/* Derived from source code of TrueCrypt 7.1a, which is Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed by the TrueCrypt License 3.0. Modifications and additions to the original source code (contained in this file) and all other portions of this file are Copyright (c) 2013-2017 IDRIX and are governed by the Apache License 2.0 the full text of which is contained in the file License.txt included in VeraCrypt binary and source code distribution packages. */ #include "EncryptionThreadPool.h" #include "Pkcs5.h" #ifdef DEVICE_DRIVER #include "Driver/Ntdriver.h" #endif //Increasing the maximum number of threads #define TC_ENC_THREAD_POOL_MAX_THREAD_COUNT 256 //64 #define TC_ENC_THREAD_POOL_QUEUE_SIZE (TC_ENC_THREAD_POOL_MAX_THREAD_COUNT * 2) #define TC_ENC_THREAD_POOL_LEGACY_MAX_THREAD_COUNT 64 #define TC_ENC_THREAD_POOL_LEGACY_QUEUE_SIZE (TC_ENC_THREAD_POOL_LEGACY_MAX_THREAD_COUNT * 2) static volatile size_t ThreadPoolCount = TC_ENC_THREAD_POOL_LEGACY_MAX_THREAD_COUNT; static volatile int ThreadQueueSize = TC_ENC_THREAD_POOL_LEGACY_QUEUE_SIZE; #ifdef DEVICE_DRIVER #define TC_THREAD_HANDLE PKTHREAD #define TC_THREAD_PROC VOID #define TC_SET_EVENT(EVENT) KeSetEvent (&EVENT, IO_DISK_INCREMENT, FALSE) #define TC_CLEAR_EVENT(EVENT) KeClearEvent (&EVENT) #define TC_MUTEX FAST_MUTEX #define TC_ACQUIRE_MUTEX(MUTEX) ExAcquireFastMutex (MUTEX) #define TC_RELEASE_MUTEX(MUTEX) ExReleaseFastMutex (MUTEX) #else // !DEVICE_DRIVER #define TC_THREAD_HANDLE HANDLE #define TC_THREAD_PROC unsigned __stdcall #define TC_SET_EVENT(EVENT) SetEvent (EVENT) #define TC_CLEAR_EVENT(EVENT) ResetEvent (EVENT) #define TC_MUTEX HANDLE #define TC_ACQUIRE_MUTEX(MUTEX) WaitForSingleObject (*(MUTEX), INFINITE) #define TC_RELEASE_MUTEX(MUTEX) ReleaseMutex (*(MUTEX)) typedef BOOL (WINAPI *SetThreadGroupAffinityFn)( HANDLE hThread, const GROUP_AFFINITY *GroupAffinity, PGROUP_AFFINITY PreviousGroupAffinity ); typedef WORD (WINAPI* GetActiveProcessorGroupCountFn)(); typedef DWORD (WINAPI *GetActiveProcessorCountFn)( WORD GroupNumber ); #endif // !DEVICE_DRIVER typedef enum { WorkItemFree, WorkItemReady, WorkItemBusy } WorkItemState; typedef struct EncryptionThreadPoolWorkItemStruct { WorkItemState State; EncryptionThreadPoolWorkType Type; TC_EVENT ItemCompletedEvent; struct EncryptionThreadPoolWorkItemStruct *FirstFragment; LONG OutstandingFragmentCount; union { struct { PCRYPTO_INFO CryptoInfo; byte *Data; UINT64_STRUCT StartUnitNo; uint32 UnitCount; } Encryption; struct { TC_EVENT *CompletionEvent; LONG *CompletionFlag; char *DerivedKey; int IterationCount; TC_EVENT *NoOutstandingWorkItemEvent; LONG *OutstandingWorkItemCount; char *Password; int PasswordLength; int Pkcs5Prf; char *Salt; } KeyDerivation; struct { TC_EVENT *KeyDerivationCompletedEvent; TC_EVENT *NoOutstandingWorkItemEvent; LONG *outstandingWorkItemCount; void* keyInfoBuffer; int keyInfoBufferSize; void* keyDerivationWorkItems; int keyDerivationWorkItemsSize; } ReadVolumeHeaderFinalization; }; } EncryptionThreadPoolWorkItem; static volatile BOOL ThreadPoolRunning = FALSE; static volatile BOOL StopPending = FALSE; static uint32 ThreadCount; static TC_THREAD_HANDLE ThreadHandles[TC_ENC_THREAD_POOL_MAX_THREAD_COUNT]; static WORD ThreadProcessorGroups[TC_ENC_THREAD_POOL_MAX_THREAD_COUNT]; static EncryptionThreadPoolWorkItem WorkItemQueue[TC_ENC_THREAD_POOL_QUEUE_SIZE]; static volatile int EnqueuePosition; static volatile int DequeuePosition; static TC_MUTEX EnqueueMutex; static TC_MUTEX DequeueMutex; static TC_EVENT WorkItemReadyEvent; static TC_EVENT WorkItemCompletedEvent; #if defined(_WIN64) void EncryptDataUnitsCurrentThreadEx (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci) { if (IsRamEncryptionEnabled()) { CRYPTO_INFO tmpCI; memcpy (&tmpCI, ci, sizeof (CRYPTO_INFO)); VcUnprotectKeys (&tmpCI, VcGetEncryptionID (ci)); EncryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, &tmpCI); burn (&tmpCI, sizeof(CRYPTO_INFO)); } else EncryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, ci); } void DecryptDataUnitsCurrentThreadEx (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci) { if (IsRamEncryptionEnabled()) { CRYPTO_INFO tmpCI; memcpy (&tmpCI, ci, sizeof (CRYPTO_INFO)); VcUnprotectKeys (&tmpCI, VcGetEncryptionID (ci)); DecryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, &tmpCI); burn (&tmpCI, sizeof(CRYPTO_INFO)); } else DecryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, ci); } #else #define EncryptDataUnitsCurrentThreadEx EncryptDataUnitsCurrentThread #define DecryptDataUnitsCurrentThreadEx DecryptDataUnitsCurrentThread #endif static WorkItemState GetWorkItemState (EncryptionThreadPoolWorkItem *workItem) { return InterlockedExchangeAdd ((LONG *) &workItem->State, 0); } static void SetWorkItemState (EncryptionThreadPoolWorkItem *workItem, WorkItemState newState) { InterlockedExchange ((LONG *) &workItem->State, (LONG) newState); } static TC_THREAD_PROC EncryptionThreadProc (void *threadArg) { EncryptionThreadPoolWorkItem *workItem; if (threadArg) { #ifdef DEVICE_DRIVER SetThreadCpuGroupAffinity ((USHORT) *(WORD*)(threadArg)); #else SetThreadGroupAffinityFn SetThreadGroupAffinityPtr = (SetThreadGroupAffinityFn) GetProcAddress (GetModuleHandle (L"kernel32.dll"), "SetThreadGroupAffinity"); if (SetThreadGroupAffinityPtr && threadArg) { GROUP_AFFINITY groupAffinity = {0}; groupAffinity.Mask = ~0ULL; groupAffinity.Group = *(WORD*)(threadArg); SetThreadGroupAffinityPtr(GetCurrentThread(), &groupAffinity, NULL); } #endif } while (!StopPending) { TC_ACQUIRE_MUTEX (&DequeueMutex); workItem = &WorkItemQueue[DequeuePosition++]; if (DequeuePosition >= ThreadQueueSize) DequeuePosition = 0; while (!StopPending && GetWorkItemState (workItem) != WorkItemReady) { TC_WAIT_EVENT (WorkItemReadyEvent); } SetWorkItemState (workItem, WorkItemBusy); TC_RELEASE_MUTEX (&DequeueMutex); if (StopPending) break; switch (workItem->Type) { case DecryptDataUnitsWork: DecryptDataUnitsCurrentThreadEx (workItem->Encryption.Data, &workItem->Encryption.StartUnitNo, workItem->Encryption.UnitCount, workItem->Encryption.CryptoInfo); break; case EncryptDataUnitsWork: EncryptDataUnitsCurrentThreadEx (workItem->Encryption.Data, &workItem->Encryption.StartUnitNo, workItem->Encryption.UnitCount, workItem->Encryption.CryptoInfo); break; case DeriveKeyWork: switch (workItem->KeyDerivation.Pkcs5Prf) { case BLAKE2S: derive_key_blake2s (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE, workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize()); break; case