VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/libzip/zip_source_pkware.c
blob: 125e4e2c2af14906bc8a27423870294272d8452c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
  zip_source_pkware.c -- Traditional PKWARE de/encryption routines
  Copyright (C) 2009-2015 Dieter Baron and Thomas Klausner

  This file is part of libzip, a library to manipulate ZIP archives.
  The authors can be contacted at <libzip@nih.at>

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions
  are met:
  1. Redistributions of source code must retain the above copyright
     notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in
     the documentation and/or other materials provided with the
     distribution.
  3. The names of the authors may not be used to endorse or promote
     products derived from this software without specific prior
     written permission.
 
  THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS
  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
  GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
  OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/


#include <stdlib.h>
#include <string.h>

#include "zipint.h"

struct trad_pkware {
    zip_error_t error;
    zip_uint32_t key[3];
};

#define HEADERLEN	12
#define KEY0		305419896
#define KEY1		591751049
#define KEY2		878082192


static void decrypt(struct trad_pkware *, zip_uint8_t *,
		    const zip_uint8_t *, zip_uint64_t, int);
static int decrypt_header(zip_source_t *, struct trad_pkware *);
static zip_int64_t pkware_decrypt(zip_source_t *, void *, void *,
				  zip_uint64_t, zip_source_cmd_t);
static void pkware_free(struct trad_pkware *);


zip_source_t *
zip_source_pkware(zip_t *za, zip_source_t *src,
		  zip_uint16_t em, int flags, const char *password)
{
    struct trad_pkware *ctx;
    zip_source_t *s2;

    if (password == NULL || src == NULL || em != ZIP_EM_TRAD_PKWARE) {
	zip_error_set(&za->error, ZIP_ER_INVAL, 0);
	return NULL;
    }
    if (flags & ZIP_CODEC_ENCODE) {
	zip_error_set(&za->error, ZIP_ER_ENCRNOTSUPP, 0);
	return NULL;
    }

    if ((ctx=(struct trad_pkware *)malloc(sizeof(*ctx))) == NULL) {
	zip_error_set(&za->error, ZIP_ER_MEMORY, 0);
	return NULL;
    }

    zip_error_init(&ctx->error);

    ctx->key[0] = KEY0;
    ctx->key[1] = KEY1;
    ctx->key[2] = KEY2;
    decrypt(ctx, NULL, (const zip_uint8_t *)password, strlen(password), 1);

    if ((s2=zip_source_layered(za, src, pkware_decrypt, ctx)) == NULL) {
	pkware_free(ctx);
	return NULL;
    }

    return s2;
}


static void
decrypt(struct trad_pkware *ctx, zip_uint8_t *out, const zip_uint8_t *in,
	zip_uint64_t len, int update_only)
{
    zip_uint16_t tmp;
    zip_uint64_t i;
    Bytef b;

    for (i=0; i<len; i++) {
	b = in[i];

	if (!update_only) {
	    /* decrypt next byte */
	    tmp = (zip_uint16_t)(ctx->key[2] | 2);
	    tmp = (zip_uint16_t)(((zip_uint32_t)tmp * (tmp ^ 1)) >> 8);
	    b ^= (Bytef)tmp;
	}

	/* store cleartext */
	if (out)
	    out[i] = b;

	/* update keys */
	ctx->key[0] = (zip_uint32_t)crc32(ctx->key[0] ^ 0xffffffffUL, &b, 1) ^ 0xffffffffUL;
	ctx->key[1] = (ctx->key[1] + (ctx->key[0] & 0xff)) * 134775813 + 1;
	b = (Bytef)(ctx->key[1] >> 24);
	ctx->key[2] = (zip_uint32_t)crc32(ctx->key[2] ^ 0xffffffffUL, &b, 1) ^ 0xffffffffUL;
    }
}


static int
decrypt_header(zip_source_t *src, struct trad_pkware *ctx)
{
    zip_uint8_t header[HEADERLEN];
    struct zip_stat st;
    zip_int64_t n;
    unsigned short dostime, dosdate;

    if ((n=zip_source_read(src, header, HEADERLEN)) < 0) {
        _zip_error_set_from_source(&ctx->error, src);
	return -1;
    }
    
    if (n != HEADERLEN) {
        zip_error_set(&ctx->error, ZIP_ER_EOF, 0);
	return -1;
    }

    decrypt(ctx, header, header, HEADERLEN, 0);

    if (zip_source_stat(src, &st) < 0) {
	/* stat failed, skip password validation */
	return 0;
    }

