VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/Pkcs5.c
blob: d2696d9c6dc5376ae34e8e114a69c1602627bf81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
<
/*
 Legal Notice: Some portions of the source code contained in this file were
 derived from the source code of TrueCrypt 7.1a, which is 
 Copyright (c) 2003-2012 TrueCrypt Developers Association and which is 
 governed by the TrueCrypt License 3.0, also from the source code of
 Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
 and which is governed by the 'License Agreement for Encryption for the Masses' 
 Modifications and additions to the original source code (contained in this file) 
 and all other portions of this file are Copyright (c) 2013-2015 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages. */

#include "Tcdefs.h"

#include <memory.h>
#include <stdlib.h>
#include "Rmd160.h"
#ifndef TC_WINDOWS_BOOT
#include "Sha2.h"
#include "Whirlpool.h"
#else
#include "Sha2Small.h"
#endif
#include "Pkcs5.h"
#include "Crypto.h"

void hmac_truncate
  (
	  char *d1,		/* data to be truncated */
	  char *d2,		/* truncated data */
	  int len		/* length in bytes to keep */
)
{
	int i;
	for (i = 0; i < len; i++)
		d2[i] = d1[i];
}

#if !defined(TC_WINDOWS_BOOT) || defined(TC_WINDOWS_BOOT_SHA2)

typedef struct hmac_sha256_ctx_struct
{
	sha256_ctx ctx;
	char buf[SHA256_BLOCKSIZE];
	char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the SHA256 hash */
	char u[SHA256_DIGESTSIZE];
} hmac_sha256_ctx;

void hmac_sha256_internal
(
	  char *k,		/* secret key. It's ensured to be always <= 32 bytes */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* input data. d pointer is guaranteed to be at least 32-bytes long */
	  int ld,		/* length of input data in bytes */
	  hmac_sha256_ctx* hmac /* HMAC-SHA256 context which holds temporary variables */
)
{
	int i;
	sha256_ctx* ctx = &(hmac->ctx);
	char* buf = hmac->buf;

	/**** Inner Digest ****/

	sha256_begin (ctx);

	/* Pad the key for inner digest */
	for (i = 0; i < lk; ++i)
		buf[i] = (char) (k[i] ^ 0x36);
	for (i = lk; i < SHA256_BLOCKSIZE; ++i)
		buf[i] = 0x36;

	sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);
	sha256_hash ((unsigned char *) d, ld, ctx);

	sha256_end ((unsigned char *) d, ctx); /* d = inner digest */

	/**** Outer Digest ****/

	sha256_begin (ctx);

	for (i = 0; i < lk; ++i)
		buf[i] = (char) (k[i] ^ 0x5C);
	for (i = lk; i < SHA256_BLOCKSIZE; ++i)
		buf[i] = 0x5C;

	sha256_hash ((unsigned char *) buf, SHA256_BLOCKSIZE, ctx);
	sha256_hash ((unsigned char *) d, SHA256_DIGESTSIZE, ctx);

	sha256_end ((unsigned char *) d, ctx); /* d = outer digest */
}

#ifndef TC_WINDOWS_BOOT
void hmac_sha256
(
	char *k,    /* secret key */
	int lk,    /* length of the key in bytes */
	char *d,    /* data */
	int ld    /* length of data in bytes */
)
{
	hmac_sha256_ctx hmac;
	char key[SHA256_DIGESTSIZE];
    /* If the key is longer than the hash algorithm block size,
	   let key = sha256(key), as per HMAC specifications. */
	if (lk > SHA256_BLOCKSIZE)
	{
		sha256_ctx tctx;

		sha256_begin (&tctx);
		sha256_hash ((unsigned char *) k, lk, &tctx);
		sha256_end ((unsigned char *) key, &tctx);

		k = key;
		lk = SHA256_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}
	hmac_sha256_internal(k, lk, d, ld, &hmac);
	/* Prevent leaks */
	burn(&hmac, sizeof(hmac));
	burn(key, sizeof(key));
}
#endif

static void derive_u_sha256 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, int b, hmac_sha256_ctx* hmac)
{
	char* k = hmac->k;
	char* u = hmac->u;
	uint32 c;
	int i;	