SHA512: derive_key_sha512 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE, workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE, workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize()); break; case SHA256: derive_key_sha256 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE, workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize()); break; case STREEBOG: derive_key_streebog(workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE, workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize()); break; default: TC_THROW_FATAL_EXCEPTION; } InterlockedExchange (workItem->KeyDerivation.CompletionFlag, TRUE); TC_SET_EVENT (*workItem->KeyDerivation.CompletionEvent); if (InterlockedDecrement (workItem->KeyDerivation.OutstandingWorkItemCount) == 0) TC_SET_EVENT (*workItem->KeyDerivation.NoOutstandingWorkItemEvent); SetWorkItemState (workItem, WorkItemFree); TC_SET_EVENT (WorkItemCompletedEvent); continue; case ReadVolumeHeaderFinalizationWork: TC_WAIT_EVENT (*(workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent)); if (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems) { burn (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems, workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItemsSize); #if !defined(DEVICE_DRIVER) VirtualUnlock (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems, workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItemsSize); #endif TCfree (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems); } if (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer) { burn (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer, workItem->ReadVolumeHeaderFinalization.keyInfoBufferSize); #if !defined(DEVICE_DRIVER) VirtualUnlock (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer, workItem->ReadVolumeHeaderFinalization.keyInfoBufferSize); #endif TCfree (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer); } #if !defined(DEVICE_DRIVER) CloseHandle (*(workItem->ReadVolumeHeaderFinalization.KeyDerivationCompletedEvent)); CloseHandle (*(workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent)); #endif TCfree (workItem->ReadVolumeHeaderFinalization.KeyDerivationCompletedEvent); TCfree (workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent); TCfree (workItem->ReadVolumeHeaderFinalization.outstandingWorkItemCount); SetWorkItemState (workItem, WorkItemFree); TC_SET_EVENT (WorkItemCompletedEvent); continue; default: TC_THROW_FATAL_EXCEPTION; } if (workItem != workItem->FirstFragment) { SetWorkItemState (workItem, WorkItemFree); TC_SET_EVENT (WorkItemCompletedEvent); } if (InterlockedDecrement (&workItem->FirstFragment->OutstandingFragmentCount) == 0) TC_SET_EVENT (workItem->FirstFragment->ItemCompletedEvent); } #ifdef DEVICE_DRIVER PsTerminateSystemThread (STATUS_SUCCESS); #else _endthreadex (0); return 0; #endif } #ifndef DEVICE_DRIVER size_t GetCpuCount (WORD* pGroupCount) { size_t cpuCount = 0; SYSTEM_INFO sysInfo; GetActiveProcessorGroupCountFn GetActiveProcessorGroupCountPtr = (GetActiveProcessorGroupCountFn) GetProcAddress (GetModuleHandle (L"Kernel32.dll"), "GetActiveProcessorGroupCount"); GetActiveProcessorCountFn GetActiveProcessorCountPtr = (GetActiveProcessorCountFn) GetProcAddress (GetModuleHandle (L"Kernel32.dll"), "GetActiveProcessorCount"); if (GetActiveProcessorGroupCountPtr && GetActiveProcessorCountPtr) { WORD j, groupCount = GetActiveProcessorGroupCountPtr(); size_t totalProcessors = 0; for (j = 0; j < groupCount; ++j) { totalProcessors += (size_t) GetActiveProcessorCountPtr(j); } cpuCount = totalProcessors; if (pGroupCount) *pGroupCount = groupCount; } else { GetSystemInfo(&sysInfo); cpuCount = (size_t) sysInfo.dwNumberOfProcessors; if (pGroupCount) *pGroupCount = 1; } return cpuCount; } #endif BOOL EncryptionThreadPoolStart (size_t encryptionFreeCpuCount) { size_t cpuCount = 0, i = 0; WORD groupCount = 1; cpuCount = GetCpuCount(&groupCount); if (ThreadPoolRunning) return TRUE; if (groupCount > 1) { ThreadPoolCount = TC_ENC_THREAD_POOL_MAX_THREAD_COUNT; ThreadQueueSize = TC_ENC_THREAD_POOL_QUEUE_SIZE; } if (cpuCount > encryptionFreeCpuCount) cpuCount -= encryptionFreeCpuCount; if (cpuCount < 2) return TRUE; if (cpuCount > ThreadPoolCount) cpuCount = ThreadPoolCount; StopPending = FALSE; DequeuePosition = 0; EnqueuePosition = 0; #ifdef DEVICE_DRIVER KeInitializeEvent (&WorkItemReadyEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&WorkItemCompletedEvent, SynchronizationEvent, FALSE); #else WorkItemReadyEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!WorkItemReadyEvent) return FALSE; WorkItemCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!WorkItemCompletedEvent) return FALSE; #endif #ifdef DEVICE_DRIVER ExInitializeFastMutex (&DequeueMutex); ExInitializeFastMutex (&EnqueueMutex); #else DequeueMutex = CreateMutex (NULL, FALSE, NULL); if (!DequeueMutex) return FALSE; EnqueueMutex = CreateMutex (NULL, FALSE, NULL); if (!EnqueueMutex) return FALSE; #endif memset (WorkItemQueue, 0, sizeof (WorkItemQueue)); for (i = 0; i < sizeof (WorkItemQueue) / sizeof (WorkItemQueue[0]); ++i) { WorkItemQueue[i].State = WorkItemFree; #ifdef DEVICE_DRIVER KeInitializeEvent (&WorkItemQueue[i].ItemCompletedEvent, SynchronizationEvent, FALSE); #else WorkItemQueue[i].ItemCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!WorkItemQueue[i].ItemCompletedEvent) { EncryptionThreadPoolStop(); return FALSE; } #endif } for (ThreadCount = 0; ThreadCount < cpuCount; ++ThreadCount) { WORD* pThreadArg = NULL; if (groupCount > 1) { #ifdef DEVICE_DRIVER ThreadProcessorGroups[ThreadCount] = GetCpuGroup ((size_t) ThreadCount); #else GetActiveProcessorCountFn GetActiveProcessorCountPtr = (GetActiveProcessorCountFn) GetProcAddress (GetModuleHandle (L"Kernel32.dll"), "GetActiveProcessorCount"); // Determine which processor group to bind the thread to. if (GetActiveProcessorCountPtr) { WORD j; uint32 totalProcessors = 0U; for (j = 0U; j < groupCount; j++) { totalProcessors += (uint32) GetActiveProcessorCountPtr(j); if (totalProcessors >= ThreadCount) { ThreadProcessorGroups[ThreadCount] = j; break; } } } else ThreadProcessorGroups[ThreadCount] = 0; #endif pThreadArg = &ThreadProcessorGroups[ThreadCount]; } #ifdef DEVICE_DRIVER if (!NT_SUCCESS(TCStartThread(EncryptionThreadProc, (void*) pThreadArg, &ThreadHandles[ThreadCount]))) #else if (!