VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/lzma/Threads.h
blob: 4028464a337c1b6b64fab8252d347ac8f61570d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/* Threads.h -- multithreading library
2023-04-02 : Igor Pavlov : Public domain */

#ifndef ZIP7_INC_THREADS_H
#define ZIP7_INC_THREADS_H

#ifdef _WIN32
#include "7zWindows.h"

#else

#if defined(__linux__)
#if !defined(__APPLE__) && !defined(_AIX) && !defined(__ANDROID__)
#ifndef Z7_AFFINITY_DISABLE
#define Z7_AFFINITY_SUPPORTED
// #pragma message(" ==== Z7_AFFINITY_SUPPORTED")
// #define _GNU_SOURCE
#endif
#endif
#endif

#include <pthread.h>

#endif

#include "7zTypes.h"

EXTERN_C_BEGIN

#ifdef _WIN32

WRes HandlePtr_Close(HANDLE *h);
WRes Handle_WaitObject(HANDLE h);

typedef HANDLE CThread;

#define Thread_CONSTRUCT(p) { *(p) = NULL; }
#define Thread_WasCreated(p) (*(p) != NULL)
#define Thread_Close(p) HandlePtr_Close(p)
// #define Thread_Wait(p) Handle_WaitObject(*(p))

#ifdef UNDER_CE
  // if (USE_THREADS_CreateThread is      defined), we use _beginthreadex()
  // if (USE_THREADS_CreateThread is not definned), we use CreateThread()
  #define USE_THREADS_CreateThread
#endif

typedef
    #ifdef USE_THREADS_CreateThread
      DWORD
    #else
      unsigned
    #endif
    THREAD_FUNC_RET_TYPE;

#define THREAD_FUNC_RET_ZERO  0

typedef DWORD_PTR CAffinityMask;
typedef DWORD_PTR CCpuSet;

#define CpuSet_Zero(p)        *(p) = (0)
#define CpuSet_Set(p, cpu)    *(p) |= ((DWORD_PTR)1 << (cpu))

#else //  _WIN32

typedef struct
{
  pthread_t _tid;
  int _created;
} CThread;

#define Thread_CONSTRUCT(p)   { (p)->_tid = 0;  (p)->_created = 0; }
#define Thread_WasCreated(p)  ((p)->_created != 0)
WRes Thread_Close(CThread *p);
// #define Thread_Wait Thread_Wait_Close

typedef void * THREAD_FUNC_RET_TYPE;
#define THREAD_FUNC_RET_ZERO  NULL


typedef UInt64 CAffinityMask;

#ifdef Z7_AFFINITY_SUPPORTED

typedef cpu_set_t CCpuSet;
#define CpuSet_Zero(p)        CPU_ZERO(p)
#define CpuSet_Set(p, cpu)    CPU_SET(cpu, p)
#define CpuSet_IsSet(p, cpu)  CPU_ISSET(cpu, p)

#else

typedef UInt64 CCpuSet;
#define CpuSet_Zero(p)        *(p) = (0)
#define CpuSet_Set(p, cpu)    *(p) |= ((UInt64)1 << (cpu))
#define CpuSet_IsSet(p, cpu)  ((*(p) & ((UInt64)1 << (cpu))) != 0)

#endif


#endif //  _WIN32


#define THREAD_FUNC_CALL_TYPE Z7_STDCALL

#if defined(_WIN32) && defined(__GNUC__)
/* GCC compiler for x86 32-bit uses the rule:
   the stack is 16-byte aligned before CALL instruction for function calling.
   But only root function main() contains instructions that
   set 16-byte alignment for stack pointer. And another functions
   just keep alignment, if it was set in some parent function.
   
   The problem:
    if we create new thread in MinGW (GCC) 32-bit x86 via _beginthreadex() or CreateThread(),
       the root function of thread doesn't set 16-byte alignment.
       And stack frames in all child functions also will be unaligned in that case.
   