    _zip_u2d_time(st.mtime, &dostime, &dosdate);

    if (header[HEADERLEN-1] != st.crc>>24 && header[HEADERLEN-1] != dostime>>8) {
        zip_error_set(&ctx->error, ZIP_ER_WRONGPASSWD, 0);
	return -1;
    }

    return 0;
}


static zip_int64_t
pkware_decrypt(zip_source_t *src, void *ud, void *data,
	       zip_uint64_t len, zip_source_cmd_t cmd)
{
    struct trad_pkware *ctx;
    zip_int64_t n;

    ctx = (struct trad_pkware *)ud;

    switch (cmd) {
        case ZIP_SOURCE_OPEN:
            if (decrypt_header(src, ctx) < 0)
                return -1;
            return 0;

        case ZIP_SOURCE_READ:
            if ((n=zip_source_read(src, data, len)) < 0) {
                _zip_error_set_from_source(&ctx->error, src);
                return -1;
            }

            decrypt((struct trad_pkware *)ud, (zip_uint8_t *)data, (zip_uint8_t *)data, (zip_uint64_t)n, 0);
            return n;

        case ZIP_SOURCE_CLOSE:
            return 0;

        case ZIP_SOURCE_STAT:
        {
	    zip_stat_t *st;

	    st = (zip_stat_t *)data;

	    st->encryption_method = ZIP_EM_NONE;
	    st->valid |= ZIP_STAT_ENCRYPTION_METHOD;
	    /* TODO: deduce HEADERLEN from size for uncompressed */
	    if (st->valid & ZIP_STAT_COMP_SIZE)
		st->comp_size -= HEADERLEN;
	
            return 0;
        }
            
        case ZIP_SOURCE_SUPPORTS:
            return zip_source_make_command_bitmap(ZIP_SOURCE_OPEN, ZIP_SOURCE_READ, ZIP_SOURCE_CLOSE, ZIP_SOURCE_STAT, ZIP_SOURCE_ERROR, ZIP_SOURCE_FREE, -1);

        case ZIP_SOURCE_ERROR:
            return zip_error_to_data(&ctx->error, data, len);

        case ZIP_SOURCE_FREE:
            pkware_free(ctx);
            return 0;

        default:
            zip_error_set(&ctx->error, ZIP_ER_INVAL, 0);
            return -1;
    }
}


