VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Boot/Windows/BootDiskIo.h
blob: d4e8cf04e33dd31512762e7ed10a23a7f684f249 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#ifndef TC_HEADER_Boot_BootDiskIo
#define TC_HEADER_Boot_BootDiskIo

#include "Bios.h"
#include "BootDebug.h"
#include "BootDefs.h"

#define TC_MAX_BIOS_DISK_IO_RETRIES 5

enum
{
	BiosResultEccCorrected = 0x11
};

#pragma pack(1)

struct PartitionEntryMBR
{
	byte BootIndicator;

	byte StartHead;
	byte StartCylSector;
	byte StartCylinder;

	byte Type;

	byte EndHead;
	byte EndSector;
	byte EndCylinder;

	uint32 StartLBA;
	uint32 SectorCountLBA;
};

struct MBR
{
	byte Code[446];
	PartitionEntryMBR Partitions[4];
	uint16 Signature;
};

struct BiosLbaPacket
{
	byte Size;
	byte Reserved;
	uint16 SectorCount;
	uint32 Buffer;
	uint64 Sector;
};

#pragma pack()


struct ChsAddress
{
	uint16 Cylinder;
	byte Head;
	byte Sector;
};

struct Partition
{
	byte Number;
	byte Drive;
	bool Active;
	uint64 EndSector;
	bool Primary;
	uint64 SectorCount;
	uint64 StartSector;
	byte Type;
};

struct DriveGeometry
{
	uint16 Cylinders;
	byte Heads;
	byte Sectors;
};


#ifdef TC_BOOT_DEBUG_ENABLED
void AcquireSectorBuffer ();
void ReleaseSectorBuffer ();
#else
#	define AcquireSectorBuffer()
#	define ReleaseSectorBuffer()
#endif

void ChsToLba (const DriveGeometry &geometry, const ChsAddress &chs, uint64 &lba);
bool GetActivePartition (byte drive);
BiosResult GetDriveGeometry (byte drive, DriveGeometry &geometry, bool silent = false);
BiosResult GetDrivePartitions (byte drive, Partition *partitionArray, size_t partitionArrayCapacity, size_t &partitionCount, bool activeOnly = false, Partition *findPartitionFollowingThis = nullptr, bool silent = false);
bool IsLbaSupported (byte drive);
void LbaToChs (const DriveGeometry &geometry, const uint64 &lba, ChsAddress &chs);
void Print (const ChsAddress &chs);
void PrintDiskError (BiosResult error, bool write, byte drive, const uint64 *sector, const ChsAddress *chs = nullptr);
void PrintSectorCountInMB (const uint64 &sectorCount);
BiosResult ReadWriteMBR (bool write, byte drive, bool silent = false);
BiosResult ReadSectors (uint16 bufferSegment, uint16 bufferOffset, byte drive, const uint64 &sector, uint16 sectorCount, bool silent = false);
BiosResult ReadSectors (byte *buffer, byte drive, const uint64 &sector, uint16 sectorCount, bool silent = false);
BiosResult ReadSectors (byte *buffer, byte drive, const ChsAddress &chs, byte sectorCount, bool silent = false);
BiosResult ReadWriteSectors (bool write, uint16 bufferSegment, uint16 bufferOffset, byte drive, const uint64 &sector, uint16 sectorCount, bool silent);
BiosResult WriteSectors (byte *buffer, byte drive, const uint64 &sector, uint16 sectorCount, bool silent = false);
BiosResult WriteSectors (byte *buffer, byte drive, const ChsAddress &chs, byte sectorCount, bool silent = false);

extern byte SectorBuffer[TC_LB_SIZE];