#ifdef TC_WINDOWS_BOOT
	/* In bootloader mode, least significant bit of iterations is a boolean (TRUE for boot derivation mode, FALSE otherwise)
	 * and the most significant 16 bits hold the pim value
	 * This enables us to save code space needed for implementing other features.
	 */
	c = iterations >> 16;
	i = ((int) iterations) & 0x01;
	if (i)
		c = (c == 0)? 200000 : c << 11;
	else
		c = (c == 0)? 500000 : 15000 + c * 1000;
#else
	c = iterations;
#endif

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	
	/* big-endian block number */
	memset (&k[salt_len], 0, 3);
	k[salt_len + 3] = (char) b;

	hmac_sha256_internal (pwd, pwd_len, k, salt_len + 4, hmac);
	memcpy (u, k, SHA256_DIGESTSIZE);

	/* remaining iterations */
	while (c > 1)
	{
		hmac_sha256_internal (pwd, pwd_len, k, SHA256_DIGESTSIZE, hmac);
		for (i = 0; i < SHA256_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
		c--;
	}
}


void derive_key_sha256 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{	
	hmac_sha256_ctx hmac;
	int b, l, r;
#ifndef TC_WINDOWS_BOOT
	char key[SHA256_DIGESTSIZE];
    /* If the password is longer than the hash algorithm block size,
	   let pwd = sha256(pwd), as per HMAC specifications. */
	if (pwd_len > SHA256_BLOCKSIZE)
	{
		sha256_ctx tctx;

		sha256_begin (&tctx);
		sha256_hash ((unsigned char *) pwd, pwd_len, &tctx);
		sha256_end ((unsigned char *) key, &tctx);

		pwd = key;
		pwd_len = SHA256_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}
#endif

	if (dklen % SHA256_DIGESTSIZE)
	{
		l = 1 + dklen / SHA256_DIGESTSIZE;
	}
	else
	{
		l = dklen / SHA256_DIGESTSIZE;
	}

	r = dklen - (l - 1) * SHA256_DIGESTSIZE;

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_sha256 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, SHA256_DIGESTSIZE);
		dk += SHA256_DIGESTSIZE;
	}

	/* last block */
	derive_u_sha256 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
#ifndef TC_WINDOWS_BOOT
	burn (key, sizeof(key));
#endif
}

#endif

#ifndef TC_WINDOWS_BOOT

typedef struct hmac_sha512_ctx_struct
{
	sha512_ctx ctx;
	char buf[SHA512_BLOCKSIZE];
	char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the SHA512 hash */
	char u[SHA512_DIGESTSIZE];
} hmac_sha512_ctx;

void hmac_sha512_internal
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* data and also output buffer of at least 64 bytes */
	  int ld,			/* length of data in bytes */
	  hmac_sha512_ctx* hmac
)
{
	sha512_ctx* ctx = &(hmac->ctx);
	char* buf = hmac->buf;
	int i;

	/**** Inner Digest ****/

	sha512_begin (ctx);

	/* Pad the key for inner digest */
	for (i = 0; i < lk; ++i)
		buf[i] = (char) (k[i] ^ 0x36);
	for (i = lk; i < SHA512_BLOCKSIZE; ++i)
		buf[i] = 0x36;

	sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);
	sha512_hash ((unsigned char *) d, ld, ctx);

	sha512_end ((unsigned char *) d, ctx);

