VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/GfMul.c
blob: e933e56b654175ea404a5368c672b676a50818ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
/*
 ---------------------------------------------------------------------------
 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------
 Issue Date: 31/01/2004

 My thanks to John Viega and David McGrew for their support in developing 
 this code and to David for testing it on a big-endain system.
*/

/* 
 ---------------------------------------------------------------------------
 Portions Copyright (c) 2005 TrueCrypt Developers Association

 Changes:

   - Added multiplication in the finite field GF(2^128) optimized for
     cases involving a 64-bit operand.

   - Added multiplication in the finite field GF(2^64).

   - Added MSB-first mode.

   - Added basic test algorithms.

   - Removed GCM.
 ---------------------------------------------------------------------------
*/

#include <memory.h>
#include <stdlib.h>
#include "GfMul.h"
#include "Tcdefs.h"
#include "Common/Endian.h"

/* BUFFER_ALIGN32 or BUFFER_ALIGN64 must be defined at this point to    */
/* enable faster operation by taking advantage of memory aligned values */
/* NOTE: the BUFFER_ALIGN64 option has not been tested extensively      */

#define BUFFER_ALIGN32
#define UNROLL_LOOPS    /* define to unroll some loops      */
#define IN_LINES        /* define to use inline functions   */
                        /* in place of macros               */

#define mode(x)			GM_##x

#if defined(__cplusplus)
extern "C"
{
#endif

typedef unsigned __int32 mode(32t);
typedef uint64 mode(64t);

#define BRG_LITTLE_ENDIAN   1234 /* byte 0 is least significant (i386) */
#define BRG_BIG_ENDIAN      4321 /* byte 0 is most significant (mc68k) */

#if BYTE_ORDER == LITTLE_ENDIAN
#  define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
#endif

#if BYTE_ORDER == BIG_ENDIAN
#  define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
#endif

#ifdef _MSC_VER
#pragma intrinsic(memcpy)
#define in_line __inline
#else
#define in_line
#endif

#if 0 && defined(_MSC_VER)
#define rotl32 _lrotl
#define rotr32 _lrotr
#else
#define rotl32(x,n)   (((x) << n) | ((x) >> (32 - n)))
#define rotr32(x,n)   (((x) >> n) | ((x) << (32 - n)))
#endif

#if !defined(bswap_32)
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
#endif

#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef  SWAP_BYTES
#endif

#if defined(SWAP_BYTES)

#if defined ( IN_LINES )

in_line void bsw_32(void * p, unsigned int n)
{   unsigned int i = n;
    while(i--)
        ((mode(32t)*)p)[i] = bswap_32(((mode(32t)*)p)[i]);
}

#else

#define bsw_32(p,n) \
    { int _i = (n); while(_i--) ((mode(32t)*)p)[_i] = bswap_32(((mode(32t)*)p)[_i]); }

#endif

#else
#define bsw_32(p,n)
#endif

/* These values are used to detect long word alignment in order */
/* to speed up some GCM buffer operations. This facility may    */
/* not work on some machines                                    */

#define lp08(x)      ((unsigned char*)(x))
#define lp32(x)      ((mode(32t)*)(x))
#define lp64(x)      ((mode(64t)*)(x))

#define A32_MASK     3
#define A64_MASK     7
#define aligned32(x) (!(((mode(32t))(x)) & A32_MASK))
#define aligned64(x) (!(((mode(32t))(x)) & A64_MASK))

#if defined( BUFFER_ALIGN32 )

#define ADR_MASK    A32_MASK
#define aligned     aligned32
#define lp          lp32
#define lp_inc      4

