VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Boot/Windows/Makefile
blob: 9ae55272c0f63b4189a6294535542ddc4ffb514e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#
# Derived from source code of TrueCrypt 7.1a, which is
# Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
# by the TrueCrypt License 3.0.
#
# Modifications and additions to the original source code (contained in this file) 
# and all other portions of this file are Copyright (c) 2013-2015 IDRIX
# and are governed by the Apache License 2.0 the full text of which is
# contained in the file License.txt included in VeraCrypt binary and source
# code distribution packages.

PROJ = BootLoader
.SILENT:

!ifndef MSVC16_ROOT
!error Environment variable MSVC16_ROOT must point to the installation directory of MS Visual C++ 1.5
!endif

ENVPATH = $(PATH)

CC = $(MSVC16_ROOT)\bin\cl.exe
LD = $(MSVC16_ROOT)\bin\link.exe

AFLAGS = /nologo /omf

CFLAGS = /nologo /W3 /Fc /I "$(MSVC16_ROOT)\Include" /I"..\..\.." /I"..\..\..\Common" /I"..\..\..\Crypto"
CFLAGS = $(CFLAGS) /D __int8=char /D __int16=int /D __int32=long /D BOOL=char /D FALSE=0 /D TRUE=1
CFLAGS = $(CFLAGS) /D LITTLE_ENDIAN=1234 /D BYTE_ORDER=1234 /D TC_WINDOWS_BOOT /D TC_MINIMIZE_CODE_SIZE /D TC_NO_COMPILER_INT64
CFLAGS = $(CFLAGS) /D malloc=malloc_NA

LFLAGS = /NOLOGO /ONERROR:NOEXE /NOI /BATCH

OBJDIR = Release

!ifdef RESCUE_DISK
OBJDIR = Rescue
CFLAGS = $(CFLAGS) /D TC_WINDOWS_BOOT_RESCUE_DISK_MODE
!endif

!ifdef SINGLE_CIPHER
OBJDIR = $(OBJDIR)_$(SINGLE_CIPHER)
CFLAGS = $(CFLAGS) /D TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE /D TC_WINDOWS_BOOT_$(SINGLE_CIPHER)
!endif

!ifdef SINGLE_PRF
OBJDIR = $(OBJDIR)_$(SINGLE_PRF)
CFLAGS = $(CFLAGS) /D TC_WINDOWS_BOOT_$(SINGLE_PRF)
!else
CFLAGS = $(CFLAGS) /D TC_WINDOWS_BOOT_RIPEMD160
!endif

OUTDIR = $(OBJDIR)
TARGETEXT = com
TARGETS = $(OUTDIR)\BootDefs.i $(OUTDIR)\BootSector.bin $(OUTDIR)\Decompressor.com
CFLAGS = $(CFLAGS) /AT /Zl /f- /G3 /Oe /Os /Ob1 /OV0 /Gs /Gf /Gy /D NDEBUG
LFLAGS = $(LFLAGS) /NOD /NOE /TINY
OBJS = $(OUTDIR)\BootCrt.obj
LIBS = slibce

!if 1
SRCDIR = ..
!else
SRCDIR = $(MAKEDIR)
!endif

TARGETS = $(TARGETS) $(OUTDIR)\$(PROJ).$(TARGETEXT)

OBJS = $(OBJS) $(OUTDIR)\BootConfig.obj
OBJS = $(OBJS) $(OUTDIR)\BootConsoleIo.obj
OBJS = $(OBJS) $(OUTDIR)\BootDebug.obj
OBJS = $(OBJS) $(OUTDIR)\BootDiskIo.obj
OBJS = $(OBJS) $(OUTDIR)\BootEncryptedIo.obj
OBJS = $(OBJS) $(OUTDIR)\BootMain.obj
OBJS = $(OBJS) $(OUTDIR)\BootMemory.obj
OBJS = $(OBJS) $(OUTDIR)\IntFilter.obj
OBJS = $(OBJS) $(OUTDIR)\Platform.obj

OBJS = $(OBJS) $(OUTDIR)\Crc.obj
OBJS = $(OBJS) $(OUTDIR)\Crypto.obj
OBJS = $(OBJS) $(OUTDIR)\Endian.obj
OBJS = $(OBJS) $(OUTDIR)\Pkcs5.obj
OBJS = $(OBJS) $(OUTDIR)\Volumes.obj
OBJS = $(OBJS) $(OUTDIR)\Xts.obj

!if "$(SINGLE_PRF)" == "SHA2"
OBJS = $(OBJS) $(OUTDIR)\Sha2Small.obj
!else
OBJS = $(OBJS) $(OUTDIR)\Rmd160.obj
!endif

!if !DEFINED (SINGLE_CIPHER)
OBJS = $(OBJS) $(OUTDIR)\AesSmall.obj
!else if "$(SINGLE_CIPHER)" == "AES"
OBJS = $(OBJS) $(OUTDIR)\Aes_hw_cpu.obj
OBJS = $(OBJS) $(OUTDIR)\AesSmall_x86.obj
OBJS = $(OBJS) $(OUTDIR)\Aestab.obj
!endif

!if !DEFINED (SINGLE_CIPHER) || "$(SINGLE_CIPHER)" == "SERPENT"
OBJS = $(OBJS) $(OUTDIR)\Serpent.obj
!endif

!if !DEFINED (SINGLE_CIPHER) || "$(SINGLE_CIPHER)" == "TWOFISH"
OBJS = $(OBJS) $(OUTDIR)\Twofish.obj
!endif


all: env $(TARGETS)

env:
	set INCLUDE=.
	set LIB=.
	set LIBPATH=.
	
clean:
	-del /q /s $(OBJDIR) >NUL:


.asm{$(OUTDIR)}.obj:
	cd $(OBJDIR)
	$(AS) $(AFLAGS) /c "$(SRCDIR)\$<"
	cd ..

