1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* pkcs11.h include file for PKCS #11. */
/* $Revision: 1.4 $ */
/* License to copy and use this software is granted provided that it is
* identified as "RSA Security Inc. PKCS #11 Cryptographic Token Interface
* (Cryptoki)" in all material mentioning or referencing this software.
* License is also granted to make and use derivative works provided that
* such works are identified as "derived from the RSA Security Inc. PKCS #11
* Cryptographic Token Interface (Cryptoki)" in all material mentioning or
* referencing the derived work.
* RSA Security Inc. makes no representations concerning either the
* merchantability of this software or the suitability of this software for
* any particular purpose. It is provided "as is" without express or implied
* warranty of any kind.
*/
#ifndef _PKCS11_H_
#define _PKCS11_H_ 1
#ifdef __cplusplus
extern "C" {
#endif
/* Before including this file (pkcs11.h) (or pkcs11t.h by
* itself), 6 platform-specific macros must be defined. These
* macros are described below, and typical definitions for them
* are also given. Be advised that these definitions can depend
* on both the platform and the compiler used (and possibly also
* on whether a Cryptoki library is linked statically or
* dynamically).
*
* In addition to defining these 6 macros, the packing convention
* for Cryptoki structures should be set. The Cryptoki
* convention on packing is that structures should be 1-byte
* aligned.
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, this might be done by using the following
* preprocessor directive before including pkcs11.h or pkcs11t.h:
*
* #pragma pack(push, cryptoki, 1)
*
* and using the following preprocessor directive after including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(pop, cryptoki)
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, this might be done by using
* the following preprocessor directive before including
* pkcs11.h or pkcs11t.h:
*
* #pragma pack(1)
*
* In a UNIX environment, you're on your own for this. You might
* not need to do (or be able to do!) anything.
*
*
* Now for the macros:
*
*
* 1. CK_PTR: The indirection string for making a pointer to an
* object. It can be used like this:
*
* typedef CK_BYTE CK_PTR CK_BYTE_PTR;
*
* If you're using Microsoft Developer Studio 5.0 to produce
* Win32 stuff, it might be defined by:
*
* #define CK_PTR *
*
* If you're using an earlier version of Microsoft Developer
* Studio to produce Win16 stuff, it might be defined by:
*
* #define CK_PTR far *
*
* In a typical UNIX environment, it might be defined by:
*
* #define CK_PTR *
*
*
* 2. CK_DEFINE_FUNCTION(returnType, name): A macro which makes
* an exportable Cryptoki library function definition out of a
* return type and a function name. It should be used in the
* following fashion to define the exposed Cryptoki functions in
* a Cryptoki library:
*
* CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* )
* {
* ...
* }
*
* If you're using Microsoft Developer Studio 5.0 to define a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType __declspec(dllexport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to define a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DEFINE_FUNCTION(returnType, name) \
* returnType name
*
*
* 3. CK_DECLARE_FUNCTION(returnType, name): A macro which makes
* an importable Cryptoki library function declaration out of a
* return type and a function name. It should be used in the
* following fashion:
*
* extern CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
* CK_VOID_PTR pReserved
* );
*
* If you're using Microsoft Developer Studio 5.0 to declare a
* function in a Win32 Cryptoki .dll, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __declspec(dllimport) name
*
* If you're using an earlier version of Microsoft Developer
* Studio to declare a function in a Win16 Cryptoki .dll, it
* might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType __export _far _pascal name
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION(returnType, name) \
* returnType name
*
*
* 4. CK_DECLARE_FUNCTION_POINTER(returnType, name): A macro
* which makes a Cryptoki API function pointer declaration or
* function pointer type declaration out of a return type and a
* function name. It should be used in the following fashion:
*
* // Define funcPtr to be a pointer to a Cryptoki API function
* // taking arguments args and returning CK_RV.
* CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtr)(args);
*
* or
*
* // Define funcPtrType to be the type of a pointer to a
* // Cryptoki API function taking arguments args and returning
* // CK_RV, and then define funcPtr to be a variable of type
* // funcPtrType.
* typedef CK_DECLARE_FUNCTION_POINTER(CK_RV, funcPtrType)(args);
* funcPtrType funcPtr;
*
* If you're using Microsoft Developer Studio 5.0 to access
* functions in a Win32 Cryptoki .dll, in might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __declspec(dllimport) (* name)
*
* If you're using an earlier version of Microsoft Developer
* Studio to access functions in a Win16 Cryptoki .dll, it might
* be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType __export _far _pascal (* name)
*
* In a UNIX environment, it might be defined by:
*
* #define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
* returnType (* name)
*
*
* 5. CK_CALLBACK_FUNCTION(returnType, name): A macro which makes
* a function pointer type for an application callback out of
* a return type for the/*
Derived from source code of TrueCrypt 7.1a, which is
Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
by the TrueCrypt License 3.0.