#if defined( IN_LINES )

in_line void move_block_aligned( void *p, const void *q)
{
    lp32(p)[0] = lp32(q)[0], lp32(p)[1] = lp32(q)[1],
    lp32(p)[2] = lp32(q)[2], lp32(p)[3] = lp32(q)[3];
}

in_line void move_block_aligned64( void *p, const void *q)
{
    lp32(p)[0] = lp32(q)[0], lp32(p)[1] = lp32(q)[1];
}

in_line void xor_block_aligned( void *p, const void *q)
{
    lp32(p)[0] ^= lp32(q)[0], lp32(p)[1] ^= lp32(q)[1],
    lp32(p)[2] ^= lp32(q)[2], lp32(p)[3] ^= lp32(q)[3];
}

in_line void xor_block_aligned64( void *p, const void *q)
{
    lp32(p)[0] ^= lp32(q)[0], lp32(p)[1] ^= lp32(q)[1];
}

#else

#define move_block_aligned(p,q) \
    lp32(p)[0] = lp32(q)[0], lp32(p)[1] = lp32(q)[1], \
    lp32(p)[2] = lp32(q)[2], lp32(p)[3] = lp32(q)[3]

#define xor_block_aligned(p,q) \
    lp32(p)[0] ^= lp32(q)[0], lp32(p)[1] ^= lp32(q)[1], \
    lp32(p)[2] ^= lp32(q)[2], lp32(p)[3] ^= lp32(q)[3]

#endif

#elif defined( BUFFER_ALIGN64 )

#define ADR_MASK    A64_MASK
#define aligned     aligned64
#define lp          lp64
#define lp_inc      8

#define move_block_aligned(p,q) \
    lp64(p)[0] = lp64(q)[0], lp64(p)[1] = lp64(q)[1]

#define xor_block_aligned(p,q) \
    lp64(p)[0] ^= lp64(q)[0], lp64(p)[1] ^= lp64(q)[1]

#else
#define aligned(x) 0
#endif

#define move_block(p,q) memcpy((p), (q), BLOCK_LEN)

#define xor_block(p,q) \
    lp08(p)[ 0] ^= lp08(q)[ 0], lp08(p)[ 1] ^= lp08(q)[ 1], \
    lp08(p)[ 2] ^= lp08(q)[ 2], lp08(p)[ 3] ^= lp08(q)[ 3], \
    lp08(p)[ 4] ^= lp08(q)[ 4], lp08(p)[ 5] ^= lp08(q)[ 5], \
    lp08(p)[ 6] ^= lp08(q)[ 6], lp08(p)[ 7] ^= lp08(q)[ 7], \
    lp08(p)[ 8] ^= lp08(q)[ 8], lp08(p)[ 9] ^= lp08(q)[ 9], \
    lp08(p)[10] ^= lp08(q)[10], lp08(p)[11] ^= lp08(q)[11], \
    lp08(p)[12] ^= lp08(q)[12], lp08(p)[13] ^= lp08(q)[13], \
    lp08(p)[14] ^= lp08(q)[14], lp08(p)[15] ^= lp08(q)[15]


#define gf_dat(q) {\
    q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
    q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
    q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
    q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
    q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
    q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
    q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
    q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
    q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
    q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
    q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
    q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
    q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
    q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
    q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
    q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
    q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
    q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
    q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
    q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
    q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
    q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
    q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
    q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
    q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
    q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
    q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
    q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
    q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
    q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
    q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
    q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) }

/* given the value i in 0..255 as the byte overflow when a a field  */
/* element in GHASH is multipled by x^8, this function will return  */
/* the values that are generated in the lo 16-bit word of the field */
/* value by applying the modular polynomial. The values lo_byte and */
/* hi_byte are returned via the macro xp_fun(lo_byte, hi_byte) so   */
/* that the values can be assembled into memory as required by a    */
/* suitable definition of this macro operating on the table above   */