	/**** Outer Digest ****/

	sha512_begin (ctx);

	for (i = 0; i < lk; ++i)
		buf[i] = (char) (k[i] ^ 0x5C);
	for (i = lk; i < SHA512_BLOCKSIZE; ++i)
		buf[i] = 0x5C;

	sha512_hash ((unsigned char *) buf, SHA512_BLOCKSIZE, ctx);
	sha512_hash ((unsigned char *) d, SHA512_DIGESTSIZE, ctx);

	sha512_end ((unsigned char *) d, ctx);
}

void hmac_sha512
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* data and also output buffer of at least 64 bytes */
	  int ld			/* length of data in bytes */	  
)
{
	hmac_sha512_ctx hmac;
	char key[SHA512_DIGESTSIZE];

    /* If the key is longer than the hash algorithm block size,
	   let key = sha512(key), as per HMAC specifications. */
	if (lk > SHA512_BLOCKSIZE)
	{
		sha512_ctx tctx;

		sha512_begin (&tctx);
		sha512_hash ((unsigned char *) k, lk, &tctx);
		sha512_end ((unsigned char *) key, &tctx);

		k = key;
		lk = SHA512_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	hmac_sha512_internal (k, lk, d, ld, &hmac);

	/* Prevent leaks */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}

static void derive_u_sha512 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, int b, hmac_sha512_ctx* hmac)
{
	char* k = hmac->k;
	char* u = hmac->u;
	uint32 c, i;

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	/* big-endian block number */
	memset (&k[salt_len], 0, 3);
	k[salt_len + 3] = (char) b;

	hmac_sha512_internal (pwd, pwd_len, k, salt_len + 4, hmac);
	memcpy (u, k, SHA512_DIGESTSIZE);

	/* remaining iterations */
	for (c = 1; c < iterations; c++)
	{
		hmac_sha512_internal (pwd, pwd_len, k, SHA512_DIGESTSIZE, hmac);
		for (i = 0; i < SHA512_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
	}
}


void derive_key_sha512 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{
	hmac_sha512_ctx hmac;
	int b, l, r;
	char key[SHA512_DIGESTSIZE];

    /* If the password is longer than the hash algorithm block size,
	   let pwd = sha512(pwd), as per HMAC specifications. */
	if (pwd_len > SHA512_BLOCKSIZE)
	{
		sha512_ctx tctx;

		sha512_begin (&tctx);
		sha512_hash ((unsigned char *) pwd, pwd_len, &tctx);
		sha512_end ((unsigned char *) key, &tctx);

		pwd = key;
		pwd_len = SHA512_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	if (dklen % SHA512_DIGESTSIZE)
	{
		l = 1 + dklen / SHA512_DIGESTSIZE;
	}
	else
	{
		l = dklen / SHA512_DIGESTSIZE;
	}

	r = dklen - (l - 1) * SHA512_DIGESTSIZE;

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_sha512 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, SHA512_DIGESTSIZE);
		dk += SHA512_DIGESTSIZE;
	}

	/* last block */
	derive_u_sha512 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}

#endif // TC_WINDOWS_BOOT

#if !defined(TC_WINDOWS_BOOT) || defined(TC_WINDOWS_BOOT_RIPEMD160)

typedef struct hmac_ripemd160_ctx_struct
{
	RMD160_CTX context;
	char k_pad[65];
	char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the RIPEMD-160 hash */
	char u[RIPEMD160_DIGESTSIZE];
} hmac_ripemd160_ctx;

void hmac_ripemd160_internal (char *key, int keylen, char *input_digest, int len, hmac_ripemd160_ctx* hmac)
{
	RMD160_CTX* context = &(hmac->context);
   unsigned char* k_pad = (unsigned char*) hmac->k_pad;  /* inner/outer padding - key XORd with ipad */
   int i;

	/*

	RMD160(K XOR opad, RMD160(K XOR ipad, text))

	where K is an n byte key
	ipad is the byte 0x36 repeated RIPEMD160_BLOCKSIZE times
	opad is the byte 0x5c repeated RIPEMD160_BLOCKSIZE times
	and text is the data being protected */


	/* start out by storing key in pads */
	memset(k_pad, 0x36, 65);