   Here we set (force_align_arg_pointer) attribute for root function of new thread.
   Do we need (force_align_arg_pointer) also for another systems?  */
  
  #define THREAD_FUNC_ATTRIB_ALIGN_ARG __attribute__((force_align_arg_pointer))
  // #define THREAD_FUNC_ATTRIB_ALIGN_ARG // for debug : bad alignment in SSE functions
#else
  #define THREAD_FUNC_ATTRIB_ALIGN_ARG
#endif

#define THREAD_FUNC_DECL  THREAD_FUNC_ATTRIB_ALIGN_ARG THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE

typedef THREAD_FUNC_RET_TYPE (THREAD_FUNC_CALL_TYPE * THREAD_FUNC_TYPE)(void *);
WRes Thread_Create(CThread *p, THREAD_FUNC_TYPE func, LPVOID param);
WRes Thread_Create_With_Affinity(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, CAffinityMask affinity);
WRes Thread_Wait_Close(CThread *p);

#ifdef _WIN32
#define Thread_Create_With_CpuSet(p, func, param, cs) \
  Thread_Create_With_Affinity(p, func, param, *cs)
#else
WRes Thread_Create_With_CpuSet(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, const CCpuSet *cpuSet);
#endif


#ifdef _WIN32

typedef HANDLE CEvent;
typedef CEvent CAutoResetEvent;
typedef CEvent CManualResetEvent;
#define Event_Construct(p) *(p) = NULL
#define Event_IsCreated(p) (*(p) != NULL)
#define Event_Close(p) HandlePtr_Close(p)
#define Event_Wait(p) Handle_WaitObject(*(p))
WRes Event_Set(CEvent *p);
WRes Event_Reset(CEvent *p);
WRes ManualResetEvent_Create(CManualResetEvent *p, int signaled);
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p);
WRes AutoResetEvent_Create(CAutoResetEvent *p, int signaled);
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p);

typedef HANDLE CSemaphore;
#define Semaphore_Construct(p) *(p) = NULL
#define Semaphore_IsCreated(p) (*(p) != NULL)
#define Semaphore_Close(p) HandlePtr_Close(p)
#define Semaphore_Wait(p) Handle_WaitObject(*(p))
WRes Semaphore_Create(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_OptCreateInit(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 num);
WRes Semaphore_Release1(CSemaphore *p);

typedef CRITICAL_SECTION CCriticalSection;
WRes CriticalSection_Init(CCriticalSection *p);
#define CriticalSection_Delete(p) DeleteCriticalSection(p)
#define CriticalSection_Enter(p) EnterCriticalSection(p)
#define CriticalSection_Leave(p) LeaveCriticalSection(p)


#else // _WIN32

typedef struct _CEvent
{
  int _created;
  int _manual_reset;
  int _state;
  pthread_mutex_t _mutex;
  pthread_cond_t _cond;
} CEvent;

typedef CEvent CAutoResetEvent;
typedef CEvent CManualResetEvent;

#define Event_Construct(p) (p)->_created = 0
#define Event_IsCreated(p) ((p)->_created)

WRes ManualResetEvent_Create(CManualResetEvent *p, int signaled);
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p);
WRes AutoResetEvent_Create(CAutoResetEvent *p, int signaled);
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p);

WRes Event_Set(CEvent *p);
WRes Event_Reset(CEvent *p);
WRes Event_Wait(CEvent *p);
WRes Event_Close(CEvent *p);


typedef struct _CSemaphore
{
  int _created;
  UInt32 _count;
  UInt32 _maxCount;
  pthread_mutex_t _mutex;
  pthread_cond_t _cond;
} CSemaphore;

#define Semaphore_Construct(p) (p)->_created = 0
#define Semaphore_IsCreated(p) ((p)->_created)