static void
pkware_free(struct trad_pkware *ctx)
{
    free(ctx);
}
s="n">fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", (unsigned long)(table[n]), n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); } #endif /* MAKECRCH */ #else /* !DYNAMIC_CRC_TABLE */ /* ======================================================================== * Tables of CRC-32s of all single-byte values, made by make_crc_table(). */ #include "crc32.h" #endif /* DYNAMIC_CRC_TABLE */ /* ========================================================================= * This function can be used by asm versions of crc32() */ const z_crc_t FAR * ZEXPORT get_crc_table() { #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ return (const z_crc_t FAR *)crc_table; } /* ========================================================================= */ #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 /* ========================================================================= */ unsigned long ZEXPORT crc32_z(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; z_size_t len; { if (buf == Z_NULL) return 0UL; #ifdef DYNAMIC_CRC_TABLE if (crc_table_empty) make_crc_table(); #endif /* DYNAMIC_CRC_TABLE */ #ifdef BYFOUR if (sizeof(void *) == sizeof(ptrdiff_t)) { z_crc_t endian; endian = 1; if (*((unsigned char *)(&endian))) return crc32_little(crc, buf, len); else return crc32_big(crc, buf, len); } #endif /* BYFOUR */ crc = crc ^ 0xffffffffUL; while (len >= 8) { DO8; len -= 8; } if (len) do { DO1; } while (--len); return crc ^ 0xffffffffUL; } /* ========================================================================= */ unsigned long ZEXPORT crc32(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; uInt len; { return crc32_z(crc, buf, len); } #ifdef BYFOUR /* This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit integer pointer type. This violates the strict aliasing rule, where a compiler can assume, for optimization purposes, that two pointers to fundamentally different types won't ever point to the same memory. This can manifest as a problem only if one of the pointers is written to. This code only reads from those pointers. So long as this code remains isolated in this compilation unit, there won't be a problem. For this reason, this code should not be copied and pasted into a compilation unit in which other code writes to the buffer that is passed to these routines. */ /* ========================================================================= */ #define DOLIT4 c ^= *buf4++; \ c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 /* ========================================================================= */ local unsigned long crc32_little(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; z_size_t len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = (z_crc_t)crc; c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOLIT32; len -= 32; } while (len >= 4) { DOLIT4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); } while (--len); c = ~c; return (unsigned long)c; } /* ========================================================================= */ #define DOBIG4 c ^= *buf4++; \ c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 /* ========================================================================= */ local unsigned long crc32_big(crc, buf, len) unsigned long crc; const unsigned char FAR *buf; z_size_t len; { register z_crc_t c; register const z_crc_t FAR *buf4; c = ZSWAP32((z_crc_t)crc); c = ~c; while (len && ((ptrdiff_t)buf & 3)) { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); len--; } buf4 = (const z_crc_t FAR *)(const void FAR *)buf; while (len >= 32) { DOBIG32; len -= 32; } while (len >= 4) { DOBIG4; len -= 4; } buf = (const unsigned char FAR *)buf4; if (len) do { c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); } while (--len); c = ~c; return (unsigned long)(ZSWAP32(c)); } #endif /* BYFOUR */ #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ /* ========================================================================= */ local unsigned long gf2_matrix_times(mat, vec) unsigned long *mat; unsigned long vec; { unsigned long sum; sum = 0; while (vec) { if (vec & 1) sum ^= *mat; vec >>= 1; mat++; } return sum; } /* ========================================================================= */ local void gf2_matrix_square(square, mat) unsigned long *square; unsigned long *mat; { int n; for (n = 0; n < GF2_DIM; n++) square[n] = gf2_matrix_times(mat, mat[n]); } /* ========================================================================= */ local uLong crc32_combine_(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { int n; unsigned long row; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ /* degenerate case (also disallow negative lengths) */ if (len2 <= 0) return crc1; /* put operator for one zero bit in odd */ odd[0] = 0xedb88320UL; /* CRC-32 polynomial */ row = 1; for (n = 1; n < GF2_DIM; n++) { odd[n] = row; row <<= 1; } /* put operator for two zero bits in even */ gf2_matrix_square(even, odd); /* put operator for four zero bits in odd */ gf2_matrix_square(odd, even); /* apply len2 zeros to crc1 (first square will put the operator for one zero byte, eight zero bits, in even) */ do { /* apply zeros operator for this bit of len2 */ gf2_matrix_square(even, odd); if (len2 & 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; /* if no more bits set, then done */ if (len2 == 0) break; /* another iteration of the loop with odd and even swapped */ gf2_matrix_square(odd, even); if (len2 & 1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; /* if no more bits set, then done */ } while (len2 != 0); /* return combined crc */ crc1 ^= crc2; return crc1; } /* ========================================================================= */ uLong ZEXPORT crc32_combine(crc1, crc2, len2) uLong crc1; uLong crc2; z_off_t len2; { return crc32_combine_(crc1, crc2, len2); } uLong ZEXPORT crc32_combine64(crc1, crc2, len2) uLong crc1; uLong crc2; z_off64_t len2; { return crc32_combine_(crc1, crc2, len2); }