Modifications and additions to the original source code (contained in this file)
and all other portions of this file are Copyright (c) 2013-2017 IDRIX
and are governed by the Apache License 2.0 the full text of which is
contained in the file License.txt included in VeraCrypt binary and source
code distribution packages.
*/
/* If native 64-bit data types are not available, define TC_NO_COMPILER_INT64.
For big-endian platforms define BYTE_ORDER as BIG_ENDIAN. */
#ifdef TC_MINIMIZE_CODE_SIZE
// Preboot/boot version
# ifndef TC_NO_COMPILER_INT64
# define TC_NO_COMPILER_INT64
# endif
# pragma optimize ("tl", on)
#endif
#ifdef TC_NO_COMPILER_INT64
# include <memory.h>
#endif
#include "Xts.h"
#ifndef TC_NO_COMPILER_INT64
// length: number of bytes to encrypt; may be larger than one data unit and must be divisible by the cipher block size
// ks: the primary key schedule
// ks2: the secondary key schedule
// startDataUnitNo: The sequential number of the data unit with which the buffer starts.
// startCipherBlockNo: The sequential number of the first plaintext block to encrypt inside the data unit startDataUnitNo.
// When encrypting the data unit from its first block, startCipherBlockNo is 0.
// The startCipherBlockNo value applies only to the first data unit in the buffer; each successive
// data unit is encrypted from its first block. The start of the buffer does not have to be
// aligned with the start of a data unit. If it is aligned, startCipherBlockNo must be 0; if it
// is not aligned, startCipherBlockNo must reflect the misalignment accordingly.
void EncryptBufferXTS (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
if (CipherSupportsIntraDataUnitParallelization (cipher))
EncryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
else
EncryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
}
// Optimized for encryption algorithms supporting intra-data-unit parallelization
static void EncryptBufferXTSParallel (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
unsigned __int8 finalCarry;
unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
CRYPTOPP_ALIGN_DATA(16) unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
unsigned __int64 *dataUnitBufPtr;
unsigned int startBlock = startCipherBlockNo, endBlock, block;
unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */
// Convert the 64-bit data unit number into a little-endian 16-byte array.
// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
dataUnitNo = startDataUnitNo->Value;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
*((unsigned __int64 *) byteBufUnitNo + 1) = 0;
if (length % BYTES_PER_XTS_BLOCK)
TC_THROW_FATAL_EXCEPTION;
blockCount = length / BYTES_PER_XTS_BLOCK;
// Process all blocks in the buffer
while (blockCount > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
// Encrypt the data unit number using the secondary key (in order to generate the first
// whitening value for this data unit)
*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
*(whiteningValuePtr64 + 1) = 0;
EncipherBlock (cipher, whiteningValue, ks2);
// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
*whiteningValuesPtr64-- = *whiteningValuePtr64++;
*whiteningValuesPtr64-- = *whiteningValuePtr64;
}
else
whiteningValuePtr64++;
// Derive the next whitening value
#if BYTE_ORDER == LITTLE_ENDIAN
// Little-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x8000000000000000) ?
135 : 0;
*whiteningValuePtr64-- <<= 1;
if (*whiteningValuePtr64 & 0x8000000000000000)
*(whiteningValuePtr64 + 1) |= 1;
*whiteningValuePtr64 <<= 1;
#else
// Big-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x80) ?
135 : 0;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
whiteningValuePtr64--;
if (*whiteningValuePtr64 & 0x80)
*(whiteningValuePtr64 + 1) |= 0x0100000000000000;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif
whiteningValue[0] ^= finalCarry;
}
dataUnitBufPtr = bufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
// Encrypt all blocks in this data unit
for (block = startBlock; block < endBlock; block++)
{
// Pre-whitening
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
}
// Actual encryption
EncipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);
bufPtr = dataUnitBufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
for (block = startBlock; block < endBlock; block++)
{
// Post-whitening
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
}
blockCount -= endBlock - startBlock;
startBlock = 0;
dataUnitNo++;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
}
FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
}
// Optimized for encryption algorithms not supporting intra-data-unit parallelization
static void EncryptBufferXTSNonParallel (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
unsigned __int8 finalCarry;
CRYPTOPP_ALIGN_DATA(16) unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
unsigned int startBlock = startCipherBlockNo, endBlock, block;
TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
/* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the
finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block
number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented
as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if
the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is
derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */
// Convert the 64-bit data unit number into a little-endian 16-byte array.
// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
dataUnitNo = startDataUnitNo->Value;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
*((unsigned __int64 *) byteBufUnitNo + 1) = 0;
if (length % BYTES_PER_XTS_BLOCK)
TC_THROW_FATAL_EXCEPTION;
blockCount = length / BYTES_PER_XTS_BLOCK;
// Process all blocks in the buffer
while (blockCount > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
// Encrypt the data unit number using the secondary key (in order to generate the first
// whitening value for this data unit)
*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
*(whiteningValuePtr64 + 1) = 0;
EncipherBlock (cipher, whiteningValue, ks2);
// Generate (and apply) subsequent whitening values for blocks in this data unit and
// encrypt all relevant blocks in this data unit
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
// Pre-whitening
*bufPtr++ ^= *whiteningValuePtr64++;
*bufPtr-- ^= *whiteningValuePtr64--;
// Actual encryption
EncipherBlock (cipher, bufPtr, ks);
// Post-whitening
*bufPtr++ ^= *whiteningValuePtr64++;
*bufPtr++ ^= *whiteningValuePtr64;
}
else
whiteningValuePtr64++;
// Derive the next whitening value
#if BYTE_ORDER == LITTLE_ENDIAN
// Little-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x8000000000000000) ?
135 : 0;
*whiteningValuePtr64-- <<= 1;
if (*whiteningValuePtr64 & 0x8000000000000000)
*(whiteningValuePtr64 + 1) |= 1;
*whiteningValuePtr64 <<= 1;
#else
// Big-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x80) ?
135 : 0;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
whiteningValuePtr64--;
if (*whiteningValuePtr64 & 0x80)
*(whiteningValuePtr64 + 1) |= 0x0100000000000000;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif
whiteningValue[0] ^= finalCarry;
}
blockCount -= endBlock - startBlock;
startBlock = 0;
dataUnitNo++;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
}
FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}
// For descriptions of the input parameters, see EncryptBufferXTS().
void DecryptBufferXTS (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
if (CipherSupportsIntraDataUnitParallelization (cipher))
DecryptBufferXTSParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
else
DecryptBufferXTSNonParallel (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher);
}
// Optimized for encryption algorithms supporting intra-data-unit parallelization
static void DecryptBufferXTSParallel (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
unsigned __int8 finalCarry;
unsigned __int8 whiteningValues [ENCRYPTION_DATA_UNIT_SIZE];
unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
unsigned __int64 *whiteningValuesPtr64 = (unsigned __int64 *) whiteningValues;
unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
unsigned __int64 *dataUnitBufPtr;
unsigned int startBlock = startCipherBlockNo, endBlock, block;
unsigned __int64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1;
TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
// Convert the 64-bit data unit number into a little-endian 16-byte array.
// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
dataUnitNo = startDataUnitNo->Value;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
*((unsigned __int64 *) byteBufUnitNo + 1) = 0;
if (length % BYTES_PER_XTS_BLOCK)
TC_THROW_FATAL_EXCEPTION;
blockCount = length / BYTES_PER_XTS_BLOCK;
// Process all blocks in the buffer
while (blockCount > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
// Encrypt the data unit number using the secondary key (in order to generate the first
// whitening value for this data unit)
*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
*(whiteningValuePtr64 + 1) = 0;
EncipherBlock (cipher, whiteningValue, ks2);
// Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit
// whitening values are stored in memory as a sequence of 64-bit integers in reverse order.
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
*whiteningValuesPtr64-- = *whiteningValuePtr64++;
*whiteningValuesPtr64-- = *whiteningValuePtr64;
}
else
whiteningValuePtr64++;
// Derive the next whitening value
#if BYTE_ORDER == LITTLE_ENDIAN
// Little-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x8000000000000000) ?
135 : 0;
*whiteningValuePtr64-- <<= 1;
if (*whiteningValuePtr64 & 0x8000000000000000)
*(whiteningValuePtr64 + 1) |= 1;
*whiteningValuePtr64 <<= 1;
#else
// Big-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x80) ?