{..\..\Crypto}.asm{$(OUTDIR)}.obj:
	cd $(OBJDIR)
	echo $(<F)
	nasm.exe -Xvc -f obj -Ox -o "$(<B).obj" -l "$(<B).lst" "$(SRCDIR)\$<"
	cd ..

{..\..\Crypto}.c{$(OUTDIR)}.obj:
	cd $(OBJDIR)
	set PATH=.
	$(CC) $(CFLAGS) /c "$(SRCDIR)\$<"
	set PATH=$(ENVPATH)
	cd ..
	
{..\..\Common}.c{$(OUTDIR)}.obj:
	cd $(OBJDIR)
	set PATH=.
	$(CC) $(CFLAGS) /c "$(SRCDIR)\$<"
	set PATH=$(ENVPATH)
	cd ..

.c{$(OUTDIR)}.obj:
	cd $(OBJDIR)
	set PATH=.
	$(CC) $(CFLAGS) /c "$(SRCDIR)\$<"
	set PATH=$(ENVPATH)
	cd ..
			
.cpp{$(OUTDIR)}.obj:
	cd $(OBJDIR)
	set PATH=.
	$(CC) $(CFLAGS) /c "$(SRCDIR)\$<"
	set PATH=$(ENVPATH)
	cd ..

$(OUTDIR)\BootDefs.i: BootDefs.h
	cd $(OBJDIR)
	set PATH=.
	$(CC) $(CFLAGS) /D TC_ASM_PREPROCESS /P /EP "$(SRCDIR)\BootDefs.h"
	set PATH=$(ENVPATH)
	cd ..
	
$(OUTDIR)\BootSector.bin: $(OUTDIR)\BootSector.obj
	cd $(OBJDIR)
	$(LD) $(LFLAGS) BootSector.obj,BootSector.bin,,,, >NUL:
	-dd.exe conv=notrunc bs=512 if=BootSector.bin of=$(PROJ).flp 2>NUL:
	cd ..

$(OUTDIR)\Decompressor.com: $(OUTDIR)\BootCrt.obj $(OUTDIR)\Decompressor.obj
	cd $(OBJDIR)
	$(LD) $(LFLAGS) BootCrt.obj Decompressor.obj,Decompressor.com,Decompressor.map,$(MSVC16_ROOT)\lib\+slibce,,
	-dd.exe conv=notrunc,sync bs=512 seek=1 if=Decompressor.com of=$(PROJ).flp 2>NUL:
	cd ..

$(OUTDIR)\$(PROJ).$(TARGETEXT): $(OBJS)
	@echo Linking...
	cd $(OBJDIR)
	
	echo >NUL: @<<$(PROJ).crf2

$(PROJ).$(TARGETEXT)
$(PROJ).map
$(MSVC16_ROOT)\lib\+
$(LIBS)
;
<<
	del $(PROJ).crf >NUL: 2>NUL:
	for %F in ($(**F)) do @echo %F + >>$(PROJ).crf
	type $(PROJ).crf2 >>$(PROJ).crf
	
	$(LD) $(LFLAGS) @$(PROJ).crf
	del $(PROJ).crf $(PROJ).crf2

# Compress the Rescue Disk botloader for Cascades and Serpent since it is too big (size > 31232 bytes)
!if DEFINED(RESCUE_DISK) && (!DEFINED (SINGLE_CIPHER) || ("$(SINGLE_CIPHER)" == "SERPENT"))
	upx $(PROJ).$(TARGETEXT)
!endif
	gzip.exe -c -n --best $(PROJ).$(TARGETEXT) >$(PROJ).$(TARGETEXT).gz
	-dd.exe conv=notrunc,sync bs=512 seek=5 if=$(PROJ).$(TARGETEXT).gz of=$(PROJ).flp 2>NUL:
	cd ..
>1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/*
 Legal Notice: Some portions of the source code contained in this file were
 derived from the source code of TrueCrypt 7.1a, which is 
 Copyright (c) 2003-2012 TrueCrypt Developers Association and which is 
 governed by the TrueCrypt License 3.0, also from the source code of
 Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
 and which is governed by the 'License Agreement for Encryption for the Masses' 
 Modifications and additions to the original source code (contained in this file) 
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages. */

#include "Tcdefs.h"
#if !defined(_UEFI)
#include <memory.h>
#include <stdlib.h>
#endif
#include "Rmd160.h"
#ifndef TC_WINDOWS_BOOT
#include "Sha2.h"
#include "Whirlpool.h"
#include "cpu.h"
#include "misc.h"
#else
#pragma optimize ("t", on)
#include <string.h>
#if defined( _MSC_VER )
#  ifndef DEBUG
#    pragma intrinsic( memcpy )
#    pragma intrinsic( memset )
#  endif
#endif
#include "Sha2Small.h"
#endif
#include "Pkcs5.h"
#include "Crypto.h"

void hmac_truncate
  (
	  char *d1,		/* data to be truncated */
	  char *d2,		/* truncated data */
	  int len		/* length in bytes to keep */
)
{
	int i;
	for (i = 0; i < len; i++)
		d2[i] = d1[i];
}