#define xp(i) xp_fun( \
    (i & 0x80 ? 0xe1 : 0) ^ (i & 0x40 ? 0x70 : 0) ^ \
    (i & 0x20 ? 0x38 : 0) ^ (i & 0x10 ? 0x1c : 0) ^ \
    (i & 0x08 ? 0x0e : 0) ^ (i & 0x04 ? 0x07 : 0) ^ \
    (i & 0x02 ? 0x03 : 0) ^ (i & 0x01 ? 0x01 : 0),  \
    (i & 0x80 ? 0x00 : 0) ^ (i & 0x40 ? 0x80 : 0) ^ \
    (i & 0x20 ? 0x40 : 0) ^ (i & 0x10 ? 0x20 : 0) ^ \
    (i & 0x08 ? 0x10 : 0) ^ (i & 0x04 ? 0x08 : 0) ^ \
    (i & 0x02 ? 0x84 : 0) ^ (i & 0x01 ? 0xc2 : 0) )

#define xp64(i) xp_fun( \
    (i & 0x80 ? 0xd8 : 0) ^ (i & 0x40 ? 0x6c : 0) ^ \
    (i & 0x20 ? 0x36 : 0) ^ (i & 0x10 ? 0x1b : 0) ^ \
    (i & 0x08 ? 0x0d : 0) ^ (i & 0x04 ? 0x06 : 0) ^ \
    (i & 0x02 ? 0x03 : 0) ^ (i & 0x01 ? 0x01 : 0),  \
    (i & 0x80 ? 0x00 : 0) ^ (i & 0x40 ? 0x00 : 0) ^ \
    (i & 0x20 ? 0x00 : 0) ^ (i & 0x10 ? 0x00 : 0) ^ \
    (i & 0x08 ? 0x80 : 0) ^ (i & 0x04 ? 0xc0 : 0) ^ \
    (i & 0x02 ? 0x60 : 0) ^ (i & 0x01 ? 0xb0 : 0) )

static mode(32t) gf_poly[2] = { 0, 0xe1000000 };
static mode(32t) gf_poly64[2] = { 0, 0xd8000000 };

/* Multiply of a GF128 field element by x.   The field element  */
/* is held in an array of bytes in which field bits 8n..8n + 7  */
/* are held in byte[n], with lower indexed bits placed in the   */
/* more numerically significant bit positions in bytes.         */

/* This function multiples a field element x, in the polynomial */
/* field representation. It uses 32-bit word operations to gain */
/* speed but compensates for machine endianess and hence works  */
/* correctly on both styles of machine                          */

in_line void mul_x(mode(32t) x[4])
{   mode(32t)   t;

    bsw_32(x, 4);

    /* at this point the filed element bits 0..127 are set out  */
    /* as follows in 32-bit words (where the most significant   */
    /* (ms) numeric bits are to the left)                       */
    /*                                                          */
    /*            x[0]      x[1]      x[2]      x[3]            */
    /*          ms    ls  ms    ls  ms    ls  ms     ls         */
    /* field:   0 ... 31  32 .. 63  64 .. 95  96 .. 127         */

    t = gf_poly[x[3] & 1];          /* bit 127 of the element   */
    x[3] = (x[3] >> 1) | (x[2] << 31);  /* shift bits up by one */
    x[2] = (x[2] >> 1) | (x[1] << 31);  /* position             */
    x[1] = (x[1] >> 1) | (x[0] << 31);  /* if bit 7 is 1 xor in */
    x[0] = (x[0] >> 1) ^ t;             /* the field polynomial */
    bsw_32(x, 4);
}

in_line void mul_x64(mode(32t) x[2])
{   mode(32t)   t;

    bsw_32(x, 2);

    /* at this point the filed element bits 0..127 are set out  */
    /* as follows in 32-bit words (where the most significant   */
    /* (ms) numeric bits are to the left)                       */
    /*                                                          */
    /*            x[0]      x[1]      x[2]      x[3]            */
    /*          ms    ls  ms    ls  ms    ls  ms     ls         */
    /* field:   0 ... 31  32 .. 63  64 .. 95  96 .. 127         */

    t = gf_poly64[x[1] & 1];          /* bit 127 of the element   */
										/* shift bits up by one */
										/* position             */
    x[1] = (x[1] >> 1) | (x[0] << 31);  /* if bit 7 is 1 xor in */
    x[0] = (x[0] >> 1) ^ t;             /* the field polynomial */
    bsw_32(x, 2);
}