(ThreadHandles[ThreadCount] = (HANDLE)_beginthreadex(NULL, 0, EncryptionThreadProc, (void*) pThreadArg, 0, NULL))) #endif { EncryptionThreadPoolStop(); return FALSE; } } ThreadPoolRunning = TRUE; return TRUE; } void EncryptionThreadPoolStop () { size_t i; if (!ThreadPoolRunning) return; StopPending = TRUE; TC_SET_EVENT (WorkItemReadyEvent); for (i = 0; i < ThreadCount; ++i) { #ifdef DEVICE_DRIVER TCStopThread (ThreadHandles[i], &WorkItemReadyEvent); #else TC_WAIT_EVENT (ThreadHandles[i]); #endif } ThreadCount = 0; #ifndef DEVICE_DRIVER CloseHandle (DequeueMutex); CloseHandle (EnqueueMutex); CloseHandle (WorkItemReadyEvent); CloseHandle (WorkItemCompletedEvent); for (i = 0; i < sizeof (WorkItemQueue) / sizeof (WorkItemQueue[0]); ++i) { if (WorkItemQueue[i].ItemCompletedEvent) CloseHandle (WorkItemQueue[i].ItemCompletedEvent); } #endif ThreadPoolRunning = FALSE; } void EncryptionThreadPoolBeginKeyDerivation (TC_EVENT *completionEvent, TC_EVENT *noOutstandingWorkItemEvent, LONG *completionFlag, LONG *outstandingWorkItemCount, int pkcs5Prf, char *password, int passwordLength, char *salt, int iterationCount, char *derivedKey) { EncryptionThreadPoolWorkItem *workItem; if (!ThreadPoolRunning) TC_THROW_FATAL_EXCEPTION; TC_ACQUIRE_MUTEX (&EnqueueMutex); workItem = &WorkItemQueue[EnqueuePosition++]; if (EnqueuePosition >= ThreadQueueSize) EnqueuePosition = 0; while (GetWorkItemState (workItem) != WorkItemFree) { TC_WAIT_EVENT (WorkItemCompletedEvent); } workItem->Type = DeriveKeyWork; workItem->KeyDerivation.CompletionEvent = completionEvent; workItem->KeyDerivation.CompletionFlag = completionFlag; workItem->KeyDerivation.DerivedKey = derivedKey; workItem->KeyDerivation.IterationCount = iterationCount; workItem->KeyDerivation.NoOutstandingWorkItemEvent = noOutstandingWorkItemEvent; workItem->KeyDerivation.OutstandingWorkItemCount = outstandingWorkItemCount; workItem->KeyDerivation.Password = password; workItem->KeyDerivation.PasswordLength = passwordLength; workItem->KeyDerivation.Pkcs5Prf = pkcs5Prf; workItem->KeyDerivation.Salt = salt; InterlockedIncrement (outstandingWorkItemCount); TC_CLEAR_EVENT (*noOutstandingWorkItemEvent); SetWorkItemState (workItem, WorkItemReady); TC_SET_EVENT (WorkItemReadyEvent); TC_RELEASE_MUTEX (&EnqueueMutex); } void EncryptionThreadPoolBeginReadVolumeHeaderFinalization (TC_EVENT *keyDerivationCompletedEvent, TC_EVENT *noOutstandingWorkItemEvent, LONG* outstandingWorkItemCount, void* keyInfoBuffer, int keyInfoBufferSize, void* keyDerivationWorkItems, int keyDerivationWorkItemsSize) { EncryptionThreadPoolWorkItem *workItem; if (!ThreadPoolRunning) TC_THROW_FATAL_EXCEPTION; TC_ACQUIRE_MUTEX (&EnqueueMutex); workItem = &WorkItemQueue[EnqueuePosition++]; if (EnqueuePosition >= ThreadQueueSize) EnqueuePosition = 0; while (GetWorkItemState (workItem) != WorkItemFree) { TC_WAIT_EVENT (WorkItemCompletedEvent); } workItem->Type = ReadVolumeHeaderFinalizationWork; workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent = noOutstandingWorkItemEvent; workItem->ReadVolumeHeaderFinalization.KeyDerivationCompletedEvent = keyDerivationCompletedEvent; workItem->ReadVolumeHeaderFinalization.keyInfoBuffer = keyInfoBuffer; workItem->ReadVolumeHeaderFinalization.keyInfoBufferSize = keyInfoBufferSize; workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems = keyDerivationWorkItems; workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItemsSize = keyDerivationWorkItemsSize; workItem->ReadVolumeHeaderFinalization.outstandingWorkItemCount = outstandingWorkItemCount; SetWorkItemState (workItem, WorkItemReady); TC_SET_EVENT (WorkItemReadyEvent); TC_RELEASE_MUTEX (&EnqueueMutex); } void EncryptionThreadPoolDoWork (EncryptionThreadPoolWorkType type, byte *data, const UINT64_STRUCT *startUnitNo, uint32 unitCount, PCRYPTO_INFO cryptoInfo) { uint32 fragmentCount; uint32 unitsPerFragment; uint32 remainder; byte *fragmentData; uint64 fragmentStartUnitNo; EncryptionThreadPoolWorkItem *workItem; EncryptionThreadPoolWorkItem *firstFragmentWorkItem; if (unitCount == 0) return; if (!ThreadPoolRunning || unitCount == 1) { switch (type) { case DecryptDataUnitsWork: DecryptDataUnitsCurrentThreadEx (data, startUnitNo, unitCount, cryptoInfo); break; case EncryptDataUnitsWork: EncryptDataUnitsCurrentThreadEx (data, startUnitNo, unitCount, cryptoInfo); break; default: TC_THROW_FATAL_EXCEPTION; } return; } if (unitCount <= ThreadCount) { fragmentCount = unitCount; unitsPerFragment = 1; remainder = 0; } else { /* Note that it is not efficient to divide the data into fragments smaller than a few hundred bytes. The reason is that the overhead associated with thread handling would in most cases make a multi-threaded process actually slower than a single-threaded process. */ fragmentCount = ThreadCount; unitsPerFragment = unitCount / ThreadCount; remainder = unitCount % ThreadCount; if (remainder > 0) ++unitsPerFragment; } fragmentData = data; fragmentStartUnitNo = startUnitNo->Value; TC_ACQUIRE_MUTEX (&EnqueueMutex); firstFragmentWorkItem = &WorkItemQueue[EnqueuePosition]; while (GetWorkItemState (firstFragmentWorkItem) != WorkItemFree) { TC_WAIT_EVENT (WorkItemCompletedEvent); } firstFragmentWorkItem->OutstandingFragmentCount = fragmentCount; while (fragmentCount-- > 0) { workItem = &WorkItemQueue[EnqueuePosition++]; if (EnqueuePosition >= ThreadQueueSize) EnqueuePosition = 0; while (GetWorkItemState (workItem) != WorkItemFree) { TC_WAIT_EVENT (WorkItemCompletedEvent); } workItem->Type = type; workItem->FirstFragment = firstFragmentWorkItem; workItem->Encryption.CryptoInfo = cryptoInfo; workItem->Encryption.Data = fragmentData; workItem->Encryption.UnitCount = unitsPerFragment; workItem->Encryption.StartUnitNo.Value = fragmentStartUnitNo; fragmentData += ((uint64)unitsPerFragment) * ENCRYPTION_DATA_UNIT_SIZE; fragmentStartUnitNo += unitsPerFragment; if (remainder > 0 && --remainder == 0) --unitsPerFragment; SetWorkItemState (workItem, WorkItemReady); TC_SET_EVENT (WorkItemReadyEvent); } TC_RELEASE_MUTEX (&EnqueueMutex); TC_WAIT_EVENT (firstFragmentWorkItem->ItemCompletedEvent); SetWorkItemState (firstFragmentWorkItem, WorkItemFree); TC_SET_EVENT (WorkItemCompletedEvent); } size_t GetEncryptionThreadCount () { return ThreadPoolRunning ? ThreadCount : 0; } size_t GetMaxEncryptionThreadCount () { return ThreadPoolCount; } BOOL IsEncryptionThreadPoolRunning () { return ThreadPoolRunning; } 'n527' href='#n527'>527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2016 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "Platform/Finally.h"
#include "Platform/ForEach.h"