#if !defined(TC_WINDOWS_BOOT) || defined(TC_WINDOWS_BOOT_SHA2)

typedef struct hmac_sha256_ctx_struct
{
	sha256_ctx ctx;
	sha256_ctx inner_digest_ctx; /*pre-computed inner digest context */
	sha256_ctx outer_digest_ctx; /*pre-computed outer digest context */
	char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the SHA256 hash */
	char u[SHA256_DIGESTSIZE];
} hmac_sha256_ctx;

void hmac_sha256_internal
(
	  char *d,		/* input data. d pointer is guaranteed to be at least 32-bytes long */
	  int ld,		/* length of input data in bytes */
	  hmac_sha256_ctx* hmac /* HMAC-SHA256 context which holds temporary variables */
)
{
	sha256_ctx* ctx = &(hmac->ctx);

	/**** Restore Precomputed Inner Digest Context ****/

	memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (sha256_ctx));

	sha256_hash ((unsigned char *) d, ld, ctx);

	sha256_end ((unsigned char *) d, ctx); /* d = inner digest */

	/**** Restore Precomputed Outer Digest Context ****/

	memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (sha256_ctx));

	sha256_hash ((unsigned char *) d, SHA256_DIGESTSIZE, ctx);

	sha256_end ((unsigned char *) d, ctx); /* d = outer digest */
}

#ifndef TC_WINDOWS_BOOT
void hmac_sha256
(
	char *k,    /* secret key */
	int lk,    /* length of the key in bytes */
	char *d,    /* data */
	int ld    /* length of data in bytes */
)
{
	hmac_sha256_ctx hmac;
	sha256_ctx* ctx;
	char* buf = hmac.k;
	int b;
	char key[SHA256_DIGESTSIZE];
    /* If the key is longer than the hash algorithm block size,
	   let key = sha256(key), as per HMAC specifications. */
	if (lk > SHA256_BLOCKSIZE)
	{
		sha256_ctx tctx;

		sha256_begin (&tctx);
		sha256_hash ((unsigned char *) k, lk, &tctx);
		sha256_end ((unsigned char *) key, &tctx);

		k = key;
		lk = SHA256_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	sha256_begin (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x36);
	memset (&buf[lk], 0x36, SHA256_BLOCKSIZE - lk);

	sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	sha256_begin (ctx);

	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x5C);
	memset (&buf[lk], 0x5C, SHA256_BLOCKSIZE - lk);

	sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);

	hmac_sha256_internal(d, ld, &hmac);
	/* Prevent leaks */
	burn(&hmac, sizeof(hmac));
	burn(key, sizeof(key));
}
#endif

static void derive_u_sha256 (char *salt, int salt_len, uint32 iterations, int b, hmac_sha256_ctx* hmac)
{
	char* k = hmac->k;
	char* u = hmac->u;
	uint32 c;
	int i;	

#ifdef TC_WINDOWS_BOOT
	/* In bootloader mode, least significant bit of iterations is a boolean (TRUE for boot derivation mode, FALSE otherwise)
	 * and the most significant 16 bits hold the pim value
	 * This enables us to save code space needed for implementing other features.
	 */
	c = iterations >> 16;
	i = ((int) iterations) & 0x01;
	if (i)
		c = (c == 0)? 200000 : c << 11;
	else
		c = (c == 0)? 500000 : 15000 + c * 1000;
#else
	c = iterations;
#endif

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	
	/* big-endian block number */
#ifdef TC_WINDOWS_BOOT
    /* specific case of 16-bit bootloader: b is a 16-bit integer that is always < 256 */
	memset (&k[salt_len], 0, 3);
	k[salt_len + 3] = (char) b;
#else
    b = bswap_32 (b);
    memcpy (&k[salt_len], &b, 4);
#endif	

	hmac_sha256_internal (k, salt_len + 4, hmac);
	memcpy (u, k, SHA256_DIGESTSIZE);

	/* remaining iterations */
	while (c > 1)
	{
		hmac_sha256_internal (k, SHA256_DIGESTSIZE, hmac);
		for (i = 0; i < SHA256_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
		c--;
	}
}


void derive_key_sha256 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{	
	hmac_sha256_ctx hmac;
	sha256_ctx* ctx;
	char* buf = hmac.k;
	int b, l, r;
#ifndef TC_WINDOWS_BOOT
	char key[SHA256_DIGESTSIZE];
    /* If the password is longer than the hash algorithm block size,
	   let pwd = sha256(pwd), as per HMAC specifications. */
	if (pwd_len > SHA256_BLOCKSIZE)
	{
		sha256_ctx tctx;

		sha256_begin (&tctx);
		sha256_hash ((unsigned char *) pwd, pwd_len, &tctx);
		sha256_end ((unsigned char *) key, &tctx);

		pwd = key;
		pwd_len = SHA256_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}
#endif

	if (dklen % SHA256_DIGESTSIZE)
	{
		l = 1 + dklen / SHA256_DIGESTSIZE;
	}
	else
	{
		l = dklen / SHA256_DIGESTSIZE;
	}

	r = dklen - (l - 1) * SHA256_DIGESTSIZE;

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	sha256_begin (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x36);
	memset (&buf[pwd_len], 0x36, SHA256_BLOCKSIZE - pwd_len);

	sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	sha256_begin (ctx);

	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x5C);
	memset (&buf[pwd_len], 0x5C, SHA256_BLOCKSIZE - pwd_len);

	sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_sha256 (salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, SHA256_DIGESTSIZE);
		dk += SHA256_DIGESTSIZE;
	}

