VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/Wipe.h
blob: 82afe5fd3169f014759362810d468cbf421fbc0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file) 
 and all other portions of this file are Copyright (c) 2013-2016 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#ifndef TC_HEADER_Common_Wipe
#define TC_HEADER_Common_Wipe

#include "Tcdefs.h"

#ifdef __cplusplus
extern "C" {
#endif

typedef enum
{
	/* WARNING: As these values are written to config files, if they or their meanings
	are changed, incompatiblity with other versions may arise (upgrade, downgrade, etc.).
	When adding a new constant, verify that the value is unique within this block. */
	TC_WIPE_NONE = 0,
	TC_WIPE_1_RAND = 100,
	TC_WIPE_3_DOD_5220 = 300,
	TC_WIPE_7_DOD_5220 = 700,
	TC_WIPE_35_GUTMANN = 3500,
	TC_WIPE_256 = 25600

} WipeAlgorithmId;

#define TC_WIPE_RAND_CHAR_COUNT 3

int GetWipePassCount (WipeAlgorithmId algorithm);
BOOL WipeBuffer (WipeAlgorithmId algorithm, byte randChars[TC_WIPE_RAND_CHAR_COUNT], int pass, byte *buffer, size_t size);

#ifdef __cplusplus
}
#endif

#endif // TC_HEADER_Common_Wipe
/a> 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2016 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

/* If native 64-bit data types are not available, define TC_NO_COMPILER_INT64.

For big-endian platforms define BYTE_ORDER as BIG_ENDIAN. */


#ifdef TC_MINIMIZE_CODE_SIZE
//	Preboot/boot version
#	ifndef TC_NO_COMPILER_INT64
#		define TC_NO_COMPILER_INT64
#	endif
#	pragma optimize ("tl", on)
#endif

#ifdef TC_NO_COMPILER_INT64
#	include <memory.h>
#endif

#include "Xts.h"


#ifndef TC_NO_COMPILER_INT64

// length: number of bytes to encrypt; may be larger than one data unit and must be divisible by the cipher block size
// ks: the primary key schedule
// ks2: the secondary key schedule
// startDataUnitNo: The sequential number of the data unit with which the buffer starts.
// startCipherBlockNo: The sequential number of the first plaintext block to encrypt inside the data unit startDataUnitNo.
//                     When encrypting the data unit from its first block, startCipherBlockNo is 0.
//                     The startCipherBlockNo value applies only to the first data unit in the buffer; each successive
//                     data unit is encrypted from its first block. The start of the buffer does not have to be
//                     aligned with the start of a data unit. If it is aligned, startCipherBlockNo must be 0; if it
//                     is not aligned, startCipherBlockNo must reflect the misalignment accordingly.
void EncryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	if (CipherSupportsIntraDataUnitParallelization (cipher))
		EncryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
	else
		EncryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
}


// Optimized for encryption algorithms supporting intra-data-unit parallelization
static void EncryptBufferXTSParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
	CRYPTOPP_ALIGN_DATA(16) unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned __int64 *dataUnitBufPtr;
	unsigned int startBlock = startCipherBlockNo, endBlock, block;
	unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
	TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;

	/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
	finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
	number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
	as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
	the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
	derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
		// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				*whiteningValuesPtr64-- = *whiteningValuePtr64++;
				*whiteningValuesPtr64-- = *whiteningValuePtr64;
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;
#else

			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		dataUnitBufPtr = bufPtr;
		whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

		// Encrypt all blocks in this data unit

		for (block = startBlock; block < endBlock; block++)
		{
			// Pre-whitening
			*bufPtr++ ^= *whiteningValuesPtr64--;
			*bufPtr++ ^= *whiteningValuesPtr64--;
		}

		// Actual encryption
		EncipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);

		bufPtr = dataUnitBufPtr;
		whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

		for (block = startBlock; block < endBlock; block++)
		{
			// Post-whitening
			*bufPtr++ ^= *whiteningValuesPtr64--;
			*bufPtr++ ^= *whiteningValuesPtr64--;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;
		dataUnitNo++;
		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
	FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
}


// Optimized for encryption algorithms not supporting intra-data-unit parallelization
static void EncryptBufferXTSNonParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	CRYPTOPP_ALIGN_DATA(16) unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned int startBlock = startCipherBlockNo, endBlock, block;
	TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;