    /* XOR key with ipad and opad values */
    for (i=0; i<keylen; i++) 
	{
        k_pad[i] ^= key[i];
    }

    /* perform inner RIPEMD-160 */

    RMD160Init(context);           /* init context for 1st pass */
    RMD160Update(context, k_pad, RIPEMD160_BLOCKSIZE);  /* start with inner pad */
    RMD160Update(context, (const unsigned char *) input_digest, len); /* then text of datagram */
    RMD160Final((unsigned char *) input_digest, context);         /* finish up 1st pass */

    /* perform outer RIPEMD-160 */
    memset(k_pad, 0x5c, 65);
    for (i=0; i<keylen; i++) 
	 {
        k_pad[i] ^= key[i];
    }

    RMD160Init(context);           /* init context for 2nd pass */
    RMD160Update(context, k_pad, RIPEMD160_BLOCKSIZE);  /* start with outer pad */
    /* results of 1st hash */
    RMD160Update(context, (const unsigned char *) input_digest, RIPEMD160_DIGESTSIZE);
    RMD160Final((unsigned char *) input_digest, context);         /* finish up 2nd pass */
}

#ifndef TC_WINDOWS_BOOT
void hmac_ripemd160 (char *key, int keylen, char *input_digest, int len)
{
	hmac_ripemd160_ctx hmac;
	unsigned char tk[RIPEMD160_DIGESTSIZE];

    /* If the key is longer than the hash algorithm block size,
	   let key = ripemd160(key), as per HMAC specifications. */
    if (keylen > RIPEMD160_BLOCKSIZE) 
	{
        RMD160_CTX      tctx;

        RMD160Init(&tctx);
        RMD160Update(&tctx, (const unsigned char *) key, keylen);
        RMD160Final(tk, &tctx);

        key = (char *) tk;
        keylen = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
    }

	hmac_ripemd160_internal (key, keylen, input_digest, len, &hmac);

	burn (&hmac, sizeof(hmac));
	burn (tk, sizeof(tk));
}
#endif


static void derive_u_ripemd160 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, int b, hmac_ripemd160_ctx* hmac)
{
	char* k = hmac->k;
	char* u = hmac->u;
	uint32 c;
	int i;

#ifdef TC_WINDOWS_BOOT
	/* In bootloader mode, least significant bit of iterations is a boolean (TRUE for boot derivation mode, FALSE otherwise)
	 * and the most significant 16 bits hold the pim value
	 * This enables us to save code space needed for implementing other features.
	 */
	c = iterations >> 16;
	i = ((int) iterations) & 0x01;
	if (i)
		c = (c == 0)? 327661 : c << 11;
	else
		c = (c == 0)? 655331 : 15000 + c * 1000;
#else
	c  = iterations;
#endif

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	
	/* big-endian block number */
	memset (&k[salt_len], 0, 3);
	k[salt_len + 3] = (char) b;

	hmac_ripemd160_internal (pwd, pwd_len, k, salt_len + 4, hmac);
	memcpy (u, k, RIPEMD160_DIGESTSIZE);

	/* remaining iterations */
	while ( c > 1)
	{
		hmac_ripemd160_internal (pwd, pwd_len, k, RIPEMD160_DIGESTSIZE, hmac);
		for (i = 0; i < RIPEMD160_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
		c--;
	}
}

void derive_key_ripemd160 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{	
	int b, l, r;
	hmac_ripemd160_ctx hmac;
#ifndef TC_WINDOWS_BOOT
	unsigned char tk[RIPEMD160_DIGESTSIZE];
    /* If the password is longer than the hash algorithm block size,
	   let password = ripemd160(password), as per HMAC specifications. */
	if (pwd_len > RIPEMD160_BLOCKSIZE) 
	{
        RMD160_CTX      tctx;