	/* last block */
	derive_u_sha256 (salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
#ifndef TC_WINDOWS_BOOT
	burn (key, sizeof(key));
#endif
}

#endif

#ifndef TC_WINDOWS_BOOT

typedef struct hmac_sha512_ctx_struct
{
	sha512_ctx ctx;
	sha512_ctx inner_digest_ctx; /*pre-computed inner digest context */
	sha512_ctx outer_digest_ctx; /*pre-computed outer digest context */
	char k[SHA512_BLOCKSIZE]; /* enough to hold (salt_len + 4) and also the SHA512 hash */
	char u[SHA512_DIGESTSIZE];
} hmac_sha512_ctx;

void hmac_sha512_internal
(
	  char *d,		/* data and also output buffer of at least 64 bytes */
	  int ld,			/* length of data in bytes */
	  hmac_sha512_ctx* hmac
)
{
	sha512_ctx* ctx = &(hmac->ctx);

	/**** Restore Precomputed Inner Digest Context ****/

	memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (sha512_ctx));

	sha512_hash ((unsigned char *) d, ld, ctx);

	sha512_end ((unsigned char *) d, ctx);

	/**** Restore Precomputed Outer Digest Context ****/

	memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (sha512_ctx));

	sha512_hash ((unsigned char *) d, SHA512_DIGESTSIZE, ctx);

	sha512_end ((unsigned char *) d, ctx);
}

void hmac_sha512
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* data and also output buffer of at least 64 bytes */
	  int ld			/* length of data in bytes */	  
)
{
	hmac_sha512_ctx hmac;
	sha512_ctx* ctx;
	char* buf = hmac.k;
	int b;
	char key[SHA512_DIGESTSIZE];
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	KFLOATING_SAVE floatingPointState;
	NTSTATUS saveStatus = STATUS_SUCCESS;
	if (HasSSE2() && HasMMX())
		saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif

    /* If the key is longer than the hash algorithm block size,
	   let key = sha512(key), as per HMAC specifications. */
	if (lk > SHA512_BLOCKSIZE)
	{
		sha512_ctx tctx;

		sha512_begin (&tctx);
		sha512_hash ((unsigned char *) k, lk, &tctx);
		sha512_end ((unsigned char *) key, &tctx);

		k = key;
		lk = SHA512_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	sha512_begin (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x36);
	memset (&buf[lk], 0x36, SHA512_BLOCKSIZE - lk);

	sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	sha512_begin (ctx);

	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x5C);
	memset (&buf[lk], 0x5C, SHA512_BLOCKSIZE - lk);

	sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);

	hmac_sha512_internal (d, ld, &hmac);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	if (NT_SUCCESS (saveStatus) && (HasSSE2() && HasMMX()))
		KeRestoreFloatingPointState (&floatingPointState);
#endif

	/* Prevent leaks */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}

static void derive_u_sha512 (char *salt, int salt_len, uint32 iterations, int b, hmac_sha512_ctx* hmac)
{
	char* k = hmac->k;
	char* u = hmac->u;
	uint32 c, i;

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	/* big-endian block number */
    b = bswap_32 (b);
	memcpy (&k[salt_len], &b, 4);

	hmac_sha512_internal (k, salt_len + 4, hmac);
	memcpy (u, k, SHA512_DIGESTSIZE);

	/* remaining iterations */
	for (c = 1; c < iterations; c++)
	{
		hmac_sha512_internal (k, SHA512_DIGESTSIZE, hmac);
		for (i = 0; i < SHA512_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
	}
}


void derive_key_sha512 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{
	hmac_sha512_ctx hmac;
	sha512_ctx* ctx;
	char* buf = hmac.k;
	int b, l, r;
	char key[SHA512_DIGESTSIZE];
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	KFLOATING_SAVE floatingPointState;
	NTSTATUS saveStatus = STATUS_SUCCESS;
	if (HasSSE2() && HasMMX())
		saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif

    /* If the password is longer than the hash algorithm block size,
	   let pwd = sha512(pwd), as per HMAC specifications. */
	if (pwd_len > SHA512_BLOCKSIZE)
	{
		sha512_ctx tctx;

		sha512_begin (&tctx);
		sha512_hash ((unsigned char *) pwd, pwd_len, &tctx);
		sha512_end ((unsigned char *) key, &tctx);

		pwd = key;
		pwd_len = SHA512_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	if (dklen % SHA512_DIGESTSIZE)
	{
		l = 1 + dklen / SHA512_DIGESTSIZE;
	}
	else
	{
		l = dklen / SHA512_DIGESTSIZE;
	}

	r = dklen - (l - 1) * SHA512_DIGESTSIZE;

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	sha512_begin (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x36);
	memset (&buf[pwd_len], 0x36, SHA512_BLOCKSIZE - pwd_len);

	sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	sha512_begin (ctx);

	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x5C);
	memset (&buf[pwd_len], 0x5C, SHA512_BLOCKSIZE - pwd_len);

	sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_sha512 (salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, SHA512_DIGESTSIZE);
		dk += SHA512_DIGESTSIZE;
	}

	/* last block */
	derive_u_sha512 (salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	if (NT_SUCCESS (saveStatus) && (HasSSE2() && HasMMX()))
		KeRestoreFloatingPointState (&floatingPointState);
#endif