	/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
	finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
	number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
	as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
	the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
	derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate (and apply) subsequent whitening values for blocks in this data unit and
		// encrypt all relevant blocks in this data unit
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				// Pre-whitening
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr-- ^= *whiteningValuePtr64--;

				// Actual encryption
				EncipherBlock (cipher, bufPtr, ks);

				// Post-whitening
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr++ ^= *whiteningValuePtr64;
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;
#else

			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;
		dataUnitNo++;
		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}


// For descriptions of the input parameters, see EncryptBufferXTS().
void DecryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	if (CipherSupportsIntraDataUnitParallelization (cipher))
		DecryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
	else
		DecryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
}


// Optimized for encryption algorithms supporting intra-data-unit parallelization
static void DecryptBufferXTSParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
	unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned __int64 *dataUnitBufPtr;
	unsigned int startBlock = startCipherBlockNo, endBlock, block;
	unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
	TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
		// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				*whiteningValuesPtr64-- = *whiteningValuePtr64++;
				*whiteningValuesPtr64-- = *whiteningValuePtr64;
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;

#else
			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		dataUnitBufPtr = bufPtr;
		whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

		// Decrypt blocks in this data unit

		for (block = startBlock; block < endBlock; block++)
		{
			*bufPtr++ ^= *whiteningValuesPtr64--;
			*bufPtr++ ^= *whiteningValuesPtr64--;
		}

		DecipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);

		bufPtr = dataUnitBufPtr;
		whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;

		for (block = startBlock; block < endBlock; block++)
		{
			*bufPtr++ ^= *whiteningValuesPtr64--;
			*bufPtr++ ^= *whiteningValuesPtr64--;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;
		dataUnitNo++;

		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
	FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
}


// Optimized for encryption algorithms not supporting intra-data-unit parallelization
static void DecryptBufferXTSNonParallel (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	unsigned __int8 finalCarry;
	unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
	unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
	unsigned int startBlock = startCipherBlockNo, endBlock, block;
	TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
	dataUnitNo = startDataUnitNo->Value;
	*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	*((unsigned __int64 *) byteBufUnitNo + 1) = 0;

	if (length % BYTES_PER_XTS_BLOCK)
		TC_THROW_FATAL_EXCEPTION;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Process all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
		*(whiteningValuePtr64 + 1) = 0;
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate (and apply) subsequent whitening values for blocks in this data unit and
		// decrypt all relevant blocks in this data unit
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				// Post-whitening
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr-- ^= *whiteningValuePtr64--;

				// Actual decryption
				DecipherBlock (cipher, bufPtr, ks);

				// Pre-whitening
				*bufPtr++ ^= *whiteningValuePtr64++;
				*bufPtr++ ^= *whiteningValuePtr64;
			}
			else
				whiteningValuePtr64++;

			// Derive the next whitening value

#if BYTE_ORDER == LITTLE_ENDIAN

			// Little-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x8000000000000000) ?
				135 : 0;

			*whiteningValuePtr64-- <<= 1;

			if (*whiteningValuePtr64 & 0x8000000000000000)
				*(whiteningValuePtr64 + 1) |= 1;

			*whiteningValuePtr64 <<= 1;

#else
			// Big-endian platforms

			finalCarry =
				(*whiteningValuePtr64 & 0x80) ?
				135 : 0;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);

			whiteningValuePtr64--;

			if (*whiteningValuePtr64 & 0x80)
				*(whiteningValuePtr64 + 1) |= 0x0100000000000000;

			*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif

			whiteningValue[0] ^= finalCarry;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;
		dataUnitNo++;
		*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}


#else	// TC_NO_COMPILER_INT64

/* ---- The following code is to be used only when native 64-bit data types are not available. ---- */

#if BYTE_ORDER == BIG_ENDIAN
#error The TC_NO_COMPILER_INT64 version of the XTS code is not compatible with big-endian platforms
#endif


// Converts a 64-bit unsigned integer (passed as two 32-bit integers for compatibility with non-64-bit
// environments/platforms) into a little-endian 16-byte array.
static void Uint64ToLE16ByteArray (unsigned __int8 *byteBuf, unsigned __int32 highInt32, unsigned __int32 lowInt32)
{
	unsigned __int32 *bufPtr32 = (unsigned __int32 *) byteBuf;

	*bufPtr32++ = lowInt32;
	*bufPtr32++ = highInt32;

	// We're converting a 64-bit number into a little-endian 16-byte array so we can zero the last 8 bytes
	*bufPtr32++ = 0;
	*bufPtr32 = 0;
}


