {
            val0 = word[i];
            val1 = word[i + last];
            val2 = word[i + last2];
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1));
            __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2));
        }
        word += 3 * last;
        num -= 3 * last;
        val = x2nmodp(last, 6);
        crc = multmodp(val, crc) ^ crc1;
        crc = multmodp(val, crc) ^ crc2;
    }

    /* Compute the CRC on any remaining words. */
    for (i = 0; i < num; i++) {
        val0 = word[i];
        __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0));
    }
    word += num;

    /* Complete the CRC on any remaining bytes. */
    buf = (const unsigned char FAR *)word;
    while (len) {
        len--;
        val = *buf++;
        __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val));
    }

    /* Return the CRC, post-conditioned. */
    return crc ^ 0xffffffff;
}

#else

#ifdef W

/*
  Return the CRC of the W bytes in the word_t data, taking the
  least-significant byte of the word as the first byte of data, without any pre
  or post conditioning. This is used to combine the CRCs of each braid.
 */
local z_crc_t crc_word(data)
    z_word_t data;
{
    int k;
    for (k = 0; k < W; k++)
        data = (data >> 8) ^ crc_table[data & 0xff];
    return (z_crc_t)data;
}

local z_word_t crc_word_big(data)
    z_word_t data;
{
    int k;
    for (k = 0; k < W; k++)
        data = (data << 8) ^
            crc_big_table[(data >> ((W - 1) << 3)) & 0xff];
    return data;
}

#endif

/* ========================================================================= */
unsigned long ZEXPORT crc32_z(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    z_size_t len;
{
    /* Return initial CRC, if requested. */
    if (buf == Z_NULL) return 0;

#ifdef DYNAMIC_CRC_TABLE
    once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */

    /* Pre-condition the CRC */
    crc = (~crc) & 0xffffffff;

#ifdef W

    /* If provided enough bytes, do a braided CRC calculation. */
    if (len >= N * W + W - 1) {
        z_size_t blks;
        z_word_t const *words;
        unsigned endian;
        int k;

        /* Compute the CRC up to a z_word_t boundary. */
        while (len && ((z_size_t)buf & (W - 1)) != 0) {
            len--;
            crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        }

        /* Compute the CRC on as many N z_word_t blocks as are available. */
        blks = len / (N * W);
        len -= blks * N * W;
        words = (z_word_t const *)buf;

        /* Do endian check at execution time instead of compile time, since ARM
           processors can change the endianess at execution time. If the
           compiler knows what the endianess will be, it can optimize out the
           check and the unused branch. */
        endian = 1;
        if (*(unsigned char *)&endian) {
            /* Little endian. */

            z_crc_t crc0;
            z_word_t word0;
#if N > 1
            z_crc_t crc1;
            z_word_t word1;
#if N > 2
            z_crc_t crc2;
            z_word_t word2;
#if N > 3
            z_crc_t crc3;
            z_word_t word3;
#if N > 4
            z_crc_t crc4;
            z_word_t word4;
#if N > 5
            z_crc_t crc5;
            z_word_t word5;
#endif
#endif
#endif
#endif
#endif

            /* Initialize the CRC for each braid. */
            crc0 = crc;
#if N > 1
            crc1 = 0;
#if N > 2
            crc2 = 0;
#if N > 3
            crc3 = 0;
#if N > 4
            crc4 = 0;
#if N > 5
            crc5 = 0;
#endif
#endif
#endif
#endif
#endif

            /*
              Process the first blks-1 blocks, computing the CRCs on each braid
              independently.
             */
            while (--blks) {
                /* Load the word for each braid into registers. */
                word0 = crc0 ^ words[0];
#if N > 1
                word1 = crc1 ^ words[1];
#if N > 2
                word2 = crc2 ^ words[2];
#if N > 3
                word3 = crc3 ^ words[3];
#if N > 4
                word4 = crc4 ^ words[4];
#if N > 5
                word5 = crc5 ^ words[5];
#endif
#endif
#endif
#endif
#endif
                words += N;

                /* Compute and update the CRC for each word. The loop should
                   get unrolled. */
                crc0 = crc_braid_table[0][word0 & 0xff];
#if N > 1
                crc1 = crc_braid_table[0][word1 & 0xff];
#if N > 2
                crc2 = crc_braid_table[0][word2 & 0xff];
#if N > 3
                crc3 = crc_braid_table[0][word3 & 0xff];
#if N > 4
                crc4 = crc_braid_table[0][word4 & 0xff];
#if N > 5
                crc5 = crc_braid_table[0][word5 & 0xff];
#endif
#endif
#endif
#endif
#endif
                for (k = 1; k < W; k++) {
                    crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff];
#if N > 1
                    crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff];
#if N > 2
                    crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff];
#if N > 3
                    crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff];
#if N > 4
                    crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff];
#if N > 5
                    crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff];
#endif
#endif
#endif
#endif
#endif
                }
            }