	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}

#endif // TC_WINDOWS_BOOT

#if !defined(TC_WINDOWS_BOOT) || defined(TC_WINDOWS_BOOT_RIPEMD160)

typedef struct hmac_ripemd160_ctx_struct
{
	RMD160_CTX context;
	RMD160_CTX inner_digest_ctx; /*pre-computed inner digest context */
	RMD160_CTX outer_digest_ctx; /*pre-computed outer digest context */
	char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the RIPEMD-160 hash */
	char u[RIPEMD160_DIGESTSIZE];
} hmac_ripemd160_ctx;

void hmac_ripemd160_internal (char *input_digest, int len, hmac_ripemd160_ctx* hmac)
{
	RMD160_CTX* context = &(hmac->context);

	/**** Restore Precomputed Inner Digest Context ****/

	memcpy (context, &(hmac->inner_digest_ctx), sizeof (RMD160_CTX));

	RMD160Update(context, (const unsigned char *) input_digest, len); /* then text of datagram */
	RMD160Final((unsigned char *) input_digest, context);         /* finish up 1st pass */

	/**** Restore Precomputed Outer Digest Context ****/

	memcpy (context, &(hmac->outer_digest_ctx), sizeof (RMD160_CTX));

	/* results of 1st hash */
	RMD160Update(context, (const unsigned char *) input_digest, RIPEMD160_DIGESTSIZE);
	RMD160Final((unsigned char *) input_digest, context);         /* finish up 2nd pass */
}

#ifndef TC_WINDOWS_BOOT
void hmac_ripemd160 (char *key, int keylen, char *input_digest, int len)
{
	hmac_ripemd160_ctx hmac;
	RMD160_CTX* ctx;
	unsigned char* k_pad = (unsigned char*) hmac.k;  /* inner/outer padding - key XORd with ipad */
	unsigned char tk[RIPEMD160_DIGESTSIZE];
	int i;

	/* If the key is longer than the hash algorithm block size,
	let key = ripemd160(key), as per HMAC specifications. */
	if (keylen > RIPEMD160_BLOCKSIZE) 
	{
		RMD160_CTX      tctx;

		RMD160Init(&tctx);
		RMD160Update(&tctx, (const unsigned char *) key, keylen);
		RMD160Final(tk, &tctx);

		key = (char *) tk;
		keylen = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
	}   

	/* perform inner RIPEMD-160 */
	ctx = &(hmac.inner_digest_ctx);
	/* start out by storing key in pads */
	memset(k_pad, 0x36, 64);
	/* XOR key with ipad and opad values */
	for (i=0; i<keylen; i++) 
	{
		k_pad[i] ^= key[i];
	}

	RMD160Init(ctx);           /* init context for 1st pass */
	RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE);  /* start with inner pad */

	/* perform outer RIPEMD-160 */
	ctx = &(hmac.outer_digest_ctx);
	memset(k_pad, 0x5c, 64);
	for (i=0; i<keylen; i++) 
	{
		k_pad[i] ^= key[i];
	}

	RMD160Init(ctx);           /* init context for 2nd pass */
	RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE);  /* start with outer pad */

	hmac_ripemd160_internal (input_digest, len, &hmac);

	burn (&hmac, sizeof(hmac));
	burn (tk, sizeof(tk));
}
#endif


static void derive_u_ripemd160 (char *salt, int salt_len, uint32 iterations, int b, hmac_ripemd160_ctx* hmac)
{
	char* k = hmac->k;
	char* u = hmac->u;
	uint32 c;
	int i;

#ifdef TC_WINDOWS_BOOT
	/* In bootloader mode, least significant bit of iterations is a boolean (TRUE for boot derivation mode, FALSE otherwise)
	 * and the most significant 16 bits hold the pim value
	 * This enables us to save code space needed for implementing other features.
	 */
	c = iterations >> 16;
	i = ((int) iterations) & 0x01;
	if (i)
		c = (c == 0)? 327661 : c << 11;
	else
		c = (c == 0)? 655331 : 15000 + c * 1000;
#else
	c  = iterations;
#endif

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	
	/* big-endian block number */
#ifdef TC_WINDOWS_BOOT
    /* specific case of 16-bit bootloader: b is a 16-bit integer that is always < 256*/
	memset (&k[salt_len], 0, 3);
	k[salt_len + 3] = (char) b;
#else
    b = bswap_32 (b);
    memcpy (&k[salt_len], &b, 4);
#endif	

	hmac_ripemd160_internal (k, salt_len + 4, hmac);
	memcpy (u, k, RIPEMD160_DIGESTSIZE);

	/* remaining iterations */
	while ( c > 1)
	{
		hmac_ripemd160_internal (k, RIPEMD160_DIGESTSIZE, hmac);
		for (i = 0; i < RIPEMD160_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
		c--;
	}
}

void derive_key_ripemd160 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{	
	int b, l, r;
	hmac_ripemd160_ctx hmac;
	RMD160_CTX* ctx;
	unsigned char* k_pad = (unsigned char*) hmac.k;
#ifndef TC_WINDOWS_BOOT
	unsigned char tk[RIPEMD160_DIGESTSIZE];
    /* If the password is longer than the hash algorithm block size,
	   let password = ripemd160(password), as per HMAC specifications. */
	if (pwd_len > RIPEMD160_BLOCKSIZE) 
	{
        RMD160_CTX      tctx;

        RMD160Init(&tctx);
        RMD160Update(&tctx, (const unsigned char *) pwd, pwd_len);
        RMD160Final(tk, &tctx);

        pwd = (char *) tk;
        pwd_len = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
    }
#endif

	if (dklen % RIPEMD160_DIGESTSIZE)
	{
		l = 1 + dklen / RIPEMD160_DIGESTSIZE;
	}
	else
	{
		l = dklen / RIPEMD160_DIGESTSIZE;
	}

	r = dklen - (l - 1) * RIPEMD160_DIGESTSIZE;