        RMD160Init(&tctx);
        RMD160Update(&tctx, (const unsigned char *) pwd, pwd_len);
        RMD160Final(tk, &tctx);

        pwd = (char *) tk;
        pwd_len = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
    }
#endif

	if (dklen % RIPEMD160_DIGESTSIZE)
	{
		l = 1 + dklen / RIPEMD160_DIGESTSIZE;
	}
	else
	{
		l = dklen / RIPEMD160_DIGESTSIZE;
	}

	r = dklen - (l - 1) * RIPEMD160_DIGESTSIZE;

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_ripemd160 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, RIPEMD160_DIGESTSIZE);
		dk += RIPEMD160_DIGESTSIZE;
	}

	/* last block */
	derive_u_ripemd160 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
#ifndef TC_WINDOWS_BOOT
	burn (tk, sizeof(tk));
#endif
}
#endif // TC_WINDOWS_BOOT

#ifndef TC_WINDOWS_BOOT

typedef struct hmac_whirlpool_ctx_struct
{
	WHIRLPOOL_CTX ctx;
	char buf[WHIRLPOOL_BLOCKSIZE];
	char k[PKCS5_SALT_SIZE + 4]; /* enough to hold (salt_len + 4) and also the Whirlpool hash */
	char u[WHIRLPOOL_DIGESTSIZE];
} hmac_whirlpool_ctx;

void hmac_whirlpool_internal
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* input/output data. d pointer is guaranteed to be at least 64-bytes long */
	  int ld,		/* length of input data in bytes */
	  hmac_whirlpool_ctx* hmac /* HMAC-Whirlpool context which holds temporary variables */
)
{
	WHIRLPOOL_CTX* ctx = &(hmac->ctx);
	char* buf = hmac->buf;
	int i;

	/**** Inner Digest ****/

	WHIRLPOOL_init (ctx);

	/* Pad the key for inner digest */
	for (i = 0; i < lk; ++i)
		buf[i] = (char) (k[i] ^ 0x36);
	for (i = lk; i < WHIRLPOOL_BLOCKSIZE; ++i)
		buf[i] = 0x36;

	WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE * 8, ctx);
	WHIRLPOOL_add ((unsigned char *) d, ld * 8, ctx);

	WHIRLPOOL_finalize (ctx, (unsigned char *) d);

	/**** Outer Digest ****/

	WHIRLPOOL_init (ctx);

	for (i = 0; i < lk; ++i)
		buf[i] = (char) (k[i] ^ 0x5C);
	for (i = lk; i < WHIRLPOOL_BLOCKSIZE; ++i)
		buf[i] = 0x5C;

	WHIRLPOOL_add ((unsigned char *) buf, WHIRLPOOL_BLOCKSIZE * 8, ctx);
	WHIRLPOOL_add ((unsigned char *) d, WHIRLPOOL_DIGESTSIZE * 8, ctx);

	WHIRLPOOL_finalize (ctx, (unsigned char *) d);
}

void hmac_whirlpool
(
	  char *k,		/* secret key */
	  int lk,		/* length of the key in bytes */
	  char *d,		/* input data. d pointer is guaranteed to be at least 32-bytes long */
	  int ld		/* length of data in bytes */
)
{
	hmac_whirlpool_ctx hmac;
	char key[WHIRLPOOL_DIGESTSIZE];
    /* If the key is longer than the hash algorithm block size,
	   let key = whirlpool(key), as per HMAC specifications. */
	if (lk > WHIRLPOOL_BLOCKSIZE)
	{
		WHIRLPOOL_CTX tctx;

		WHIRLPOOL_init (&tctx);
		WHIRLPOOL_add ((unsigned char *) k, lk * 8, &tctx);
		WHIRLPOOL_finalize (&tctx, (unsigned char *) key);

		k = key;
		lk = WHIRLPOOL_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	hmac_whirlpool_internal(k, lk, d, ld, &hmac);
	/* Prevent leaks */
	burn(&hmac, sizeof(hmac));
}

static void derive_u_whirlpool (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, int b, hmac_whirlpool_ctx* hmac)
{
	char* u = hmac->u;
	char* k = hmac->k;
	uint32 c, i;