#if !defined (TC_WINDOWS) || defined (TC_PROTOTYPE)
#	include "Platform/SerializerFactory.h"
#	include "Platform/StringConverter.h"
#	include "Platform/SystemException.h"
#else
#	include "Dictionary.h"
#	include "Language.h"
#endif

#ifdef TC_UNIX
#	include <dlfcn.h>
#endif

#include "SecurityToken.h"

#ifndef burn
#	define burn Memory::Erase
#endif

using namespace std;

namespace VeraCrypt
{
	SecurityTokenKeyfile::SecurityTokenKeyfile (const SecurityTokenKeyfilePath &path)
	{
		wstring pathStr = path;
		unsigned long slotId;

		if (swscanf (pathStr.c_str(), TC_SECURITY_TOKEN_KEYFILE_URL_PREFIX TC_SECURITY_TOKEN_KEYFILE_URL_SLOT L"/%lu", &slotId) != 1)
			throw InvalidSecurityTokenKeyfilePath();

		SlotId = slotId;

		size_t keyIdPos = pathStr.find (L"/" TC_SECURITY_TOKEN_KEYFILE_URL_FILE L"/");
		if (keyIdPos == wstring::npos)
			throw InvalidSecurityTokenKeyfilePath();

		Id = pathStr.substr (keyIdPos + wstring (L"/" TC_SECURITY_TOKEN_KEYFILE_URL_FILE L"/").size());

		vector <SecurityTokenKeyfile> keyfiles = SecurityToken::GetAvailableKeyfiles (&SlotId, Id);

		if (keyfiles.empty())
			throw SecurityTokenKeyfileNotFound();

		*this = keyfiles.front();
	}

	SecurityTokenKeyfile::operator SecurityTokenKeyfilePath () const
	{
		wstringstream path;
		path << TC_SECURITY_TOKEN_KEYFILE_URL_PREFIX TC_SECURITY_TOKEN_KEYFILE_URL_SLOT L"/" << SlotId << L"/" TC_SECURITY_TOKEN_KEYFILE_URL_FILE L"/" << Id;
		return path.str();
	}

	void SecurityToken::CheckLibraryStatus ()
	{
		if (!Initialized)
			throw SecurityTokenLibraryNotInitialized();
	}

	void SecurityToken::CloseLibrary ()
	{
		if (Initialized)
		{
			CloseAllSessions();
			Pkcs11Functions->C_Finalize (NULL_PTR);

#ifdef TC_WINDOWS
			FreeLibrary (Pkcs11LibraryHandle);
#else
			dlclose (Pkcs11LibraryHandle);
#endif
			Initialized = false;
		}
	}

	void SecurityToken::CloseAllSessions () throw ()
	{
		if (!Initialized)
			return;

		typedef pair <CK_SLOT_ID, Pkcs11Session> SessionMapPair;

		foreach (SessionMapPair p, Sessions)
		{
			try
			{
				CloseSession (p.first);
			}
			catch (...) { }
		}
	}

	void SecurityToken::CloseSession (CK_SLOT_ID slotId)
	{
		if (Sessions.find (slotId) == Sessions.end())
			throw ParameterIncorrect (SRC_POS);