	/* perform inner RIPEMD-160 */
	ctx = &(hmac.inner_digest_ctx);
	/* start out by storing key in pads */
	memset(k_pad, 0x36, 64);
	/* XOR key with ipad and opad values */
	for (b=0; b<pwd_len; b++) 
	{
		k_pad[b] ^= pwd[b];
	}

	RMD160Init(ctx);           /* init context for 1st pass */
	RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE);  /* start with inner pad */

	/* perform outer RIPEMD-160 */
	ctx = &(hmac.outer_digest_ctx);
	memset(k_pad, 0x5c, 64);
	for (b=0; b<pwd_len; b++) 
	{
		k_pad[b] ^= pwd[b];
	}

	RMD160Init(ctx);           /* init context for 2nd pass */
	RMD160Update(ctx, k_pad, RIPEMD160_BLOCKSIZE);  /* start with outer pad */

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_ripemd160 (salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, RIPEMD160_DIGESTSIZE);
		dk += RIPEMD160_DIGESTSIZE;
	}

	/* last block */
	derive_u_ripemd160 (salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
#ifndef TC_WINDOWS_BOOT
	burn (tk, sizeof(tk));
#endif
}
#endif // TC_WINDOWS_BOOT

#ifndef TC_WINDOWS_BOOT

typedef struct hmac_whirlpool_ctx_struct
{
	WHIRLPOOL_CTX ctx;
	WHIRLPOOL_CTX inner_digest_ctx; /*pre-computed inner digest context */
	WHIRLPOOL_CTX outer_digest_ctx; /*pre-computed outer digest context */
	CRYPTOPP_ALIGN_DATA(16) char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the Whirlpool hash */
	char u[WHIRLPOOL_DIGESTSIZE];
} hmac_whirlpool_ctx;

void hmac_whirlpool_internal
(
	  char *d,		/* input/output data. d pointer is guaranteed to be at least 64-bytes long */
	  int ld,		/* length of input data in bytes */
	  hmac_whirlpool_ctx* hmac /* HMAC-Whirlpool context which holds temporary variables */
)
{
	WHIRLPOOL_CTX* ctx = &(hmac->ctx);

	/**** Restore Precomputed Inner Digest Context ****/

	memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (WHIRLPOOL_CTX));

	WHIRLPOOL_add ((unsigned char *) d, ld, ctx);

	WHIRLPOOL_finalize (ctx, (unsigned char *) d);

	/**** Restore Precomputed Outer Digest Context ****/

	memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (WHIRLPOOL_CTX));

	WHIRLPOOL_add ((unsigned char *) d, WHIRLPOOL_DIGESTSIZE, ctx);

	WHIRLPOOL_finalize (ctx, (unsigned char *) d);
}

void hmac_whirlpool
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* input data. d pointer is guaranteed to be at least 32-bytes long */
	  int ld		/* length of data in bytes */
)
{
	hmac_whirlpool_ctx hmac;
	WHIRLPOOL_CTX* ctx;
	char* buf = hmac.k;
	int b;
	char key[WHIRLPOOL_DIGESTSIZE];
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	KFLOATING_SAVE floatingPointState;
	NTSTATUS saveStatus = STATUS_SUCCESS;
	if (HasISSE())
		saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif
    /* If the key is longer than the hash algorithm block size,
	   let key = whirlpool(key), as per HMAC specifications. */
	if (lk > WHIRLPOOL_BLOCKSIZE)
	{
		WHIRLPOOL_CTX tctx;

		WHIRLPOOL_init (&tctx);
		WHIRLPOOL_add ((unsigned char *) k, lk, &tctx);
		WHIRLPOOL_finalize (&tctx, (unsigned char *) key);

		k = key;
		lk = WHIRLPOOL_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	WHIRLPOOL_init (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x36);
	memset (&buf[lk], 0x36, WHIRLPOOL_BLOCKSIZE - lk);

	WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	WHIRLPOOL_init (ctx);

	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x5C);
	memset (&buf[lk], 0x5C, WHIRLPOOL_BLOCKSIZE - lk);

	WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);

	hmac_whirlpool_internal(d, ld, &hmac);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	if (NT_SUCCESS (saveStatus) && HasISSE())
		KeRestoreFloatingPointState (&floatingPointState);
#endif
	/* Prevent leaks */
	burn(&hmac, sizeof(hmac));
}

static void derive_u_whirlpool (char *salt, int salt_len, uint32 iterations, int b, hmac_whirlpool_ctx* hmac)
{
	char* u = hmac->u;
	char* k = hmac->k;
	uint32 c, i;

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	/* big-endian block number */
    b = bswap_32 (b);
	memcpy (&k[salt_len], &b, 4);

	hmac_whirlpool_internal (k, salt_len + 4, hmac);
	memcpy (u, k, WHIRLPOOL_DIGESTSIZE);