#endif // TC_HEADER_Boot_BootDiskIo
t>(rot)), _mm_srli_epi32(m_reg, static_cast<int>(32-rot))); } void rotate_right(size_t rot) { rotate_left(32 - rot); } void operator+=(const SIMD_4x32& other) { m_reg = _mm_add_epi32(m_reg, other.m_reg); } SIMD_4x32 operator+(const SIMD_4x32& other) const { return SIMD_4x32(_mm_add_epi32(m_reg, other.m_reg)); } void operator-=(const SIMD_4x32& other) { m_reg = _mm_sub_epi32(m_reg, other.m_reg); } SIMD_4x32 operator-(const SIMD_4x32& other) const { return SIMD_4x32(_mm_sub_epi32(m_reg, other.m_reg)); } void operator^=(const SIMD_4x32& other) { m_reg = _mm_xor_si128(m_reg, other.m_reg); } SIMD_4x32 operator^(const SIMD_4x32& other) const { return SIMD_4x32(_mm_xor_si128(m_reg, other.m_reg)); } void operator|=(const SIMD_4x32& other) { m_reg = _mm_or_si128(m_reg, other.m_reg); } SIMD_4x32 operator&(const SIMD_4x32& other) { return SIMD_4x32(_mm_and_si128(m_reg, other.m_reg)); } void operator&=(const SIMD_4x32& other) { m_reg = _mm_and_si128(m_reg, other.m_reg); } SIMD_4x32 operator<<(size_t shift) const { return SIMD_4x32(_mm_slli_epi32(m_reg, static_cast<int>(shift))); } SIMD_4x32 operator>>(size_t shift) const { return SIMD_4x32(_mm_srli_epi32(m_reg, static_cast<int>(shift))); } SIMD_4x32 operator~() const { return SIMD_4x32(_mm_xor_si128(m_reg, _mm_set1_epi32(0xFFFFFFFF))); } // (~reg) & other SIMD_4x32 andc(const SIMD_4x32& other) { return SIMD_4x32(_mm_andnot_si128(m_reg, other.m_reg)); } SIMD_4x32 bswap() const { __m128i T = m_reg; T = _mm_shufflehi_epi16(T, _MM_SHUFFLE(2, 3, 0, 1)); T = _mm_shufflelo_epi16(T, _MM_SHUFFLE(2, 3, 0, 1)); return SIMD_4x32(_mm_or_si128(_mm_srli_epi16(T, 8), _mm_slli_epi16(T, 8))); } static void transpose(SIMD_4x32& B0, SIMD_4x32& B1, SIMD_4x32& B2, SIMD_4x32& B3) { __m128i T0 = _mm_unpacklo_epi32(B0.m_reg, B1.m_reg); __m128i T1 = _mm_unpacklo_epi32(B2.m_reg, B3.m_reg); __m128i T2 = _mm_unpackhi_epi32(B0.m_reg, B1.m_reg); __m128i T3 = _mm_unpackhi_epi32(B2.m_reg, B3.m_reg); B0.m_reg = _mm_unpacklo_epi64(T0, T1); B1.m_reg = _mm_unpackhi_epi64(T0, T1); B2.m_reg = _mm_unpacklo_epi64(T2, T3); B3.m_reg = _mm_unpackhi_epi64(T2, T3); } private: explicit SIMD_4x32(__m128i in) { m_reg = in; } __m128i m_reg; }; typedef SIMD_4x32 SIMD_32; #define key_xor(round, B0, B1, B2, B3) \ do { \ B0 ^= SIMD_32(round_key[4*round ]); \ B1 ^= SIMD_32(round_key[4*round+1]); \ B2 ^= SIMD_32(round_key[4*round+2]); \ B3 ^= SIMD_32(round_key[4*round+3]); \ } while(0); /* * Serpent's linear transformations */ #define transform(B0, B1, B2, B3) \ do { \ B0.rotate_left(13); \ B2.rotate_left(3); \ B1 ^= B0 ^ B2; \ B3 ^= B2 ^ (B0 << 3); \ B1.rotate_left(1); \ B3.rotate_left(7); \ B0 ^= B1 ^ B3; \ B2 ^= B3 ^ (B1 << 7); \ B0.rotate_left(5); \ B2.rotate_left(22); \ } while(0); #define i_transform(B0, B1, B2, B3) \ do { \ B2.rotate_right(22); \ B0.rotate_right(5); \ B2 ^= B3 ^ (B1 << 7); \ B0 ^= B1 ^ B3; \ B3.rotate_right(7); \ B1.rotate_right(1); \ B3 ^= B2 ^ (B0 << 3); \ B1 ^= B0 ^ B2; \ B2.rotate_right(3); \ B0.rotate_right(13); \ } while(0); /* * SIMD Serpent Encryption of 4 blocks in parallel */ extern "C" void serpent_simd_encrypt_blocks_4(const unsigned __int8 in[], unsigned __int8 out[], unsigned __int32* round_key) { SIMD_32 B0 = SIMD_32::load_le(in); SIMD_32 B1 = SIMD_32::load_le(in + 16); SIMD_32 B2 = SIMD_32::load_le(in + 32); SIMD_32 B3 = SIMD_32::load_le(in + 48); SIMD_32::transpose(B0, B1, B2, B3); key_xor( 0,B0,B1,B2,B3); SBoxE1(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 1,B0,B1,B2,B3); SBoxE2(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 2,B0,B1,B2,B3); SBoxE3(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 3,B0,B1,B2,B3); SBoxE4(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 4,B0,B1,B2,B3); SBoxE5(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 5,B0,B1,B2,B3); SBoxE6(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 6,B0,B1,B2,B3); SBoxE7(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 7,B0,B1,B2,B3); SBoxE8(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 8,B0,B1,B2,B3); SBoxE1(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor( 