		Pkcs11Functions->C_CloseSession (Sessions[slotId].Handle);
		Sessions.erase (Sessions.find (slotId));
	}

	void SecurityToken::CreateKeyfile (CK_SLOT_ID slotId, vector <byte> &keyfileData, const string &name)
	{
		if (name.empty())
			throw ParameterIncorrect (SRC_POS);

		LoginUserIfRequired (slotId);

		foreach (const SecurityTokenKeyfile &keyfile, GetAvailableKeyfiles (&slotId))
		{
			if (keyfile.IdUtf8 == name)
				throw SecurityTokenKeyfileAlreadyExists();
		}

		CK_OBJECT_CLASS dataClass = CKO_DATA;
		CK_BBOOL trueVal = CK_TRUE;

		CK_ATTRIBUTE keyfileTemplate[] =
		{
			{ CKA_CLASS, &dataClass, sizeof (dataClass) },
			{ CKA_TOKEN, &trueVal, sizeof (trueVal) },
			{ CKA_PRIVATE, &trueVal, sizeof (trueVal) },
			{ CKA_LABEL, (CK_UTF8CHAR *) name.c_str(), (CK_ULONG) name.size() },
			{ CKA_VALUE, &keyfileData.front(), (CK_ULONG) keyfileData.size() }
		};

		CK_OBJECT_HANDLE keyfileHandle;

		CK_RV status = Pkcs11Functions->C_CreateObject (Sessions[slotId].Handle, keyfileTemplate, array_capacity (keyfileTemplate), &keyfileHandle);

		switch (status)
		{
		case CKR_DATA_LEN_RANGE:
			status = CKR_DEVICE_MEMORY;
			break;

		case CKR_SESSION_READ_ONLY:
			status = CKR_TOKEN_WRITE_PROTECTED;
			break;
		}

		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		// Some tokens report success even if the new object was truncated to fit in the available memory
		vector <byte> objectData;

		GetObjectAttribute (slotId, keyfileHandle, CKA_VALUE, objectData);
		finally_do_arg (vector <byte> *, &objectData, { if (!finally_arg->empty()) burn (&finally_arg->front(), finally_arg->size()); });

		if (objectData.size() != keyfileData.size())
		{
			Pkcs11Functions->C_DestroyObject (Sessions[slotId].Handle, keyfileHandle);
			throw Pkcs11Exception (CKR_DEVICE_MEMORY);
		}
	}

	void SecurityToken::DeleteKeyfile (const SecurityTokenKeyfile &keyfile)
	{
		LoginUserIfRequired (keyfile.SlotId);

		CK_RV status = Pkcs11Functions->C_DestroyObject (Sessions[keyfile.SlotId].Handle, keyfile.Handle);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);
	}

	vector <SecurityTokenKeyfile> SecurityToken::GetAvailableKeyfiles (CK_SLOT_ID *slotIdFilter, const wstring keyfileIdFilter)
	{
		bool unrecognizedTokenPresent = false;
		vector <SecurityTokenKeyfile> keyfiles;

		foreach (const CK_SLOT_ID &slotId, GetTokenSlots())
		{
			SecurityTokenInfo token;

			if (slotIdFilter && *slotIdFilter != slotId)
				continue;

			try
			{
				LoginUserIfRequired (slotId);
				token = GetTokenInfo (slotId);
			}
			catch (UserAbort &)
			{
				continue;
			}
			catch (Pkcs11Exception &e)
			{
				if (e.GetErrorCode() == CKR_TOKEN_NOT_RECOGNIZED)
				{
					unrecognizedTokenPresent = true;
					continue;
				}

				throw;
			}

			foreach (const CK_OBJECT_HANDLE &dataHandle, GetObjects (slotId, CKO_DATA))
			{
				SecurityTokenKeyfile keyfile;
				keyfile.Handle = dataHandle;
				keyfile.SlotId = slotId;
				keyfile.Token = token;

				vector <byte> privateAttrib;
				GetObjectAttribute (slotId, dataHandle, CKA_PRIVATE, privateAttrib);

				if (privateAttrib.size() == sizeof (CK_BBOOL) && *(CK_BBOOL *) &privateAttrib.front() != CK_TRUE)
					continue;

				vector <byte> label;
				GetObjectAttribute (slotId, dataHandle, CKA_LABEL, label);
				label.push_back (0);

				keyfile.IdUtf8 = (char *) &label.front();

#if defined (TC_WINDOWS) && !defined (TC_PROTOTYPE)
				keyfile.Id = Utf8StringToWide ((const char *) &label.front());
#else
				keyfile.Id = StringConverter::ToWide ((const char *) &label.front());
#endif
				if (keyfile.Id.empty() || (!keyfileIdFilter.empty() && keyfileIdFilter != keyfile.Id))
					continue;

				keyfiles.push_back (keyfile);

				if (!keyfileIdFilter.empty())
					break;
			}
		}

		if (keyfiles.empty() && unrecognizedTokenPresent)
			throw Pkcs11Exception (CKR_TOKEN_NOT_RECOGNIZED);

		return keyfiles;
	}

	list <SecurityTokenInfo> SecurityToken::GetAvailableTokens ()
	{
		bool unrecognizedTokenPresent = false;
		list <SecurityTokenInfo> tokens;

		foreach (const CK_SLOT_ID &slotId, GetTokenSlots())
		{
			try
			{
				tokens.push_back (GetTokenInfo (slotId));
			}
			catch (Pkcs11Exception &e)
			{
				if (e.GetErrorCode() == CKR_TOKEN_NOT_RECOGNIZED)
				{
					unrecognizedTokenPresent = true;
					continue;
				}

				throw;
			}
		}

		if (tokens.empty() && unrecognizedTokenPresent)
			throw Pkcs11Exception (CKR_TOKEN_NOT_RECOGNIZED);

		return tokens;
	}

	SecurityTokenInfo SecurityToken::GetTokenInfo (CK_SLOT_ID slotId)
	{
		CK_TOKEN_INFO info;
		CK_RV status = Pkcs11Functions->C_GetTokenInfo (slotId, &info);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		SecurityTokenInfo token;
		token.SlotId = slotId;
		token.Flags = info.flags;

		char label[sizeof (info.label) + 1];
		memset (label, 0, sizeof (label));
		memcpy (label, info.label, sizeof (info.label));

		token.LabelUtf8 = label;

		size_t lastSpace = token.LabelUtf8.find_last_not_of (' ');
		if (lastSpace == string::npos)
			token.LabelUtf8.clear();
		else
			token.LabelUtf8 = token.LabelUtf8.substr (0, lastSpace + 1);