	/* remaining iterations */
	for (c = 1; c < iterations; c++)
	{
		hmac_whirlpool_internal (k, WHIRLPOOL_DIGESTSIZE, hmac);
		for (i = 0; i < WHIRLPOOL_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
	}
}

void derive_key_whirlpool (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{
	hmac_whirlpool_ctx hmac;
	WHIRLPOOL_CTX* ctx;
	char* buf = hmac.k;
	char key[WHIRLPOOL_DIGESTSIZE];
	int b, l, r;
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	KFLOATING_SAVE floatingPointState;
	NTSTATUS saveStatus = STATUS_SUCCESS;
	if (HasISSE())
		saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif
    /* If the password is longer than the hash algorithm block size,
	   let pwd = whirlpool(pwd), as per HMAC specifications. */
	if (pwd_len > WHIRLPOOL_BLOCKSIZE)
	{
		WHIRLPOOL_CTX tctx;

		WHIRLPOOL_init (&tctx);
		WHIRLPOOL_add ((unsigned char *) pwd, pwd_len, &tctx);
		WHIRLPOOL_finalize (&tctx, (unsigned char *) key);

		pwd = key;
		pwd_len = WHIRLPOOL_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	if (dklen % WHIRLPOOL_DIGESTSIZE)
	{
		l = 1 + dklen / WHIRLPOOL_DIGESTSIZE;
	}
	else
	{
		l = dklen / WHIRLPOOL_DIGESTSIZE;
	}

	r = dklen - (l - 1) * WHIRLPOOL_DIGESTSIZE;

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	WHIRLPOOL_init (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x36);
	memset (&buf[pwd_len], 0x36, WHIRLPOOL_BLOCKSIZE - pwd_len);

	WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	WHIRLPOOL_init (ctx);

	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x5C);
	memset (&buf[pwd_len], 0x5C, WHIRLPOOL_BLOCKSIZE - pwd_len);

	WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE, ctx);

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_whirlpool (salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, WHIRLPOOL_DIGESTSIZE);
		dk += WHIRLPOOL_DIGESTSIZE;
	}

	/* last block */
	derive_u_whirlpool (salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	if (NT_SUCCESS (saveStatus) && HasISSE())
		KeRestoreFloatingPointState (&floatingPointState);
#endif

	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}


typedef struct hmac_streebog_ctx_struct
{
	STREEBOG_CTX ctx;
	STREEBOG_CTX inner_digest_ctx; /*pre-computed inner digest context */
	STREEBOG_CTX outer_digest_ctx; /*pre-computed outer digest context */
	CRYPTOPP_ALIGN_DATA(16) char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the Streebog hash */
	char u[STREEBOG_DIGESTSIZE];
} hmac_streebog_ctx;

void hmac_streebog_internal
(
	  char *d,		/* input/output data. d pointer is guaranteed to be at least 64-bytes long */
	  int ld,		/* length of input data in bytes */
	  hmac_streebog_ctx* hmac /* HMAC-Whirlpool context which holds temporary variables */
)
{
	STREEBOG_CTX* ctx = &(hmac->ctx);

	/**** Restore Precomputed Inner Digest Context ****/

	memcpy (ctx, &(hmac->inner_digest_ctx), sizeof (STREEBOG_CTX));

	STREEBOG_add (ctx, (unsigned char *) d, ld);

	STREEBOG_finalize (ctx, (unsigned char *) d);

	/**** Restore Precomputed Outer Digest Context ****/

	memcpy (ctx, &(hmac->outer_digest_ctx), sizeof (STREEBOG_CTX));

	STREEBOG_add (ctx, (unsigned char *) d, STREEBOG_DIGESTSIZE);

	STREEBOG_finalize (ctx, (unsigned char *) d);
}

void hmac_streebog
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* input data. d pointer is guaranteed to be at least 32-bytes long */
	  int ld		/* length of data in bytes */
)
{
	hmac_streebog_ctx hmac;
	STREEBOG_CTX* ctx;
	char* buf = hmac.k;
	int b;
	CRYPTOPP_ALIGN_DATA(16) char key[STREEBOG_DIGESTSIZE];
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	KFLOATING_SAVE floatingPointState;
	NTSTATUS saveStatus = STATUS_SUCCESS;
	if (HasSSE2() || HasSSE41())
		saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif
    /* If the key is longer than the hash algorithm block size,
	   let key = streebog(key), as per HMAC specifications. */
	if (lk > STREEBOG_BLOCKSIZE)
	{
		STREEBOG_CTX tctx;

		STREEBOG_init (&tctx);
		STREEBOG_add (&tctx, (unsigned char *) k, lk);
		STREEBOG_finalize (&tctx, (unsigned char *) key);

		k = key;
		lk = STREEBOG_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	STREEBOG_init (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x36);
	memset (&buf[lk], 0x36, STREEBOG_BLOCKSIZE - lk);

	STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	STREEBOG_init (ctx);

	for (b = 0; b < lk; ++b)
		buf[b] = (char) (k[b] ^ 0x5C);
	memset (&buf[lk], 0x5C, STREEBOG_BLOCKSIZE - lk);

	STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);

	hmac_streebog_internal(d, ld, &hmac);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	if (NT_SUCCESS (saveStatus) && (HasSSE2() || HasSSE41()))
		KeRestoreFloatingPointState (&floatingPointState);
#endif
	/* Prevent leaks */
	burn(&hmac, sizeof(hmac));
}

static void derive_u_streebog (char *salt, int salt_len, uint32 iterations, int b, hmac_streebog_ctx* hmac)
{
	char* u = hmac->u;
	char* k = hmac->k;
	uint32 c, i;

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	/* big-endian block number */
    b = bswap_32 (b);
	memcpy (&k[salt_len], &b, 4);

	hmac_streebog_internal (k, salt_len + 4, hmac);
	memcpy (u, k, STREEBOG_DIGESTSIZE);