/* Multiply of a GF128 field element by x^8 using 32-bit words  */
/* for speed - machine endianess matters here                   */

#if (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)

#define xp_fun(x,y)    ((mode(32t))(x)) | (((mode(32t))(y)) << 8)
static const unsigned __int16 gft_le[256] = gf_dat(xp);
static const unsigned __int16 gft_le64[256] = gf_dat(xp64);

in_line void mul_lex8(mode(32t) x[4])   /* mutiply with long words  */
{   mode(32t)   t = (x[3] >> 24);       /* in little endian format  */
    x[3] = (x[3] << 8) | (x[2] >> 24);
    x[2] = (x[2] << 8) | (x[1] >> 24);
    x[1] = (x[1] << 8) | (x[0] >> 24);
    x[0] = (x[0] << 8) ^ gft_le[t];
}

in_line void mul_lex8_64(mode(32t) x[2])   /* mutiply with long words  */
{   mode(32t)   t = (x[1] >> 24);       /* in little endian format  */
    x[1] = (x[1] << 8) | (x[0] >> 24);
    x[0] = (x[0] << 8) ^ gft_le64[t];
}

#endif

#if 1 || (PLATFORM_BYTE_ORDER == BRG_LITTLE_ENDIAN)

#undef  xp_fun
#define xp_fun(x,y)    ((mode(32t))(y)) | (((mode(32t))(x)) << 8)
static const unsigned __int16 gft_be[256] = gf_dat(xp);
static const unsigned __int16 gft_be64[256] = gf_dat(xp64);

in_line void mul_bex8(mode(32t) x[4])   /* mutiply with long words  */
{   mode(32t)   t = (x[3] & 0xff);      /* in big endian format     */
    x[3] = (x[3] >> 8) | (x[2] << 24);
    x[2] = (x[2] >> 8) | (x[1] << 24);
    x[1] = (x[1] >> 8) | (x[0] << 24);
    x[0] = (x[0] >> 8) ^ (((mode(32t))gft_be[t]) << 16);
}

in_line void mul_bex8_64(mode(32t) x[2])   /* mutiply with long words  */
{   mode(32t)   t = (x[1] & 0xff);      /* in big endian format     */
    x[1] = (x[1] >> 8) | (x[0] << 24);
    x[0] = (x[0] >> 8) ^ (((mode(32t))gft_be64[t]) << 16);
}

#endif

/* hence choose the correct version for the machine endianess       */

#if PLATFORM_BYTE_ORDER == BRG_BIG_ENDIAN
#define mul_x8  mul_bex8
#define mul_x8_64  mul_bex8_64
#else
#define mul_x8  mul_lex8
#define mul_x8_64  mul_lex8_64
#endif

/* different versions of the general gf_mul function are provided   */
/* here. Sadly none are very fast :-(                               */

void GfMul128 (void *a, const void* b)
{   mode(32t) r[CBLK_LEN >> 2], p[8][CBLK_LEN >> 2];
    int i;

    move_block_aligned(p[0], b);
    bsw_32(p[0], 4);
    for(i = 0; i < 7; ++i)
    {
        p[i + 1][3] = (p[i][3] >> 1) | (p[i][2] << 31);
        p[i + 1][2] = (p[i][2] >> 1) | (p[i][1] << 31);
        p[i + 1][1] = (p[i][1] >> 1) | (p[i][0] << 31);
        p[i + 1][0] = (p[i][0] >> 1) ^ gf_poly[p[i][3] & 1];
    }

    memset(r, 0, CBLK_LEN);
    for(i = 0; i < 16; ++i)
    {
        if(i) mul_bex8(r);  /* order is always big endian here */