#if defined (TC_WINDOWS) && !defined (TC_PROTOTYPE)
		token.Label = Utf8StringToWide (token.LabelUtf8);
#else
		token.Label = StringConverter::ToWide (token.LabelUtf8);
#endif
		return token;
	}

	void SecurityToken::GetKeyfileData (const SecurityTokenKeyfile &keyfile, vector <byte> &keyfileData)
	{
		LoginUserIfRequired (keyfile.SlotId);
		GetObjectAttribute (keyfile.SlotId, keyfile.Handle, CKA_VALUE, keyfileData);
	}

	vector <CK_OBJECT_HANDLE> SecurityToken::GetObjects (CK_SLOT_ID slotId, CK_ATTRIBUTE_TYPE objectClass)
	{
		if (Sessions.find (slotId) == Sessions.end())
			throw ParameterIncorrect (SRC_POS);

		CK_ATTRIBUTE findTemplate;
		findTemplate.type = CKA_CLASS;
		findTemplate.pValue = &objectClass;
		findTemplate.ulValueLen = sizeof (objectClass);

		CK_RV status = Pkcs11Functions->C_FindObjectsInit (Sessions[slotId].Handle, &findTemplate, 1);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		finally_do_arg (CK_SLOT_ID, slotId, { Pkcs11Functions->C_FindObjectsFinal (Sessions[finally_arg].Handle); });

		CK_ULONG objectCount;
		vector <CK_OBJECT_HANDLE> objects;

		while (true)
		{
			CK_OBJECT_HANDLE object;
			CK_RV status = Pkcs11Functions->C_FindObjects (Sessions[slotId].Handle, &object, 1, &objectCount);
			if (status != CKR_OK)
				throw Pkcs11Exception (status);

			if (objectCount != 1)
				break;

			objects.push_back (object);
		}

		return objects;
	}

	void SecurityToken::GetObjectAttribute (CK_SLOT_ID slotId, CK_OBJECT_HANDLE tokenObject, CK_ATTRIBUTE_TYPE attributeType, vector <byte> &attributeValue)
	{
		attributeValue.clear();

		if (Sessions.find (slotId) == Sessions.end())
			throw ParameterIncorrect (SRC_POS);

		CK_ATTRIBUTE attribute;
		attribute.type = attributeType;
		attribute.pValue = NULL_PTR;

		CK_RV status = Pkcs11Functions->C_GetAttributeValue (Sessions[slotId].Handle, tokenObject, &attribute, 1);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		if (attribute.ulValueLen == 0)
			return;

		attributeValue = vector <byte> (attribute.ulValueLen);
		attribute.pValue = &attributeValue.front();

		status = Pkcs11Functions->C_GetAttributeValue (Sessions[slotId].Handle, tokenObject, &attribute, 1);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);
	}

	list <CK_SLOT_ID> SecurityToken::GetTokenSlots ()
	{
		CheckLibraryStatus();

		list <CK_SLOT_ID> slots;
		CK_ULONG slotCount;

		CK_RV status = Pkcs11Functions->C_GetSlotList (TRUE, NULL_PTR, &slotCount);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		if (slotCount > 0)
		{
			vector <CK_SLOT_ID> slotArray (slotCount);
			status = Pkcs11Functions->C_GetSlotList (TRUE, &slotArray.front(), &slotCount);
			if (status != CKR_OK)
				throw Pkcs11Exception (status);

			for (size_t i = 0; i < slotCount; i++)
			{
				CK_SLOT_INFO slotInfo;
				status = Pkcs11Functions->C_GetSlotInfo (slotArray[i], &slotInfo);

				if (status != CKR_OK || !(slotInfo.flags & CKF_TOKEN_PRESENT))
					continue;

				slots.push_back (slotArray[i]);
			}
		}

		return slots;
	}

	bool SecurityToken::IsKeyfilePathValid (const wstring &securityTokenKeyfilePath)
	{
		return securityTokenKeyfilePath.find (TC_SECURITY_TOKEN_KEYFILE_URL_PREFIX) == 0;
	}

	void SecurityToken::Login (CK_SLOT_ID slotId, const char* pin)
	{
		if (Sessions.find (slotId) == Sessions.end())
			OpenSession (slotId);
		else if (Sessions[slotId].UserLoggedIn)
			return;

		size_t pinLen = pin? strlen (pin) : 0;
		CK_RV status = Pkcs11Functions->C_Login (Sessions[slotId].Handle, CKU_USER, (CK_CHAR_PTR) pin, (CK_ULONG) pinLen);

		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		Sessions[slotId].UserLoggedIn = true;
	}

	void SecurityToken::LoginUserIfRequired (CK_SLOT_ID slotId)
	{
		CheckLibraryStatus();
		CK_RV status;

		if (Sessions.find (slotId) == Sessions.end())
		{
			OpenSession (slotId);
		}
		else
		{
			CK_SESSION_INFO sessionInfo;
			status = Pkcs11Functions->C_GetSessionInfo (Sessions[slotId].Handle, &sessionInfo);

			if (status == CKR_OK)
			{
				Sessions[slotId].UserLoggedIn = (sessionInfo.state == CKS_RO_USER_FUNCTIONS || sessionInfo.state == CKS_RW_USER_FUNCTIONS);
			}
			else
			{
				try
				{
					CloseSession (slotId);
				}
				catch (...) { }
				OpenSession (slotId);
			}
		}

		SecurityTokenInfo tokenInfo = GetTokenInfo (slotId);

		while (!Sessions[slotId].UserLoggedIn && (tokenInfo.Flags & CKF_LOGIN_REQUIRED))
		{
			try
			{
				if (tokenInfo.Flags & CKF_PROTECTED_AUTHENTICATION_PATH)
				{
					status = Pkcs11Functions->C_Login (Sessions[slotId].Handle, CKU_USER, NULL_PTR, 0);
					if (status != CKR_OK)
						throw Pkcs11Exception (status);
				}
				else
				{
					string pin = tokenInfo.LabelUtf8;
					if (tokenInfo.Label.empty())
					{
						stringstream s;
						s << "#" << slotId;
						pin = s.str();
					}

					finally_do_arg (string*, &pin, { burn ((void *) finally_arg->c_str(), finally_arg->size()); });

					(*PinCallback) (pin);
					Login (slotId, pin.c_str());
				}

				Sessions[slotId].UserLoggedIn = true;
			}
			catch (Pkcs11Exception &e)
			{
				CK_RV error = e.GetErrorCode();

				if (error == CKR_USER_ALREADY_LOGGED_IN)
				{
					break;
				}
				else if (error == CKR_PIN_INCORRECT && !(tokenInfo.Flags & CKF_PROTECTED_AUTHENTICATION_PATH))
				{
					PinCallback->notifyIncorrectPin ();
					(*WarningCallback) (Pkcs11Exception (CKR_PIN_INCORRECT));
					continue;
				}

				throw;
			}
		}
	}

#ifdef TC_WINDOWS
	void SecurityToken::InitLibrary (const wstring &pkcs11LibraryPath, auto_ptr <GetPinFunctor> pinCallback, auto_ptr <SendExceptionFunctor> warningCallback)
#else
	void SecurityToken::InitLibrary (const string &pkcs11LibraryPath, auto_ptr <GetPinFunctor> pinCallback, auto_ptr <SendExceptionFunctor> warningCallback)
#endif
	{
		if (Initialized)
			CloseLibrary();