	/* remaining iterations */
	for (c = 1; c < iterations; c++)
	{
		hmac_streebog_internal (k, STREEBOG_DIGESTSIZE, hmac);
		for (i = 0; i < STREEBOG_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
	}
}

void derive_key_streebog (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{
	hmac_streebog_ctx hmac;
	STREEBOG_CTX* ctx;
	char* buf = hmac.k;
	char key[STREEBOG_DIGESTSIZE];
	int b, l, r;
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	KFLOATING_SAVE floatingPointState;
	NTSTATUS saveStatus = STATUS_SUCCESS;
	if (HasSSE2() || HasSSE41())
		saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif
    /* If the password is longer than the hash algorithm block size,
	   let pwd = streebog(pwd), as per HMAC specifications. */
	if (pwd_len > STREEBOG_BLOCKSIZE)
	{
		STREEBOG_CTX tctx;

		STREEBOG_init (&tctx);
		STREEBOG_add (&tctx, (unsigned char *) pwd, pwd_len);
		STREEBOG_finalize (&tctx, (unsigned char *) key);

		pwd = key;
		pwd_len = STREEBOG_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	if (dklen % STREEBOG_DIGESTSIZE)
	{
		l = 1 + dklen / STREEBOG_DIGESTSIZE;
	}
	else
	{
		l = dklen / STREEBOG_DIGESTSIZE;
	}

	r = dklen - (l - 1) * STREEBOG_DIGESTSIZE;

	/**** Precompute HMAC Inner Digest ****/

	ctx = &(hmac.inner_digest_ctx);
	STREEBOG_init (ctx);

	/* Pad the key for inner digest */
	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x36);
	memset (&buf[pwd_len], 0x36, STREEBOG_BLOCKSIZE - pwd_len);

	STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);

	/**** Precompute HMAC Outer Digest ****/

	ctx = &(hmac.outer_digest_ctx);
	STREEBOG_init (ctx);

	for (b = 0; b < pwd_len; ++b)
		buf[b] = (char) (pwd[b] ^ 0x5C);
	memset (&buf[pwd_len], 0x5C, STREEBOG_BLOCKSIZE - pwd_len);

	STREEBOG_add (ctx, (unsigned char *) buf, STREEBOG_BLOCKSIZE);

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_streebog (salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, STREEBOG_DIGESTSIZE);
		dk += STREEBOG_DIGESTSIZE;
	}

	/* last block */
	derive_u_streebog (salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	if (NT_SUCCESS (saveStatus) && (HasSSE2() || HasSSE41()))
		KeRestoreFloatingPointState (&floatingPointState);
#endif

	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}

wchar_t *get_pkcs5_prf_name (int pkcs5_prf_id)
{
	switch (pkcs5_prf_id)
	{
	case SHA512:	
		return L"HMAC-SHA-512";

	case SHA256:	
		return L"HMAC-SHA-256";

	case RIPEMD160:	
		return L"HMAC-RIPEMD-160";

	case WHIRLPOOL:	
		return L"HMAC-Whirlpool";

	case STREEBOG:
		return L"HMAC-STREEBOG";

	default:		
		return L"(Unknown)";
	}
}



int get_pkcs5_iteration_count (int pkcs5_prf_id, int pim, BOOL truecryptMode, BOOL bBoot)
{
	if (	(pim < 0)
		|| (truecryptMode && pim > 0) /* No PIM for TrueCrypt mode */
		)
	{
		return 0;
	}

	switch (pkcs5_prf_id)
	{

	case RIPEMD160:	
		if (truecryptMode)
			return bBoot ? 1000 : 2000;
		else if (pim == 0)
			return bBoot? 327661 : 655331;
		else
		{
			return bBoot? pim * 2048 : 15000 + pim * 1000;
		}

	case SHA512:	
		return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);

	case WHIRLPOOL:	
		return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);

	case SHA256:
		if (truecryptMode)
			return 0; // SHA-256 not supported by TrueCrypt
		else if (pim == 0)
			return bBoot? 200000 : 500000;
		else
		{
			return bBoot? pim * 2048 : 15000 + pim * 1000;
		}

	case STREEBOG:	
		if (truecryptMode)
			return 1000;
		else if (pim == 0)
			return bBoot? 200000 : 500000;
		else
		{
			return bBoot? pim * 2048 : 15000 + pim * 1000;
		}

	default:		
		TC_THROW_FATAL_EXCEPTION;	// Unknown/wrong ID
	}
	return 0;
}

int is_pkcs5_prf_supported (int pkcs5_prf_id, BOOL truecryptMode, PRF_BOOT_TYPE bootType)
{
   if (pkcs5_prf_id == 0) // auto-detection always supported
      return 1;

   if (truecryptMode)
   {
      if (  (bootType == PRF_BOOT_GPT) 
         || (bootType == PRF_BOOT_MBR && pkcs5_prf_id != RIPEMD160) 
         || (bootType == PRF_BOOT_NO && pkcs5_prf_id != SHA512 && pkcs5_prf_id != WHIRLPOOL && pkcs5_prf_id != RIPEMD160)
         )
         return 0;
   }
   else
   {
      if (  (bootType == PRF_BOOT_MBR && pkcs5_prf_id != RIPEMD160 && pkcs5_prf_id != SHA256)
         || (bootType != PRF_BOOT_MBR && (pkcs5_prf_id < FIRST_PRF_ID || pkcs5_prf_id > LAST_PRF_ID))
         )
         return 0;
   }

   return 1;

}

#endif //!TC_WINDOWS_BOOT