        if(((unsigned char*)a)[15 - i] & 0x80)
            xor_block_aligned(r, p[0]);
        if(((unsigned char*)a)[15 - i] & 0x40)
            xor_block_aligned(r, p[1]);
        if(((unsigned char*)a)[15 - i] & 0x20)
            xor_block_aligned(r, p[2]);
        if(((unsigned char*)a)[15 - i] & 0x10)
            xor_block_aligned(r, p[3]);
        if(((unsigned char*)a)[15 - i] & 0x08)
            xor_block_aligned(r, p[4]);
        if(((unsigned char*)a)[15 - i] & 0x04)
            xor_block_aligned(r, p[5]);
        if(((unsigned char*)a)[15 - i] & 0x02)
            xor_block_aligned(r, p[6]);
        if(((unsigned char*)a)[15 - i] & 0x01)
            xor_block_aligned(r, p[7]);
    }
    bsw_32(r, 4);
    move_block_aligned(a, r);
}

#if defined( UNROLL_LOOPS )

#define xor_8k(i)   \
    xor_block_aligned(r, ctx->gf_t8k[i + i][a[i] & 15]); \
    xor_block_aligned(r, ctx->gf_t8k[i + i + 1][a[i] >> 4])


void GfMul128Tab (unsigned char a[CBLK_LEN], GfCtx8k *ctx)
{   unsigned __int32 r[CBLK_LEN >> 2];

    move_block_aligned(r, ctx->gf_t8k[0][a[0] & 15]);
    xor_block_aligned(r, ctx->gf_t8k[1][a[0] >> 4]);
                xor_8k( 1); xor_8k( 2); xor_8k( 3);
    xor_8k( 4); xor_8k( 5); xor_8k( 6); xor_8k( 7);
    xor_8k( 8); xor_8k( 9); xor_8k(10); xor_8k(11);
    xor_8k(12); xor_8k(13); xor_8k(14); xor_8k(15);
    move_block_aligned(a, r);
}

#else

void GfMul128Tab (unsigned char a[CBLK_LEN], GfCtx8k *ctx)
{   unsigned __int32 r[CBLK_LEN >> 2], *p;
    int i;

    p = ctx->gf_t8k[0][a[0] & 15];
    memcpy(r, p, CBLK_LEN);
    p = ctx->gf_t8k[1][a[0] >> 4];
    xor_block_aligned(r, p);
    for(i = 1; i < CBLK_LEN; ++i)
    {
        xor_block_aligned(r, ctx->gf_t8k[i + i][a[i] & 15]);
        xor_block_aligned(r, ctx->gf_t8k[i + i + 1][a[i] >> 4]);
    }
    memcpy(a, r, CBLK_LEN);
}

#endif

void compile_8k_table(unsigned __int8 *a, GfCtx8k *ctx)
{   int i, j, k;

    memset(ctx->gf_t8k, 0, 32 * 16 * 16);
    for(i = 0; i < 2 * CBLK_LEN; ++i)
    {
        if(i == 0)
        {
            memcpy(ctx->gf_t8k[1][8], a, CBLK_LEN);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t8k[1][j], ctx->gf_t8k[1][j + j], CBLK_LEN);
                mul_x(ctx->gf_t8k[1][j]);
            }
            memcpy(ctx->gf_t8k[0][8], ctx->gf_t8k[1][1], CBLK_LEN);
            mul_x(ctx->gf_t8k[0][8]);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t8k[0][j], ctx->gf_t8k[0][j + j], CBLK_LEN);
                mul_x(ctx->gf_t8k[0][j]);
            }
        }
        else if(i > 1)
            for(j = 8; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t8k[i][j], ctx->gf_t8k[i - 2][j], CBLK_LEN);
                mul_x8(ctx->gf_t8k[i][j]);
            }

        for(j = 2; j < 16; j += j)
        {
            mode(32t) *pj = ctx->gf_t8k[i][j];
            mode(32t) *pk = ctx->gf_t8k[i][1];
            mode(32t) *pl = ctx->gf_t8k[i][j + 1];