WRes Semaphore_Create(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_OptCreateInit(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 num);
#define Semaphore_Release1(p) Semaphore_ReleaseN(p, 1)
WRes Semaphore_Wait(CSemaphore *p);
WRes Semaphore_Close(CSemaphore *p);


typedef struct _CCriticalSection
{
  pthread_mutex_t _mutex;
} CCriticalSection;

WRes CriticalSection_Init(CCriticalSection *p);
void CriticalSection_Delete(CCriticalSection *cs);
void CriticalSection_Enter(CCriticalSection *cs);
void CriticalSection_Leave(CCriticalSection *cs);

LONG InterlockedIncrement(LONG volatile *addend);

#endif  // _WIN32

WRes AutoResetEvent_OptCreate_And_Reset(CAutoResetEvent *p);

EXTERN_C_END

#endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Copyright (c) 2012, Intel Corporation ; ; All rights reserved. ; ; Redistribution and use in source and binary forms, with or without ; modification, are permitted provided that the following conditions are ; met: ; ; * Redistributions of source code must retain the above copyright ; notice, this list of conditions and the following disclaimer. ; ; * Redistributions in binary form must reproduce the above copyright ; notice, this list of conditions and the following disclaimer in the ; documentation and/or other materials provided with the ; distribution. ; ; * Neither the name of the Intel Corporation nor the names of its ; contributors may be used to endorse or promote products derived from ; this software without specific prior written permission. ; ; ; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY ; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR ; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR ; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; Example YASM command lines: ; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_avx2_rorx2.obj -g cv8 sha256_avx2_rorx2.asm ; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_avx2_rorx2.o sha256_avx2_rorx2.asm ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ; This code is described in an Intel White-Paper: ; "Fast SHA-256 Implementations on Intel Architecture Processors" ; ; To find it, surf to http://www.intel.com/p/en_US/embedded ; and search for that title. ; The paper is expected to be released roughly at the end of April, 2012 ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; This code schedules 2 blocks at a time, with 4 lanes per block ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Modified by kerukuro for use in cppcrypto. %define VMOVDQ vmovdqu ;; assume buffers not aligned ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros ; addm [mem], reg ; Add reg to mem using reg-mem add and store %macro addm 2 add %2, %1 mov %1, %2 %endm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; %define X0 ymm4 %define X1 ymm5 %define X2 ymm6 %define X3 ymm7 ; XMM versions of above %define XWORD0 xmm4 %define XWORD1 xmm5 %define XWORD2 xmm6 %define XWORD3 xmm7 %define XTMP0 ymm0 %define XTMP1 ymm1 %define XTMP2 ymm2 %define XTMP3 ymm3 %define XTMP4 ymm8 %define XFER ymm9 %define XTMP5 ymm11 %define SHUF_00BA ymm10 ; shuffle xBxA -> 00BA %define SHUF_DC00 ymm12 ; shuffle xDxC -> DC00 %define BYTE_FLIP_MASK ymm13 %define X_BYTE_FLIP_MASK xmm13 ; XMM version of BYTE_FLIP_MASK %ifndef WINABI %define NUM_BLKS rdx ; 3rd arg %define CTX rsi ; 2nd arg %define INP rdi ; 1st arg %define c ecx %define d r8d %define e edx ; clobbers NUM_BLKS %define y3 edi ; clobbers INP %else %define NUM_BLKS r8 ; 3rd arg %define CTX rdx ; 2nd arg %define INP rcx ; 1st arg %define c edi %define d esi %define e r8d ; clobbers NUM_BLKS %define y3 ecx ; clobbers INP %endif %define TBL rbp %define SRND CTX ; SRND is same register as CTX %define a eax %define