9,B0,B1,B2,B3); SBoxE2(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(10,B0,B1,B2,B3); SBoxE3(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(11,B0,B1,B2,B3); SBoxE4(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(12,B0,B1,B2,B3); SBoxE5(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(13,B0,B1,B2,B3); SBoxE6(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(14,B0,B1,B2,B3); SBoxE7(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(15,B0,B1,B2,B3); SBoxE8(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(16,B0,B1,B2,B3); SBoxE1(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(17,B0,B1,B2,B3); SBoxE2(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(18,B0,B1,B2,B3); SBoxE3(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(19,B0,B1,B2,B3); SBoxE4(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(20,B0,B1,B2,B3); SBoxE5(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(21,B0,B1,B2,B3); SBoxE6(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(22,B0,B1,B2,B3); SBoxE7(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(23,B0,B1,B2,B3); SBoxE8(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(24,B0,B1,B2,B3); SBoxE1(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(25,B0,B1,B2,B3); SBoxE2(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(26,B0,B1,B2,B3); SBoxE3(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(27,B0,B1,B2,B3); SBoxE4(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(28,B0,B1,B2,B3); SBoxE5(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(29,B0,B1,B2,B3); SBoxE6(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(30,B0,B1,B2,B3); SBoxE7(SIMD_32,B0,B1,B2,B3); transform(B0,B1,B2,B3); key_xor(31,B0,B1,B2,B3); SBoxE8(SIMD_32,B0,B1,B2,B3); key_xor(32,B0,B1,B2,B3); SIMD_32::transpose(B0, B1, B2, B3); B0.store_le(out); B1.store_le(out + 16); B2.store_le(out + 32); B3.store_le(out + 48); } /* * SIMD Serpent Decryption of 4 blocks in parallel */ extern "C" void serpent_simd_decrypt_blocks_4(const unsigned __int8 in[], unsigned __int8 out[], unsigned __int32* round_key) { SIMD_32 B0 = SIMD_32::load_le(in); SIMD_32 B1 = SIMD_32::load_le(in + 16); SIMD_32 B2 = SIMD_32::load_le(in + 32); SIMD_32 B3 = SIMD_32::load_le(in + 48); SIMD_32::transpose(B0, B1, B2, B3); key_xor(32,B0,B1,B2,B3); SBoxD8(SIMD_32,B0,B1,B2,B3); key_xor(31,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD7(SIMD_32,B0,B1,B2,B3); key_xor(30,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD6(SIMD_32,B0,B1,B2,B3); key_xor(29,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD5(SIMD_32,B0,B1,B2,B3); key_xor(28,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD4(SIMD_32,B0,B1,B2,B3); key_xor(27,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD3(SIMD_32,B0,B1,B2,B3); key_xor(26,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD2(SIMD_32,B0,B1,B2,B3); key_xor(25,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD1(SIMD_32,B0,B1,B2,B3); key_xor(24,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD8(SIMD_32,B0,B1,B2,B3); key_xor(23,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD7(SIMD_32,B0,B1,B2,B3); key_xor(22,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD6(SIMD_32,B0,B1,B2,B3); key_xor(21,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD5(SIMD_32,B0,B1,B2,B3); key_xor(20,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD4(SIMD_32,B0,B1,B2,B3); key_xor(19,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD3(SIMD_32,B0,B1,B2,B3); key_xor(18,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD2(SIMD_32,B0,B1,B2,B3); key_xor(17,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD1(SIMD_32,B0,B1,B2,B3); key_xor(16,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD8(SIMD_32,B0,B1,B2,B3); key_xor(15,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD7(SIMD_32,B0,B1,B2,B3); key_xor(14,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD6(SIMD_32,B0,B1,B2,B3); key_xor(13,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD5(SIMD_32,B0,B1,B2,B3); key_xor(12,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD4(SIMD_32,B0,B1,B2,B3); key_xor(11,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD3(SIMD_32,B0,B1,B2,B3); key_xor(10,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD2(SIMD_32,B0,B1,B2,B3); key_xor( 9,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD1(SIMD_32,B0,B1,B2,B3); key_xor( 8,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD8(SIMD_32,B0,B1,B2,B3); key_xor( 7,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD7(SIMD_32,B0,B1,B2,B3); key_xor( 6,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD6(SIMD_32,B0,B1,B2,B3); key_xor( 5,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD5(SIMD_32,B0,B1,B2,B3); key_xor( 4,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD4(SIMD_32,B0,B1,B2,B3); key_xor( 3,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD3(SIMD_32,B0,B1,B2,B3); key_xor( 2,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD2(SIMD_32,B0,B1,B2,B3); key_xor( 1,B0,B1,B2,B3); i_transform(B0,B1,B2,B3); SBoxD1(SIMD_32,B0,B1,B2,B3); key_xor( 0,B0,B1,B2,B3); SIMD_32::transpose(B0, B1, B2, B3); B0.store_le(out); B1.store_le(out + 16); B2.store_le(out + 32); B3.store_le(out + 48); } #undef key_xor #undef transform #undef i_transform #endif