            for(k = 1; k < j; ++k)
            {
                *pl++ = pj[0] ^ *pk++;
                *pl++ = pj[1] ^ *pk++;
                *pl++ = pj[2] ^ *pk++;
                *pl++ = pj[3] ^ *pk++;
            }
        }
    }
}


void compile_4k_table64(unsigned __int8 *a, GfCtx4k64 *ctx)
{   int i, j, k;

    memset(ctx->gf_t4k, 0, sizeof(ctx->gf_t4k));
    for(i = 0; i < 2 * CBLK_LEN8; ++i)
    {
        if(i == 0)
        {
            memcpy(ctx->gf_t4k[1][8], a, CBLK_LEN8);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t4k[1][j], ctx->gf_t4k[1][j + j], CBLK_LEN8);
                mul_x64(ctx->gf_t4k[1][j]);
            }
            memcpy(ctx->gf_t4k[0][8], ctx->gf_t4k[1][1], CBLK_LEN8);
            mul_x64(ctx->gf_t4k[0][8]);
            for(j = 4; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t4k[0][j], ctx->gf_t4k[0][j + j], CBLK_LEN8);
                mul_x64(ctx->gf_t4k[0][j]);
            }
        }
        else if(i > 1)
            for(j = 8; j > 0; j >>= 1)
            {
                memcpy(ctx->gf_t4k[i][j], ctx->gf_t4k[i - 2][j], CBLK_LEN8);
                mul_x8_64(ctx->gf_t4k[i][j]);
            }

        for(j = 2; j < 16; j += j)
        {
            mode(32t) *pj = ctx->gf_t4k[i][j];
            mode(32t) *pk = ctx->gf_t4k[i][1];
            mode(32t) *pl = ctx->gf_t4k[i][j + 1];

            for(k = 1; k < j; ++k)
            {
                *pl++ = pj[0] ^ *pk++;
                *pl++ = pj[1] ^ *pk++;
                *pl++ = pj[2] ^ *pk++;
                *pl++ = pj[3] ^ *pk++;
            }
        }
    }
}

static int IsBitSet128 (unsigned int bit, unsigned __int8 *a)
{
	return a[(127 - bit) / 8] & (0x80 >> ((127 - bit) % 8));
}

static int IsBitSet64 (unsigned int bit, unsigned __int8 *a)
{
	return a[(63 - bit) / 8] & (0x80 >> ((63 - bit) % 8));
}

static void SetBit128 (unsigned int bit, unsigned __int8 *a)
{
	a[(127 - bit) / 8] |= 0x80 >> ((127 - bit) % 8);
}

static void SetBit64 (unsigned int bit, unsigned __int8 *a)
{
	a[(63 - bit) / 8] |= 0x80 >> ((63 - bit) % 8);
}

void MirrorBits128 (unsigned __int8 *a)
{
	unsigned __int8 t[128 / 8];
	int i;
	memset (t,0,16);
	for (i = 0; i < 128; i++)
	{
		if (IsBitSet128(i, a))
			SetBit128 (127 - i, t);
	}
	memcpy (a, t, sizeof (t));
	burn (t,sizeof (t));
}

void MirrorBits64 (unsigned __int8 *a)
{
	unsigned __int8 t[64 / 8];
	int i;
	memset (t,0,8);
	for (i = 0; i < 64; i++)
	{
		if (IsBitSet64(i, a))
			SetBit64 (63 - i, t);
	}
	memcpy (a, t, sizeof (t));
	burn (t,sizeof (t));
}

/* Allocate and initialize speed optimization table
   for multiplication by 64-bit operand in MSB-first mode */
int Gf128Tab64Init (unsigned __int8 *a, GfCtx *ctx)
{
	GfCtx8k *ctx8k;
	unsigned __int8 am[16];
	int i, j;

	ctx8k = (GfCtx8k *) TCalloc (sizeof (GfCtx8k));
	if (!ctx8k)
		return FALSE;

	memcpy (am, a, 16);
	MirrorBits128 (am);
    compile_8k_table (am, ctx8k);