#ifdef TC_WINDOWS
		Pkcs11LibraryHandle = LoadLibraryW (pkcs11LibraryPath.c_str());
		throw_sys_if (!Pkcs11LibraryHandle);
#else
		Pkcs11LibraryHandle = dlopen (pkcs11LibraryPath.c_str(), RTLD_NOW | RTLD_LOCAL);
		throw_sys_sub_if (!Pkcs11LibraryHandle, dlerror());
#endif


		typedef CK_RV (*C_GetFunctionList_t) (CK_FUNCTION_LIST_PTR_PTR ppFunctionList);
#ifdef TC_WINDOWS
		C_GetFunctionList_t C_GetFunctionList = (C_GetFunctionList_t) GetProcAddress (Pkcs11LibraryHandle, "C_GetFunctionList");
#else
		C_GetFunctionList_t C_GetFunctionList = (C_GetFunctionList_t) dlsym (Pkcs11LibraryHandle, "C_GetFunctionList");
#endif

		if (!C_GetFunctionList)
			throw SecurityTokenLibraryNotInitialized();

		CK_RV status = C_GetFunctionList (&Pkcs11Functions);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		status = Pkcs11Functions->C_Initialize (NULL_PTR);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		PinCallback = pinCallback;
		WarningCallback = warningCallback;

		Initialized = true;
	}

	void SecurityToken::OpenSession (CK_SLOT_ID slotId)
	{
		if (Sessions.find (slotId) != Sessions.end())
			return;

		CK_SESSION_HANDLE session;

		CK_FLAGS flags = CKF_SERIAL_SESSION;

		if (!(GetTokenInfo (slotId).Flags & CKF_WRITE_PROTECTED))
			 flags |= CKF_RW_SESSION;

		CK_RV status = Pkcs11Functions->C_OpenSession (slotId, flags, NULL_PTR, NULL_PTR, &session);
		if (status != CKR_OK)
			throw Pkcs11Exception (status);

		Sessions[slotId].Handle = session;
	}

	Pkcs11Exception::operator string () const
	{
		if (ErrorCode == CKR_OK)
			return string();

		static const struct
		{
			CK_RV ErrorCode;
			const char *ErrorString;
		} ErrorStrings[] =
		{
#			define TC_TOKEN_ERR(CODE) { CODE, #CODE },

			TC_TOKEN_ERR (CKR_CANCEL)
			TC_TOKEN_ERR (CKR_HOST_MEMORY)
			TC_TOKEN_ERR (CKR_SLOT_ID_INVALID)
			TC_TOKEN_ERR (CKR_GENERAL_ERROR)
			TC_TOKEN_ERR (CKR_FUNCTION_FAILED)
			TC_TOKEN_ERR (CKR_ARGUMENTS_BAD)
			TC_TOKEN_ERR (CKR_NO_EVENT)
			TC_TOKEN_ERR (CKR_NEED_TO_CREATE_THREADS)
			TC_TOKEN_ERR (CKR_CANT_LOCK)
			TC_TOKEN_ERR (CKR_ATTRIBUTE_READ_ONLY)
			TC_TOKEN_ERR (CKR_ATTRIBUTE_SENSITIVE)
			TC_TOKEN_ERR (CKR_ATTRIBUTE_TYPE_INVALID)
			TC_TOKEN_ERR (CKR_ATTRIBUTE_VALUE_INVALID)
			TC_TOKEN_ERR (CKR_DATA_INVALID)
			TC_TOKEN_ERR (CKR_DATA_LEN_RANGE)
			TC_TOKEN_ERR (CKR_DEVICE_ERROR)
			TC_TOKEN_ERR (CKR_DEVICE_MEMORY)
			TC_TOKEN_ERR (CKR_DEVICE_REMOVED)
			TC_TOKEN_ERR (CKR_ENCRYPTED_DATA_INVALID)
			TC_TOKEN_ERR (CKR_ENCRYPTED_DATA_LEN_RANGE)
			TC_TOKEN_ERR (CKR_FUNCTION_CANCELED)
			TC_TOKEN_ERR (CKR_FUNCTION_NOT_PARALLEL)
			TC_TOKEN_ERR (CKR_FUNCTION_NOT_SUPPORTED)
			TC_TOKEN_ERR (CKR_KEY_HANDLE_INVALID)
			TC_TOKEN_ERR (CKR_KEY_SIZE_RANGE)
			TC_TOKEN_ERR (CKR_KEY_TYPE_INCONSISTENT)
			TC_TOKEN_ERR (CKR_KEY_NOT_NEEDED)
			TC_TOKEN_ERR (CKR_KEY_CHANGED)
			TC_TOKEN_ERR (CKR_KEY_NEEDED)
			TC_TOKEN_ERR (CKR_KEY_INDIGESTIBLE)
			TC_TOKEN_ERR (CKR_KEY_FUNCTION_NOT_PERMITTED)
			TC_TOKEN_ERR (CKR_KEY_NOT_WRAPPABLE)
			TC_TOKEN_ERR (CKR_KEY_UNEXTRACTABLE)
			TC_TOKEN_ERR (CKR_MECHANISM_INVALID)
			TC_TOKEN_ERR (CKR_MECHANISM_PARAM_INVALID)
			TC_TOKEN_ERR (CKR_OBJECT_HANDLE_INVALID)
			TC_TOKEN_ERR (CKR_OPERATION_ACTIVE)
			TC_TOKEN_ERR (CKR_OPERATION_NOT_INITIALIZED)
			TC_TOKEN_ERR (CKR_PIN_INCORRECT)
			TC_TOKEN_ERR (CKR_PIN_INVALID)
			TC_TOKEN_ERR (CKR_PIN_LEN_RANGE)
			TC_TOKEN_ERR (CKR_PIN_EXPIRED)
			TC_TOKEN_ERR (CKR_PIN_LOCKED)
			TC_TOKEN_ERR (CKR_SESSION_CLOSED)
			TC_TOKEN_ERR (CKR_SESSION_COUNT)
			TC_TOKEN_ERR (CKR_SESSION_HANDLE_INVALID)
			TC_TOKEN_ERR (CKR_SESSION_PARALLEL_NOT_SUPPORTED)
			TC_TOKEN_ERR (CKR_SESSION_READ_ONLY)
			TC_TOKEN_ERR (CKR_SESSION_EXISTS)
			TC_TOKEN_ERR (CKR_SESSION_READ_ONLY_EXISTS)
			TC_TOKEN_ERR (CKR_SESSION_READ_WRITE_SO_EXISTS)
			TC_TOKEN_ERR (CKR_SIGNATURE_INVALID)
			TC_TOKEN_ERR (CKR_SIGNATURE_LEN_RANGE)
			TC_TOKEN_ERR (CKR_TEMPLATE_INCOMPLETE)
			TC_TOKEN_ERR (CKR_TEMPLATE_INCONSISTENT)
			TC_TOKEN_ERR (CKR_TOKEN_NOT_PRESENT)
			TC_TOKEN_ERR (CKR_TOKEN_NOT_RECOGNIZED)
			TC_TOKEN_ERR (CKR_TOKEN_WRITE_PROTECTED)
			TC_TOKEN_ERR (CKR_UNWRAPPING_KEY_HANDLE_INVALID)
			TC_TOKEN_ERR (CKR_UNWRAPPING_KEY_SIZE_RANGE)
			TC_TOKEN_ERR (CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT)
			TC_TOKEN_ERR (CKR_USER_ALREADY_LOGGED_IN)
			TC_TOKEN_ERR (CKR_USER_NOT_LOGGED_IN)
			TC_TOKEN_ERR (CKR_USER_PIN_NOT_INITIALIZED)
			TC_TOKEN_ERR (CKR_USER_TYPE_INVALID)
			TC_TOKEN_ERR (CKR_USER_ANOTHER_ALREADY_LOGGED_IN)
			TC_TOKEN_ERR (CKR_USER_TOO_MANY_TYPES)
			TC_TOKEN_ERR (CKR_WRAPPED_KEY_INVALID)
			TC_TOKEN_ERR (CKR_WRAPPED_KEY_LEN_RANGE)
			TC_TOKEN_ERR (CKR_WRAPPING_KEY_HANDLE_INVALID)
			TC_TOKEN_ERR (CKR_WRAPPING_KEY_SIZE_RANGE)
			TC_TOKEN_ERR (CKR_WRAPPING_KEY_TYPE_INCONSISTENT)
			TC_TOKEN_ERR (CKR_RANDOM_SEED_NOT_SUPPORTED)
			TC_TOKEN_ERR (CKR_RANDOM_NO_RNG)
			TC_TOKEN_ERR (CKR_DOMAIN_PARAMS_INVALID)
			TC_TOKEN_ERR (CKR_BUFFER_TOO_SMALL)
			TC_TOKEN_ERR (CKR_SAVED_STATE_INVALID)
			TC_TOKEN_ERR (CKR_INFORMATION_SENSITIVE)
			TC_TOKEN_ERR (CKR_STATE_UNSAVEABLE)
			TC_TOKEN_ERR (CKR_CRYPTOKI_NOT_INITIALIZED)
			TC_TOKEN_ERR (CKR_CRYPTOKI_ALREADY_INITIALIZED)
			TC_TOKEN_ERR (CKR_MUTEX_BAD)
			TC_TOKEN_ERR (CKR_MUTEX_NOT_LOCKED)
			TC_TOKEN_ERR (CKR_NEW_PIN_MODE)
			TC_TOKEN_ERR (CKR_NEXT_OTP)
			TC_TOKEN_ERR (CKR_FUNCTION_REJECTED)

