VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/zlib/zconf.h
blob: 5e1d68a004e9744cb35f9d5a2fe94fd4dbcb7f76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* zconf.h -- configuration of the zlib compression library
 * Copyright (C) 1995-2016 Jean-loup Gailly, Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/* @(#) $Id$ */

#ifndef ZCONF_H
#define ZCONF_H

/*
 * If you *really* need a unique prefix for all types and library functions,
 * compile with -DZ_PREFIX. The "standard" zlib should be compiled without it.
 * Even better than compiling with -DZ_PREFIX would be to use configure to set
 * this permanently in zconf.h using "./configure --zprefix".
 */
#ifdef Z_PREFIX     /* may be set to #if 1 by ./configure */
#  define Z_PREFIX_SET

/* all linked symbols and init macros */
#  define _dist_code            z__dist_code
#  define _length_code          z__length_code
#  define _tr_align             z__tr_align
#  define _tr_flush_bits        z__tr_flush_bits
#  define _tr_flush_block       z__tr_flush_block
#  define _tr_init              z__tr_init
#  define _tr_stored_block      z__tr_stored_block
#  define _tr_tally             z__tr_tally
#  define adler32               z_adler32
#  define adler32_combine       z_adler32_combine
#  define adler32_combine64     z_adler32_combine64
#  define adler32_z             z_adler32_z
#  ifndef Z_SOLO
#    define compress              z_compress
#    define compress2             z_compress2
#    define compressBound         z_compressBound
#  endif
#  define crc32                 z_crc32
#  define crc32_combine         z_crc32_combine
#  define crc32_combine64       z_crc32_combine64
#  define crc32_z               z_crc32_z
#  define deflate               z_deflate
#  define deflateBound          z_deflateBound
#  define deflateCopy           z_deflateCopy
#  define deflateEnd            z_deflateEnd
#  define deflateGetDictionary  z_deflateGetDictionary
#  define deflateInit           z_deflateInit
#  define deflateInit2          z_deflateInit2
#  define deflateInit2_         z_deflateInit2_
#  define deflateInit_          z_deflateInit_
#  define deflateParams         z_deflateParams
#  define deflatePending        z_deflatePending
#  define deflatePrime          z_deflatePrime
#  define deflateReset          z_deflateReset
#  define deflateResetKeep      z_deflateResetKeep
#  define deflateSetDictionary  z_deflateSetDictionary
#  define deflateSetHeader      z_deflateSetHeader
#  define deflateTune           z_deflateTune
#  define deflate_copyright     z_deflate_copyright
#  define get_crc_table         z_get_crc_table
#  ifndef Z_SOLO
#    define gz_error              z_gz_error
#    define gz_intmax             z_gz_intmax
#    define gz_strwinerror        z_gz_strwinerror
#    define gzbuffer              z_gzbuffer
#    define gzclearerr            z_gzclearerr
#    define gzclose               z_gzclose
#    define gzclose_r             z_gzclose_r
#    define gzclose_w             z_gzclose_w
#    define gzdirect              z_gzdirect
#    define gzdopen               z_gzdopen
#    define gzeof                 z_gzeof
#    define gzerror               z_gzerror
#    define gzflush               z_gzflush
#    define gzfread               z_gzfread
#    define gzfwrite              z_gzfwrite
#    define gzgetc                z_gzgetc
#    define gzgetc_               z_gzgetc_
#    define gzgets                z_gzgets
#    define gzoffset              z_gzoffset
#    define gzoffset64            z_gzoffset64
#    define gzopen                z_gzopen
#    define gzopen64              z_gzopen64
#    ifdef _WIN32
#      define gzopen_w              z_gzopen_w
#    endif
#    define gzprintf              z_gzprintf
#    define gzputc                z_gzputc
#    define gzputs                z_gzputs
#    define gzread                z_gzread
#    define gzrewind              z_gzrewind
#    define gzseek                z_gzseek
#    define gzseek64              z_gzseek64
#    define gzsetparams           z_gzsetparams
#    define gztell                z_gztell
#    define gztell64              z_gztell64
#    define gzungetc              z_gzungetc
#    define gzvprintf             z_gzvprintf
#    define gzwrite               z_gzwrite
#  endif
#  define inflate               z_inflate
#  define inflateBack           z_inflateBack
#  define inflateBackEnd        z_inflateBackEnd
#  define inflateBackInit       z_inflateBackInit
#  define inflateBackInit_      z_inflateBackInit_
#  define inflateCodesUsed      z_inflateCodesUsed
#  define inflateCopy           z_inflateCopy
#  define inflateEnd            z_inflateEnd
#  define inflateGetDictionary  z_inflateGetDictionary
#  define inflateGetHeader      z_inflateGetHeader
#  define inflateInit           z_inflateInit
#  define inflateInit2          z_inflateInit2
#  define inflateInit2_         z_inflateInit2_
#  define inflateInit_          z_inflateInit_
#  define inflateMark           z_inflateMark
#  define inflatePrime          z_inflatePrime
#  define inflateReset          z_inflateReset
#  define inflateReset2         z_inflateReset2
#  define inflateResetKeep      z_inflateResetKeep
#  define inflateSetDictionary  z_inflateSetDictionary
#  define inflateSync           z_inflateSync
#  define inflateSyncPoint      z_inflateSyncPoint
#  define inflateUndermine      z_inflateUndermine
#  define inflateValidate       z_inflateValidate
#  define inflate_copyright     z_inflate_copyright
#  define inflate_fast          z_inflate_fast
#  define inflate_table         z_inflate_table
#  ifndef Z_SOLO
#    define uncompress            z_uncompress
#    define uncompress2           z_uncompress2
#  endif
#  define zError                z_zError
#  ifndef Z_SOLO
#    define zcalloc               z_zcalloc
#    define zcfree                z_zcfree
#  endif
#  define zlibCompileFlags      z_zlibCompileFlags
#  define zlibVersion           z_zlibVersion