	/* Convert 8k LSB-first table to 4k MSB-first */
	for (i = 16; i < 32; i++) 
	{
		for (j = 0; j < 16; j++) 
		{
			int jm = 0;
			jm |= (j & 0x1) << 3;
			jm |= (j & 0x2) << 1;
			jm |= (j & 0x4) >> 1;
			jm |= (j & 0x8) >> 3;

			memcpy (&ctx->gf_t128[i-16][jm], (unsigned char *)&ctx8k->gf_t8k[31-i][j], 16);
			MirrorBits128 ((unsigned char *)&ctx->gf_t128[i-16][jm]);
		}
	}

	burn (ctx8k ,sizeof (*ctx8k));
	burn (am, sizeof (am));
	TCfree (ctx8k);
	return TRUE;
}


#define xor_8kt64(i)   \
    xor_block_aligned(r, ctx->gf_t128[i + i][a[i] & 15]); \
    xor_block_aligned(r, ctx->gf_t128[i + i + 1][a[i] >> 4])

/* Multiply a 128-bit number by a 64-bit number in the finite field GF(2^128) */
void Gf128MulBy64Tab (unsigned __int8 a[8], unsigned __int8 p[16], GfCtx *ctx)
{  
	unsigned __int32 r[CBLK_LEN >> 2];

	move_block_aligned(r, ctx->gf_t128[7*2][a[7] & 15]);
    xor_block_aligned(r,  ctx->gf_t128[7*2+1][a[7] >> 4]);

	if (*(unsigned __int16 *)a)
	{
		xor_8kt64(0);
		xor_8kt64(1);
	}
	if (a[2])
	{
		xor_8kt64(2);
	}
	xor_8kt64(3);
    xor_8kt64(4);
	xor_8kt64(5);
	xor_8kt64(6);

    move_block_aligned(p, r);
}



/* Basic algorithms for testing of optimized algorithms */

static void xor128 (uint64 *a, uint64 *b)
{
	*a++ ^= *b++;
	*a ^= *b;
}

static void shl128 (unsigned __int8 *a)
{
	int i, x = 0, xx;
	for (i = 15; i >= 0; i--)
	{
		xx = (a[i] & 0x80) >> 7;
		a[i] = (char) ((a[i] << 1) | x);
		x = xx;
	}
}

static void GfMul128Basic (unsigned __int8 *a, unsigned __int8 *b, unsigned __int8 *p)
{
	int i;
	unsigned __int8 la[16];
	memcpy (la, a, 16);
	memset (p, 0, 16);

	for (i = 0; i < 128; i++)
	{
		if (IsBitSet128 (i, b))
			xor128 ((uint64 *)p, (uint64 *)la);

		if (la[0] & 0x80)
		{
			shl128 (la);
			la[15] ^= 0x87;
		}
		else
		{
			shl128 (la);
		}
	}
}


BOOL GfMulSelfTest ()
{
	BOOL result = TRUE;
	unsigned __int8 a[16];
	unsigned __int8 b[16];
	unsigned __int8 p1[16];
	unsigned __int8 p2[16];
	GfCtx *gfCtx = (GfCtx *) TCalloc (sizeof (GfCtx));
	int i, j;

	if (!gfCtx)
		return FALSE;


	/* GF(2^128) */
	for (i = 0; i < 0x100; i++)
	{
		for (j = 0; j < 16; j++)
		{
			a[j] = (unsigned __int8) i;
			b[j] = j < 8 ? 0 : a[j] ^ 0xff;
		}

		GfMul128Basic (a, b, p1);
	
		Gf128Tab64Init (a, gfCtx);
		Gf128MulBy64Tab (b + 8, p2, gfCtx);

		if (memcmp (p1, p2, 16) != 0)
			result = FALSE;
	}

	TCfree (gfCtx);
	return result;
}

#if defined(__cplusplus)
}
#endif