// Encrypts or decrypts all blocks in the buffer in XTS mode. For descriptions of the input parameters,
// see the 64-bit version of EncryptBufferXTS().
static void EncryptDecryptBufferXTS32 (const unsigned __int8 *buffer,
							TC_LARGEST_COMPILER_UINT length,
							const UINT64_STRUCT *startDataUnitNo,
							unsigned int startBlock,
							unsigned __int8 *ks,
							unsigned __int8 *ks2,
							int cipher,
							BOOL decryption)
{
	TC_LARGEST_COMPILER_UINT blockCount;
	UINT64_STRUCT dataUnitNo;
	unsigned int block;
	unsigned int endBlock;
	unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
	unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
	unsigned __int32 *bufPtr32 = (unsigned __int32 *) buffer;
	unsigned __int32 *whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
	unsigned __int8 finalCarry;
	unsigned __int32 *const finalDwordWhiteningValuePtr = whiteningValuePtr32 + sizeof (whiteningValue) / sizeof (*whiteningValuePtr32) - 1;

	// Store the 64-bit data unit number in a way compatible with non-64-bit environments/platforms
	dataUnitNo.HighPart = startDataUnitNo->HighPart;
	dataUnitNo.LowPart = startDataUnitNo->LowPart;

	blockCount = length / BYTES_PER_XTS_BLOCK;

	// Convert the 64-bit data unit number into a little-endian 16-byte array.
	// (Passed as two 32-bit integers for compatibility with non-64-bit environments/platforms.)
	Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);

	// Generate whitening values for all blocks in the buffer
	while (blockCount > 0)
	{
		if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
			endBlock = startBlock + (unsigned int) blockCount;
		else
			endBlock = BLOCKS_PER_XTS_DATA_UNIT;

		// Encrypt the data unit number using the secondary key (in order to generate the first
		// whitening value for this data unit)
		memcpy (whiteningValue, byteBufUnitNo, BYTES_PER_XTS_BLOCK);
		EncipherBlock (cipher, whiteningValue, ks2);

		// Generate (and apply) subsequent whitening values for blocks in this data unit and
		// encrypt/decrypt all relevant blocks in this data unit
		for (block = 0; block < endBlock; block++)
		{
			if (block >= startBlock)
			{
				whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;

				// Whitening
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32 ^= *whiteningValuePtr32;

				bufPtr32 -= BYTES_PER_XTS_BLOCK / sizeof (*bufPtr32) - 1;

				// Actual encryption/decryption
				if (decryption)
					DecipherBlock (cipher, bufPtr32, ks);
				else
					EncipherBlock (cipher, bufPtr32, ks);

				whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;

				// Whitening
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32++;
				*bufPtr32++ ^= *whiteningValuePtr32;
			}

			// Derive the next whitening value

			finalCarry = 0;

			for (whiteningValuePtr32 = finalDwordWhiteningValuePtr;
				whiteningValuePtr32 >= (unsigned __int32 *) whiteningValue;
				whiteningValuePtr32--)
			{
				if (*whiteningValuePtr32 & 0x80000000)	// If the following shift results in a carry
				{
					if (whiteningValuePtr32 != finalDwordWhiteningValuePtr)	// If not processing the highest double word
					{
						// A regular carry
						*(whiteningValuePtr32 + 1) |= 1;
					}
					else
					{
						// The highest byte shift will result in a carry
						finalCarry = 135;
					}
				}

				*whiteningValuePtr32 <<= 1;
			}

			whiteningValue[0] ^= finalCarry;
		}

		blockCount -= endBlock - startBlock;
		startBlock = 0;

		// Increase the data unit number by one
		if (!++dataUnitNo.LowPart)
		{
			dataUnitNo.HighPart++;
		}

		// Convert the 64-bit data unit number into a little-endian 16-byte array.
		Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);
	}

	FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}


// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS() above.
void EncryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	// Encrypt all plaintext blocks in the buffer
	EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, FALSE);
}


// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS().
void DecryptBufferXTS (unsigned __int8 *buffer,
					   TC_LARGEST_COMPILER_UINT length,
					   const UINT64_STRUCT *startDataUnitNo,
					   unsigned int startCipherBlockNo,
					   unsigned __int8 *ks,
					   unsigned __int8 *ks2,
					   int cipher)
{
	// Decrypt all ciphertext blocks in the buffer
	EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, TRUE);
}

#endif	// TC_NO_COMPILER_INT64