            /*
              Process the last block, combining the CRCs of the N braids at the
              same time.
             */
            crc = crc_word(crc0 ^ words[0]);
#if N > 1
            crc = crc_word(crc1 ^ words[1] ^ crc);
#if N > 2
            crc = crc_word(crc2 ^ words[2] ^ crc);
#if N > 3
            crc = crc_word(crc3 ^ words[3] ^ crc);
#if N > 4
            crc = crc_word(crc4 ^ words[4] ^ crc);
#if N > 5
            crc = crc_word(crc5 ^ words[5] ^ crc);
#endif
#endif
#endif
#endif
#endif
            words += N;
        }
        else {
            /* Big endian. */

            z_word_t crc0, word0, comb;
#if N > 1
            z_word_t crc1, word1;
#if N > 2
            z_word_t crc2, word2;
#if N > 3
            z_word_t crc3, word3;
#if N > 4
            z_word_t crc4, word4;
#if N > 5
            z_word_t crc5, word5;
#endif
#endif
#endif
#endif
#endif

            /* Initialize the CRC for each braid. */
            crc0 = byte_swap(crc);
#if N > 1
            crc1 = 0;
#if N > 2
            crc2 = 0;
#if N > 3
            crc3 = 0;
#if N > 4
            crc4 = 0;
#if N > 5
            crc5 = 0;
#endif
#endif
#endif
#endif
#endif

            /*
              Process the first blks-1 blocks, computing the CRCs on each braid
              independently.
             */
            while (--blks) {
                /* Load the word for each braid into registers. */
                word0 = crc0 ^ words[0];
#if N > 1
                word1 = crc1 ^ words[1];
#if N > 2
                word2 = crc2 ^ words[2];
#if N > 3
                word3 = crc3 ^ words[3];
#if N > 4
                word4 = crc4 ^ words[4];
#if N > 5
                word5 = crc5 ^ words[5];
#endif
#endif
#endif
#endif
#endif
                words += N;

                /* Compute and update the CRC for each word. The loop should
                   get unrolled. */
                crc0 = crc_braid_big_table[0][word0 & 0xff];
#if N > 1
                crc1 = crc_braid_big_table[0][word1 & 0xff];
#if N > 2
                crc2 = crc_braid_big_table[0][word2 & 0xff];
#if N > 3
                crc3 = crc_braid_big_table[0][word3 & 0xff];
#if N > 4
                crc4 = crc_braid_big_table[0][word4 & 0xff];
#if N > 5
                crc5 = crc_braid_big_table[0][word5 & 0xff];
#endif
#endif
#endif
#endif
#endif
                for (k = 1; k < W; k++) {
                    crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff];
#if N > 1
                    crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff];
#if N > 2
                    crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff];
#if N > 3
                    crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff];
#if N > 4
                    crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff];
#if N > 5
                    crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff];
#endif
#endif
#endif
#endif
#endif
                }
            }

            /*
              Process the last block, combining the CRCs of the N braids at the
              same time.
             */
            comb = crc_word_big(crc0 ^ words[0]);
#if N > 1
            comb = crc_word_big(crc1 ^ words[1] ^ comb);
#if N > 2
            comb = crc_word_big(crc2 ^ words[2] ^ comb);
#if N > 3
            comb = crc_word_big(crc3 ^ words[3] ^ comb);
#if N > 4
            comb = crc_word_big(crc4 ^ words[4] ^ comb);
#if N > 5
            comb = crc_word_big(crc5 ^ words[5] ^ comb);
#endif
#endif
#endif
#endif
#endif
            words += N;
            crc = byte_swap(comb);
        }

        /*
          Update the pointer to the remaining bytes to process.
         */
        buf = (unsigned char const *)words;
    }

#endif /* W */

    /* Complete the computation of the CRC on any remaining bytes. */
    while (len >= 8) {
        len -= 8;
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
    }
    while (len) {
        len--;
        crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff];
    }

    /* Return the CRC, post-conditioned. */
    return crc ^ 0xffffffff;
}

#endif

/* ========================================================================= */
unsigned long ZEXPORT crc32(crc, buf, len)
    unsigned long crc;
    const unsigned char FAR *buf;
    uInt len;
{
    return crc32_z(crc, buf, len);
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off64_t len2;
{
#ifdef DYNAMIC_CRC_TABLE
    once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */
    return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff);
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
    uLong crc1;
    uLong crc2;
    z_off_t len2;
{
    return crc32_combine64(crc1, crc2, (z_off64_t)len2);
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine_gen64(len2)
    z_off64_t len2;
{
#ifdef DYNAMIC_CRC_TABLE
    once(&made, make_crc_table);
#endif /* DYNAMIC_CRC_TABLE */
    return x2nmodp(len2, 3);
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine_gen(len2)
    z_off_t len2;
{
    return crc32_combine_gen64((z_off64_t)len2);
}

/* ========================================================================= */
uLong ZEXPORT crc32_combine_op(crc1, crc2, op)
    uLong crc1;
    uLong crc2;
    uLong op;
{
    return multmodp(op, crc1) ^ (crc2 & 0xffffffff);
}