	/* iteration 1 */
	memcpy (k, salt, salt_len);	/* salt */
	/* big-endian block number */
	memset (&k[salt_len], 0, 3);	
	k[salt_len + 3] = (char) b;

	hmac_whirlpool_internal (pwd, pwd_len, k, salt_len + 4, hmac);
	memcpy (u, k, WHIRLPOOL_DIGESTSIZE);

	/* remaining iterations */
	for (c = 1; c < iterations; c++)
	{
		hmac_whirlpool_internal (pwd, pwd_len, k, WHIRLPOOL_DIGESTSIZE, hmac);
		for (i = 0; i < WHIRLPOOL_DIGESTSIZE; i++)
		{
			u[i] ^= k[i];
		}
	}
}

void derive_key_whirlpool (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{
	hmac_whirlpool_ctx hmac;
	char key[WHIRLPOOL_DIGESTSIZE];
	int b, l, r;
    /* If the password is longer than the hash algorithm block size,
	   let pwd = whirlpool(pwd), as per HMAC specifications. */
	if (pwd_len > WHIRLPOOL_BLOCKSIZE)
	{
		WHIRLPOOL_CTX tctx;

		WHIRLPOOL_init (&tctx);
		WHIRLPOOL_add ((unsigned char *) pwd, pwd_len * 8, &tctx);
		WHIRLPOOL_finalize (&tctx, (unsigned char *) key);

		pwd = key;
		pwd_len = WHIRLPOOL_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));		// Prevent leaks
	}

	if (dklen % WHIRLPOOL_DIGESTSIZE)
	{
		l = 1 + dklen / WHIRLPOOL_DIGESTSIZE;
	}
	else
	{
		l = dklen / WHIRLPOOL_DIGESTSIZE;
	}

	r = dklen - (l - 1) * WHIRLPOOL_DIGESTSIZE;

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_whirlpool (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, WHIRLPOOL_DIGESTSIZE);
		dk += WHIRLPOOL_DIGESTSIZE;
	}

	/* last block */
	derive_u_whirlpool (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
	burn (key, sizeof(key));
}


wchar_t *get_pkcs5_prf_name (int pkcs5_prf_id)
{
	switch (pkcs5_prf_id)
	{
	case SHA512:	
		return L"HMAC-SHA-512";

	case SHA256:	
		return L"HMAC-SHA-256";

	case RIPEMD160:	
		return L"HMAC-RIPEMD-160";

	case WHIRLPOOL:	
		return L"HMAC-Whirlpool";

	default:		
		return L"(Unknown)";
	}
}



int get_pkcs5_iteration_count (int pkcs5_prf_id, int pim, BOOL truecryptMode, BOOL bBoot)
{
	if (	(pim < 0)
		|| (truecryptMode && pim > 0) /* No PIM for TrueCrypt mode */
		)
	{
		return 0;
	}

	switch (pkcs5_prf_id)
	{

	case RIPEMD160:	
		if (truecryptMode)
			return bBoot ? 1000 : 2000;
		else if (pim == 0)
			return bBoot? 327661 : 655331;
		else
		{
			return bBoot? pim * 2048 : 15000 + pim * 1000;
		}

	case SHA512:	
		return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);

	case WHIRLPOOL:	
		return truecryptMode? 1000 : ((pim == 0)? 500000 : 15000 + pim * 1000);

	case SHA256:
		if (truecryptMode)
			return 0; // SHA-256 not supported by TrueCrypt
		else if (pim == 0)
			return bBoot? 200000 : 500000;
		else
		{
			return bBoot? pim * 2048 : 15000 + pim * 1000;
		}

	default:		
		TC_THROW_FATAL_EXCEPTION;	// Unknown/wrong ID
	}
	return 0;
}

#endif //!TC_WINDOWS_BOOT