b ebx %define f r9d %define g r10d %define h r11d %define old_h r11d %define T1 r12d %define y0 r13d %define y1 r14d %define y2 r15d _XFER_SIZE equ 2*64*4 ; 2 blocks, 64 rounds, 4 bytes/round %ifndef WINABI _XMM_SAVE_SIZE equ 0 %else _XMM_SAVE_SIZE equ 8*16 %endif _INP_END_SIZE equ 8 _INP_SIZE equ 8 _CTX_SIZE equ 8 _RSP_SIZE equ 8 _XFER equ 0 _XMM_SAVE equ _XFER + _XFER_SIZE _INP_END equ _XMM_SAVE + _XMM_SAVE_SIZE _INP equ _INP_END + _INP_END_SIZE _CTX equ _INP + _INP_SIZE _RSP equ _CTX + _CTX_SIZE STACK_SIZE equ _RSP + _RSP_SIZE ; rotate_Xs ; Rotate values of symbols X0...X3 %macro rotate_Xs 0 %xdefine X_ X0 %xdefine X0 X1 %xdefine X1 X2 %xdefine X2 X3 %xdefine X3 X_ %endm ; ROTATE_ARGS ; Rotate values of symbols a...h %macro ROTATE_ARGS 0 %xdefine old_h h %xdefine TMP_ h %xdefine h g %xdefine g f %xdefine f e %xdefine e d %xdefine d c %xdefine c b %xdefine b a %xdefine a TMP_ %endm %macro FOUR_ROUNDS_AND_SCHED 1 %define %%XFER %1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; mov y3, a ; y3 = a ; MAJA rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B add h, dword[%%XFER+0*4] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA vpalignr XTMP0, X3, X2, 4 ; XTMP0 = W[-7] mov y2, f ; y2 = f ; CH rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 xor y2, g ; y2 = f^g ; CH vpaddd XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16]; y1 = (e >> 6) ; S1 rorx y1, e, 6 ; y1 = (e >> 6) ; S1 and y2, e ; y2 = (f^g)&e ; CH xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx y1, a, 22 ; y1 = a >> 22 ; S0A add d, h ; d = k + w + h + d ; -- and y3, b ; y3 = (a|c)&b ; MAJA vpalignr XTMP1, X1, X0, 4 ; XTMP1 = W[-15] xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH vpsrld XTMP2, XTMP1, 7 xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- vpslld XTMP3, XTMP1, (32-7) or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- vpor XTMP3, XTMP3, XTMP2 ; XTMP3 = W[-15] ror 7 vpsrld XTMP2, XTMP1,18 add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; mov y3, a ; y3 = a ; MAJA rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B add h, dword[%%XFER+1*4] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA vpsrld XTMP4, XTMP1, 3 ; XTMP4 = W[-15] >> 3 mov y2, f ; y2 = f ; CH rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 xor y2, g ; y2 = f^g ; CH rorx y1, e, 6 ; y1 = (e >> 6) ; S1 xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx y1, a, 22 ; y1 = a >> 22 ; S0A and y2, e ; y2 = (f^g)&e ; CH add d, h ; d = k + w + h + d ; -- vpslld XTMP1, XTMP1, (32-18) and y3, b ; y3 = (a|c)&b ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 vpxor XTMP3, XTMP3, XTMP1 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH vpxor XTMP3, XTMP3, XTMP2 ; XTMP3 = W[-15] ror 7 ^ W[-15] ror 18 xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- vpxor XTMP1, XTMP3, XTMP4 ; XTMP1 = s0 vpshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA} or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- vpaddd XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0 add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- add h, y3 ; h = t1 + S0 + MAJ ; -- vpsrld XTMP4, XTMP2, 10 ; XTMP4 = W[-2] >> 10 {BBAA} ROTATE_ARGS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; mov y3, a ; y3 = a ; MAJA rorx y0, e, 25 ; y0 = e >> 25 ; S1A add h, [%%XFER+2*4] ; h = k + w + h ; -- vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] ror 19 {xBxA} rorx y1, e, 11 ; y1 = e >> 11 ; S1B or y3, c ; y3 = a|c ; MAJA mov y2, f ; y2 = f ; CH xor y2, g ; y2 = f^g ; CH rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xBxA} and y2, e ; y2 = (f^g)&e ; CH rorx y1, e, 6 ; y1 = (e >> 6) ; S1 vpxor XTMP2, XTMP2, XTMP3 add d, h ; d = k + w + h + d ; -- and y3, b ; y3 = (a|c)&b ; MAJA xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx y1, a, 22 ; y1 = a >> 22 ; S0A vpxor XTMP4, XTMP4, XTMP2 ; XTMP4 = s1 {xBxA} xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH vpshufb XTMP4, XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA} xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 vpaddd XTMP0, XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]} xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- vpshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC} or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;; mov y3, a ; y3 = a ; MAJA rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B add h, dword[%%XFER+3*4] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA vpsrld XTMP5, XTMP2, 10 ; XTMP5 = W[-2] >> 10 {DDCC} mov y2, f ; y2 = f ; CH rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 xor y2, g ; y2 = f^g ; CH vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] ror 19 {xDxC} rorx y1, e, 6 ; y1 = (e >> 6) ; S1 and y2, e ; y2 = (f^g)&e ; CH add d, h ; d = k + w + h + d ; -- and y3, b ; y3 = (a|c)&b ; MAJA vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xDxC} xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH vpxor XTMP2, XTMP2, XTMP3 rorx y1, a, 22 ; y1 = a >> 22 ; S0A add y2, y0 ; y2 = S1 + CH ; -- vpxor XTMP5, XTMP5, XTMP2 ; XTMP5 = s1 {xDxC} xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- rorx T1, a, 2 ; T1 = (a >> 2) ; S0 vpshufb XTMP5, XTMP5, SHUF_DC00 ; XTMP5 = s1 {DC00} vpaddd X0, XTMP5, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]} xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and T1, c ; T1 = a&c ; MAJB or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS rotate_Xs %endm %macro DO_4ROUNDS 1 %define %%XFER %1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;; mov y2, f ; y2 = f ; CH rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B xor y2, g ; y2 = f^g ; CH xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 rorx y1, e, 6 ; y1 = (e >> 6) ; S1 and y2, e ; y2 = (f^g)&e ; CH xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH rorx y1, a, 22 ; y1 = a >> 22 ; S0A mov y3, a ; y3 = a ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 add h, dword[%%XFER + 4*0] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and y3, b ; y3 = (a|c)&b ; MAJA and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- add d, h ; d = k + w + h + d ; -- or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- ;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- ;add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;; add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- mov y2, f ; y2 = f ; CH rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B xor y2, g ; y2 = f^g ; CH xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 rorx y1, e, 6 ; y1 = (e >> 6) ; S1 and y2, e ; y2 = (f^g)&e ; CH add old_h, y3 ; h = t1 + S0 + MAJ ; -- xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH rorx y1, a, 22 ; y1 = a >> 22 ; S0A mov y3, a ; y3 = a ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 add h, dword[%%XFER + 4*1] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and y3, b ; y3 = (a|c)&b ; MAJA and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- add d, h ; d = k + w + h + d ; -- or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- ;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- ;add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- mov y2, f ; y2 = f ; CH rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B xor y2, g ; y2 = f^g ; CH xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 rorx y1, e, 6 ; y1 = (e >> 6) ; S1 and y2, e ; y2 = (f^g)&e ; CH add old_h, y3 ; h = t1 + S0 + MAJ ; -- xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH rorx y1, a, 22 ; y1 = a >> 22 ; S0A mov y3, a ; y3 = a ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 add h, dword[%%XFER + 4*2] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and y3, b ; y3 = (a|c)&b ; MAJA and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- add d, h ; d = k + w + h + d ; -- or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- ;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- ;add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;; add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- mov y2, f ; y2 = f ; CH rorx y0, e, 25 ; y0 = e >> 25 ; S1A rorx y1, e, 11 ; y1 = e >> 11 ; S1B xor y2, g ; y2 = f^g ; CH xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1 rorx y1, e, 6 ; y1 = (e >> 6) ; S1 and y2, e ; y2 = (f^g)&e ; CH add old_h, y3 ; h = t1 + S0 + MAJ ; -- xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1 rorx T1, a, 13 ; T1 = a >> 13 ; S0B xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH rorx y1, a, 22 ; y1 = a >> 22 ; S0A mov y3, a ; y3 = a ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0 rorx T1, a, 2 ; T1 = (a >> 2) ; S0 add h, dword[%%XFER + 4*3] ; h = k + w + h ; -- or y3, c ; y3 = a|c ; MAJA xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0 mov T1, a ; T1 = a ; MAJB and y3, b ; y3 = (a|c)&b ; MAJA and T1, c ; T1 = a&c ; MAJB add y2, y0 ; y2 = S1 + CH ; -- add d, h ; d = k + w + h + d ; -- or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ add h, y1 ; h = k + w + h + S0 ; -- add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; -- add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; -- add h, y3 ; h = t1 + S0 + MAJ ; -- ROTATE_ARGS %endm ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; void sha256_rorx(void *input_data, UINT32 digest[8], UINT64 num_blks) ;; arg 1 : pointer to input data ;; arg 2 : pointer to digest ;; arg 3 : Num blocks section .text global sha256_rorx global _sha256_rorx align 32 sha256_rorx: _sha256_rorx: push rbx %ifdef WINABI push rsi push rdi %endif push rbp push r12 push r13 push r14 push r15 mov rax, rsp sub rsp,STACK_SIZE and rsp, -32 mov [rsp + _RSP], rax %ifdef WINABI vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6 vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7 vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8 vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9 vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10 vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11 vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12 vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13 %endif shl NUM_BLKS, 6 ; convert to bytes jz done_hash lea NUM_BLKS, [NUM_BLKS + INP - 64] ; pointer to last block mov [rsp + _INP_END], NUM_BLKS cmp INP, NUM_BLKS je only_one_block ;; load initial digest mov a,[4*0 + CTX] mov b,[4*1 + CTX] mov c,[4*2 + CTX] mov d,[4*3 + CTX] mov e,[4*4 + CTX] mov f,[4*5 + CTX] mov g,[4*6 + CTX] mov h,[4*7 + CTX] vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip] vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip] vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip] mov [rsp + _CTX], CTX loop0: lea TBL,[K256 wrt rip] ;; Load first 16 dwords from two blocks VMOVDQ XTMP0, [INP + 0*32] VMOVDQ XTMP1, [INP + 1*32] VMOVDQ XTMP2, [INP + 2*32] VMOVDQ XTMP3, [INP + 3*32] ;; byte swap data vpshufb XTMP0, XTMP0, BYTE_FLIP_MASK vpshufb XTMP1, XTMP1, BYTE_FLIP_MASK vpshufb XTMP2, XTMP2, BYTE_FLIP_MASK vpshufb XTMP3, XTMP3, BYTE_FLIP_MASK ;; transpose data into high/low halves vperm2i128 X0, XTMP0, XTMP2, 0x20 vperm2i128 X1, XTMP0, XTMP2, 0x31 vperm2i128 X2, XTMP1, XTMP3, 0x20 vperm2i128 X3, XTMP1, XTMP3, 0x31 last_block_enter: add INP, 64 mov [rsp + _INP], INP ;; schedule 48 input dwords, by doing 3 rounds of 12 each xor SRND, SRND align 16 loop1: vpaddd XFER, X0, [TBL + SRND + 0*32] vmovdqa [rsp + _XFER + SRND + 0*32], XFER FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 0*32 vpaddd XFER, X0, [TBL + SRND + 1*32] vmovdqa [rsp + _XFER + SRND + 1*32], XFER FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 1*32 vpaddd XFER, X0, [TBL + SRND + 2*32] vmovdqa [rsp + _XFER + SRND + 2*32], XFER FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 2*32 vpaddd XFER, X0, [TBL + SRND + 3*32] vmovdqa [rsp + _XFER + SRND + 3*32], XFER FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 3*32 add SRND, 4*32 cmp SRND, 3 * 4*32 jb loop1 loop2: ;; Do last 16 rounds with no scheduling vpaddd XFER, X0, [TBL + SRND + 0*32] vmovdqa [rsp + _XFER + SRND + 0*32], XFER DO_4ROUNDS rsp + _XFER + SRND + 0*32 vpaddd XFER, X1, [TBL + SRND + 1*32] vmovdqa [rsp + _XFER + SRND + 1*32], XFER DO_4ROUNDS rsp + _XFER + SRND + 1*32 add SRND, 2*32 vmovdqa X0, X2 vmovdqa X1, X3 cmp SRND, 4 * 4*32 jb loop2 mov CTX, [rsp + _CTX] mov INP, [rsp + _INP] addm [4*0 + CTX],a addm [4*1 + CTX],b addm [4*2 + CTX],c addm [4*3 + CTX],d addm [4*4 + CTX],e addm [4*5 + CTX],f addm [4*6 + CTX],g addm [4*7 + CTX],h cmp INP, [rsp + _INP_END] ja done_hash ;;;; Do second block using previously scheduled results xor SRND, SRND align 16 loop3: DO_4ROUNDS rsp + _XFER + SRND + 0*32 + 16 DO_4ROUNDS rsp + _XFER + SRND + 1*32 + 16 add SRND, 2*32 cmp SRND, 4 * 4*32 jb loop3 mov CTX, [rsp + _CTX] mov INP, [rsp + _INP] add INP, 64 addm [4*0 + CTX],a addm [4*1 + CTX],b addm [4*2 + CTX],c addm [4*3 + CTX],d addm [4*4 + CTX],e addm [4*5 + CTX],f addm [4*6 + CTX],g addm [4*7 + CTX],h cmp INP, [rsp + _INP_END] jb loop0 ja done_hash do_last_block: ;;;; do last block lea TBL,[K256 wrt rip] VMOVDQ XWORD0, [INP + 0*16] VMOVDQ XWORD1, [INP + 1*16] VMOVDQ XWORD2, [INP + 2*16] VMOVDQ XWORD3, [INP + 3*16] vpshufb XWORD0, XWORD0, X_BYTE_FLIP_MASK vpshufb XWORD1, XWORD1, X_BYTE_FLIP_MASK vpshufb XWORD2, XWORD2, X_BYTE_FLIP_MASK vpshufb XWORD3, XWORD3, X_BYTE_FLIP_MASK jmp last_block_enter only_one_block: ;; load initial digest mov a,[4*0 + CTX] mov b,[4*1 + CTX] mov c,[4*2 + CTX] mov d,[4*3 + CTX] mov e,[4*4 + CTX] mov f,[4*5 + CTX] mov g,[4*6 + CTX] mov h,[4*7 + CTX] vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip] vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip] vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip] mov [rsp + _CTX], CTX jmp do_last_block done_hash: %ifdef WINABI vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16] vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16] vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16] vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16] vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16] vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16] vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16] vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16] %endif mov rsp, [rsp + _RSP] pop r15 pop r14 pop r13 pop r12 pop rbp %ifdef WINABI pop rdi pop rsi %endif pop rbx ret section .data align 64 K256: dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 PSHUFFLE_BYTE_FLIP_MASK: ddq 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203 ; shuffle xBxA -> 00BA _SHUF_00BA: ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100 ; shuffle xDxC -> DC00 _SHUF_DC00: ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF %ifidn __OUTPUT_FORMAT__,elf section .note.GNU-stack noalloc noexec nowrite progbits %endif %ifidn __OUTPUT_FORMAT__,elf32 section .note.GNU-stack noalloc noexec nowrite progbits %endif %ifidn __OUTPUT_FORMAT__,elf64 section .note.GNU-stack noalloc noexec nowrite progbits %endif