/* all zlib typedefs in zlib.h and zconf.h */
#  define Byte                  z_Byte
#  define Bytef                 z_Bytef
#  define alloc_func            z_alloc_func
#  define charf                 z_charf
#  define free_func             z_free_func
#  ifndef Z_SOLO
#    define gzFile                z_gzFile
#  endif
#  define gz_header             z_gz_header
#  define gz_headerp            z_gz_headerp
#  define in_func               z_in_func
#  define intf                  z_intf
#  define out_func              z_out_func
#  define uInt                  z_uInt
#  define uIntf                 z_uIntf
#  define uLong                 z_uLong
#  define uLongf                z_uLongf
#  define voidp                 z_voidp
#  define voidpc                z_voidpc
#  define voidpf                z_voidpf

/* all zlib structs in zlib.h and zconf.h */
#  define gz_header_s           z_gz_header_s
#  define internal_state        z_internal_state

#endif

#if defined(__MSDOS__) && !defined(MSDOS)
#  define MSDOS
#endif
#if (defined(OS_2) || defined(__OS2__)) && !defined(OS2)
#  define OS2
#endif
#if defined(_WINDOWS) && !defined(WINDOWS)
#  define WINDOWS
#endif
#if defined(_WIN32) || defined(_WIN32_WCE) || defined(__WIN32__)
#  ifndef WIN32
#    define WIN32
#  endif
#endif
#if (defined(MSDOS) || defined(OS2) || defined(WINDOWS)) && !defined(WIN32)
#  if !defined(__GNUC__) && !defined(__FLAT__) && !defined(__386__)
#    ifndef SYS16BIT
#      define SYS16BIT
#    endif
#  endif
#endif

/*
 * Compile with -DMAXSEG_64K if the alloc function cannot allocate more
 * than 64k bytes at a time (needed on systems with 16-bit int).
 */
#ifdef SYS16BIT
#  define MAXSEG_64K
#endif
#ifdef MSDOS
#  define UNALIGNED_OK
#endif

#ifdef __STDC_VERSION__
#  ifndef STDC
#    define STDC
#  endif
#  if __STDC_VERSION__ >= 199901L
#    ifndef STDC99
#      define STDC99
#    endif
#  endif
#endif
#if !defined(STDC) && (defined(__STDC__) || defined(__cplusplus))
#  define STDC
#endif
#if !defined(STDC) && (defined(__GNUC__) || defined(__BORLANDC__))
#  define STDC
#endif
#if !defined(STDC) && (defined(MSDOS) || defined(WINDOWS) || defined(WIN32))
#  define STDC
#endif
#if !defined(STDC) && (defined(OS2) || defined(__HOS_AIX__))
#  define STDC
#endif

#if defined(__OS400__) && !defined(STDC)    /* iSeries (formerly AS/400). */
#  define STDC
#endif

#ifndef STDC
#  ifndef const /* cannot use !defined(STDC) && !defined(const) on Mac */
#    define const       /* note: need a more gentle solution here */
#  endif
#endif

#if defined(ZLIB_CONST) && !defined(z_const)
#  define z_const const
#else
#  define z_const
#endif

#ifdef Z_SOLO
   typedef unsigned long z_size_t;
#else
#  define z_longlong long long
#  if defined(NO_SIZE_T)
     typedef unsigned NO_SIZE_T z_size_t;
#  elif defined(STDC)
#    include <stddef.h>
     typedef size_t z_size_t;
#  else
     typedef unsigned long z_size_t;
#  endif
#  undef z_longlong
#endif

/* Maximum value for memLevel in deflateInit2 */
#ifndef MAX_MEM_LEVEL
#  ifdef MAXSEG_64K
#    define MAX_MEM_LEVEL 8
#  else
#    define MAX_MEM_LEVEL 9
#  endif
#endif

/* Maximum value for windowBits in deflateInit2 and inflateInit2.
 * WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
 * created by gzip. (Files created by minigzip can still be extracted by
 * gzip.)
 */
#ifndef MAX_WBITS
#  define MAX_WBITS   15 /* 32K LZ77 window */
#endif

/* The memory requirements for deflate are (in bytes):
            (1 << (windowBits+2)) +  (1 << (memLevel+9))
 that is: 128K for windowBits=15  +  128K for memLevel = 8  (default values)
 plus a few kilobytes for small objects. For example, if you want to reduce
 the default memory requirements from 256K to 128K, compile with
     make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
 Of course this will generally degrade compression (there's no free lunch).