#undef		TC_TOKEN_ERR
		};


		for (size_t i = 0; i < array_capacity (ErrorStrings); ++i)
		{
			if (ErrorStrings[i].ErrorCode == ErrorCode)
				return ErrorStrings[i].ErrorString;
		}

		stringstream s;
		s << "0x" << hex << ErrorCode;
		return s.str();

	}

#ifdef TC_HEADER_Common_Exception
	void Pkcs11Exception::Show (HWND parent) const
	{
		string errorString = string (*this);

		if (!errorString.empty())
		{
			wstringstream subjectErrorCode;
			if (SubjectErrorCodeValid)
				subjectErrorCode << L": " << SubjectErrorCode;

			if (!GetDictionaryValue (errorString.c_str()))
			{
				if (errorString.find ("CKR_") == 0)
				{
					errorString = errorString.substr (4);
					for (size_t i = 0; i < errorString.size(); ++i)
					{
						if (errorString[i] == '_')
							errorString[i] = ' ';
					}
				}
				wchar_t err[8192];
				StringCbPrintfW (err, sizeof(err),L"%s:\n\n%hs%s", GetString ("SECURITY_TOKEN_ERROR"), errorString.c_str(), subjectErrorCode.str().c_str());
				ErrorDirect (err, parent);
			}
			else
			{
				wstring err = GetString (errorString.c_str());

				if (SubjectErrorCodeValid)
					err += L"\n\nError code" + subjectErrorCode.str();

				ErrorDirect (err.c_str(), parent);
			}
		}
	}
#endif // TC_HEADER_Common_Exception

	auto_ptr <GetPinFunctor> SecurityToken::PinCallback;
	auto_ptr <SendExceptionFunctor> SecurityToken::WarningCallback;

	bool SecurityToken::Initialized;
	CK_FUNCTION_LIST_PTR SecurityToken::Pkcs11Functions;
	map <CK_SLOT_ID, Pkcs11Session> SecurityToken::Sessions;

#ifdef TC_WINDOWS
	HMODULE SecurityToken::Pkcs11LibraryHandle;
#else
	void *SecurityToken::Pkcs11LibraryHandle;
#endif

#ifdef TC_HEADER_Platform_Exception

	void Pkcs11Exception::Deserialize (shared_ptr <Stream> stream)
	{
		Exception::Deserialize (stream);
		Serializer sr (stream);
		uint64 code;
		sr.Deserialize ("ErrorCode", code);
		sr.Deserialize ("SubjectErrorCodeValid", SubjectErrorCodeValid);
		sr.Deserialize ("SubjectErrorCode", SubjectErrorCode);
		ErrorCode = (CK_RV) code;
	}

	void Pkcs11Exception::Serialize (shared_ptr <Stream> stream) const
	{
		Exception::Serialize (stream);
		Serializer sr (stream);
		sr.Serialize ("ErrorCode", (uint64) ErrorCode);
		sr.Serialize ("SubjectErrorCodeValid", SubjectErrorCodeValid);
		sr.Serialize ("SubjectErrorCode", SubjectErrorCode);
	}

#	define TC_EXCEPTION(TYPE) TC_SERIALIZER_FACTORY_ADD(TYPE)
#	undef TC_EXCEPTION_NODECL
#	define TC_EXCEPTION_NODECL(TYPE) TC_SERIALIZER_FACTORY_ADD(TYPE)

	TC_SERIALIZER_FACTORY_ADD_EXCEPTION_SET (SecurityTokenException);

#endif
}