135 : 0;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
whiteningValuePtr64--;
if (*whiteningValuePtr64 & 0x80)
*(whiteningValuePtr64 + 1) |= 0x0100000000000000;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif
whiteningValue[0] ^= finalCarry;
}
dataUnitBufPtr = bufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
// Decrypt blocks in this data unit
for (block = startBlock; block < endBlock; block++)
{
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
}
DecipherBlocks (cipher, dataUnitBufPtr, ks, endBlock - startBlock);
bufPtr = dataUnitBufPtr;
whiteningValuesPtr64 = finalInt64WhiteningValuesPtr;
for (block = startBlock; block < endBlock; block++)
{
*bufPtr++ ^= *whiteningValuesPtr64--;
*bufPtr++ ^= *whiteningValuesPtr64--;
}
blockCount -= endBlock - startBlock;
startBlock = 0;
dataUnitNo++;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
}
FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
FAST_ERASE64 (whiteningValues, sizeof (whiteningValues));
}
// Optimized for encryption algorithms not supporting intra-data-unit parallelization
static void DecryptBufferXTSNonParallel (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
unsigned __int8 finalCarry;
unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
unsigned __int64 *whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
unsigned __int64 *bufPtr = (unsigned __int64 *) buffer;
unsigned int startBlock = startCipherBlockNo, endBlock, block;
TC_LARGEST_COMPILER_UINT blockCount, dataUnitNo;
// Convert the 64-bit data unit number into a little-endian 16-byte array.
// Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes.
dataUnitNo = startDataUnitNo->Value;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
*((unsigned __int64 *) byteBufUnitNo + 1) = 0;
if (length % BYTES_PER_XTS_BLOCK)
TC_THROW_FATAL_EXCEPTION;
blockCount = length / BYTES_PER_XTS_BLOCK;
// Process all blocks in the buffer
while (blockCount > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
whiteningValuePtr64 = (unsigned __int64 *) whiteningValue;
// Encrypt the data unit number using the secondary key (in order to generate the first
// whitening value for this data unit)
*whiteningValuePtr64 = *((unsigned __int64 *) byteBufUnitNo);
*(whiteningValuePtr64 + 1) = 0;
EncipherBlock (cipher, whiteningValue, ks2);
// Generate (and apply) subsequent whitening values for blocks in this data unit and
// decrypt all relevant blocks in this data unit
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
// Post-whitening
*bufPtr++ ^= *whiteningValuePtr64++;
*bufPtr-- ^= *whiteningValuePtr64--;
// Actual decryption
DecipherBlock (cipher, bufPtr, ks);
// Pre-whitening
*bufPtr++ ^= *whiteningValuePtr64++;
*bufPtr++ ^= *whiteningValuePtr64;
}
else
whiteningValuePtr64++;
// Derive the next whitening value
#if BYTE_ORDER == LITTLE_ENDIAN
// Little-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x8000000000000000) ?
135 : 0;
*whiteningValuePtr64-- <<= 1;
if (*whiteningValuePtr64 & 0x8000000000000000)
*(whiteningValuePtr64 + 1) |= 1;
*whiteningValuePtr64 <<= 1;
#else
// Big-endian platforms
finalCarry =
(*whiteningValuePtr64 & 0x80) ?
135 : 0;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
whiteningValuePtr64--;
if (*whiteningValuePtr64 & 0x80)
*(whiteningValuePtr64 + 1) |= 0x0100000000000000;
*whiteningValuePtr64 = LE64 (LE64 (*whiteningValuePtr64) << 1);
#endif
whiteningValue[0] ^= finalCarry;
}
blockCount -= endBlock - startBlock;
startBlock = 0;
dataUnitNo++;
*((unsigned __int64 *) byteBufUnitNo) = LE64 (dataUnitNo);
}
FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}
#else // TC_NO_COMPILER_INT64
/* ---- The following code is to be used only when native 64-bit data types are not available. ---- */
#if BYTE_ORDER == BIG_ENDIAN
#error The TC_NO_COMPILER_INT64 version of the XTS code is not compatible with big-endian platforms
#endif
// Converts a 64-bit unsigned integer (passed as two 32-bit integers for compatibility with non-64-bit
// environments/platforms) into a little-endian 16-byte array.
static void Uint64ToLE16ByteArray (unsigned __int8 *byteBuf, unsigned __int32 highInt32, unsigned __int32 lowInt32)
{
unsigned __int32 *bufPtr32 = (unsigned __int32 *) byteBuf;
*bufPtr32++ = lowInt32;
*bufPtr32++ = highInt32;
// We're converting a 64-bit number into a little-endian 16-byte array so we can zero the last 8 bytes
*bufPtr32++ = 0;
*bufPtr32 = 0;
}
// Encrypts or decrypts all blocks in the buffer in XTS mode. For descriptions of the input parameters,
// see the 64-bit version of EncryptBufferXTS().
static void EncryptDecryptBufferXTS32 (const unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startBlock,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher,
BOOL decryption)
{
TC_LARGEST_COMPILER_UINT blockCount;
UINT64_STRUCT dataUnitNo;
unsigned int block;
unsigned int endBlock;
unsigned __int8 byteBufUnitNo [BYTES_PER_XTS_BLOCK];
unsigned __int8 whiteningValue [BYTES_PER_XTS_BLOCK];
unsigned __int32 *bufPtr32 = (unsigned __int32 *) buffer;
unsigned __int32 *whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
unsigned __int8 finalCarry;
unsigned __int32 *const finalDwordWhiteningValuePtr = whiteningValuePtr32 + sizeof (whiteningValue) / sizeof (*whiteningValuePtr32) - 1;
// Store the 64-bit data unit number in a way compatible with non-64-bit environments/platforms
dataUnitNo.HighPart = startDataUnitNo->HighPart;
dataUnitNo.LowPart = startDataUnitNo->LowPart;
blockCount = length / BYTES_PER_XTS_BLOCK;
// Convert the 64-bit data unit number into a little-endian 16-byte array.
// (Passed as two 32-bit integers for compatibility with non-64-bit environments/platforms.)
Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);
// Generate whitening values for all blocks in the buffer
while (blockCount > 0)
{
if (blockCount < BLOCKS_PER_XTS_DATA_UNIT)
endBlock = startBlock + (unsigned int) blockCount;
else
endBlock = BLOCKS_PER_XTS_DATA_UNIT;
// Encrypt the data unit number using the secondary key (in order to generate the first
// whitening value for this data unit)
memcpy (whiteningValue, byteBufUnitNo, BYTES_PER_XTS_BLOCK);
EncipherBlock (cipher, whiteningValue, ks2);
// Generate (and apply) subsequent whitening values for blocks in this data unit and
// encrypt/decrypt all relevant blocks in this data unit
for (block = 0; block < endBlock; block++)
{
if (block >= startBlock)
{
whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
// Whitening
*bufPtr32++ ^= *whiteningValuePtr32++;
*bufPtr32++ ^= *whiteningValuePtr32++;
*bufPtr32++ ^= *whiteningValuePtr32++;
*bufPtr32 ^= *whiteningValuePtr32;
bufPtr32 -= BYTES_PER_XTS_BLOCK / sizeof (*bufPtr32) - 1;
// Actual encryption/decryption
if (decryption)
DecipherBlock (cipher, bufPtr32, ks);
else
EncipherBlock (cipher, bufPtr32, ks);
whiteningValuePtr32 = (unsigned __int32 *) whiteningValue;
// Whitening
*bufPtr32++ ^= *whiteningValuePtr32++;
*bufPtr32++ ^= *whiteningValuePtr32++;
*bufPtr32++ ^= *whiteningValuePtr32++;
*bufPtr32++ ^= *whiteningValuePtr32;
}
// Derive the next whitening value
finalCarry = 0;
for (whiteningValuePtr32 = finalDwordWhiteningValuePtr;
whiteningValuePtr32 >= (unsigned __int32 *) whiteningValue;
whiteningValuePtr32--)
{
if (*whiteningValuePtr32 & 0x80000000) // If the following shift results in a carry
{
if (whiteningValuePtr32 != finalDwordWhiteningValuePtr) // If not processing the highest double word
{
// A regular carry
*(whiteningValuePtr32 + 1) |= 1;
}
else
{
// The highest byte shift will result in a carry
finalCarry = 135;
}
}
*whiteningValuePtr32 <<= 1;
}
whiteningValue[0] ^= finalCarry;
}
blockCount -= endBlock - startBlock;
startBlock = 0;
// Increase the data unit number by one
if (!++dataUnitNo.LowPart)
{
dataUnitNo.HighPart++;
}
// Convert the 64-bit data unit number into a little-endian 16-byte array.
Uint64ToLE16ByteArray (byteBufUnitNo, dataUnitNo.HighPart, dataUnitNo.LowPart);
}
FAST_ERASE64 (whiteningValue, sizeof (whiteningValue));
}
// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS() above.
void EncryptBufferXTS (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
// Encrypt all plaintext blocks in the buffer
EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, FALSE);
}
// For descriptions of the input parameters, see the 64-bit version of EncryptBufferXTS().
void DecryptBufferXTS (unsigned __int8 *buffer,
TC_LARGEST_COMPILER_UINT length,
const UINT64_STRUCT *startDataUnitNo,
unsigned int startCipherBlockNo,
unsigned __int8 *ks,
unsigned __int8 *ks2,
int cipher)
{
// Decrypt all ciphertext blocks in the buffer
EncryptDecryptBufferXTS32 (buffer, length, startDataUnitNo, startCipherBlockNo, ks, ks2, cipher, TRUE);
}
#endif // TC_NO_COMPILER_INT64
|