   The memory requirements for inflate are (in bytes) 1 << windowBits
 that is, 32K for windowBits=15 (default value) plus about 7 kilobytes
 for small objects.
*/

                        /* Type declarations */

#ifndef OF /* function prototypes */
#  ifdef STDC
#    define OF(args)  args
#  else
#    define OF(args)  ()
#  endif
#endif

#ifndef Z_ARG /* function prototypes for stdarg */
#  if defined(STDC) || defined(Z_HAVE_STDARG_H)
#    define Z_ARG(args)  args
#  else
#    define Z_ARG(args)  ()
#  endif
#endif

/* The following definitions for FAR are needed only for MSDOS mixed
 * model programming (small or medium model with some far allocations).
 * This was tested only with MSC; for other MSDOS compilers you may have
 * to define NO_MEMCPY in zutil.h.  If you don't need the mixed model,
 * just define FAR to be empty.
 */
#ifdef SYS16BIT
#  if defined(M_I86SM) || defined(M_I86MM)
     /* MSC small or medium model */
#    define SMALL_
/* trees.c -- output deflated data using Huffman coding
 * Copyright (C) 1995-2017 Jean-loup Gailly
 * detect_data_type() function provided freely by Cosmin Truta, 2006
 * For conditions of distribution and use, see copyright notice in zlib.h
 */

/*
 *  ALGORITHM
 *
 *      The "deflation" process uses several Huffman trees. The more
 *      common source values are represented by shorter bit sequences.
 *
 *      Each code tree is stored in a compressed form which is itself
 * a Huffman encoding of the lengths of all the code strings (in
 * ascending order by source values).  The actual code strings are
 * reconstructed from the lengths in the inflate process, as described
 * in the deflate specification.
 *
 *  REFERENCES
 *
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
 *
 *      Storer, James A.
 *          Data Compression:  Methods and Theory, pp. 49-50.
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 *
 *      Sedgewick, R.
 *          Algorithms, p290.
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 */

/* @(#) $Id$ */

/* #define GEN_TREES_H */

#include "deflate.h"

#ifdef ZLIB_DEBUG
#  include <ctype.h>
#endif

/* ===========================================================================
 * Constants
 */

#define MAX_BL_BITS 7
/* Bit length codes must not exceed MAX_BL_BITS bits */

#define END_BLOCK 256
/* end of block literal code */

#define REP_3_6      16
/* repeat previous bit length 3-6 times (2 bits of repeat count) */

#define REPZ_3_10    17
/* repeat a zero length 3-10 times  (3 bits of repeat count) */

#define REPZ_11_138  18
/* repeat a zero length 11-138 times  (7 bits of repeat count) */

local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};

local const int extra_dbits[D_CODES] /* extra bits for each distance code */
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};

local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};

local const uch bl_order[BL_CODES]
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
/* The lengths of the bit length codes are sent in order of decreasing
 * probability, to avoid transmitting the lengths for unused bit length codes.
 */

/* ===========================================================================
 * Local data. These are initialized only once.
 */

#define DIST_CODE_LEN  512 /* see definition of array dist_code below */

#if defined(GEN_TREES_H) || !defined(STDC)
/* non ANSI compilers may not accept trees.h */

local ct_data static_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
 * need for the L_CODES extra codes used during heap construction. However
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
 * below).
 */

local ct_data static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use
 * 5 bits.)
 */

uch _dist_code[DIST_CODE_LEN];
/* Distance codes. The first 256 values correspond to the distances
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 * the 15 bit distances.
 */

uch _length_code[MAX_MATCH-MIN_MATCH+1];
/* length code for each normalized match length (0 == MIN_MATCH) */

local int base_length[LENGTH_CODES];
/* First normalized length for each code (0 = MIN_MATCH) */

local int base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */

#else
#  include "trees.h"
#endif /* GEN_TREES_H */

struct static_tree_desc_s {
    const ct_data *static_tree;  /* static tree or NULL */
    const intf *extra_bits;      /* extra bits for each code or NULL */
    int     extra_base;          /* base index for extra_bits */
    int     elems;               /* max number of elements in the tree */
    int     max_length;          /* max bit length for the codes */
};

local const static_tree_desc  static_l_desc =
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};

local const static_tree_desc  static_d_desc =
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};

local const static_tree_desc  static_bl_desc =
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};

/* ===========================================================================
 * Local (static) routines in this file.
 */

local void tr_static_init OF((void));
local void init_block     OF((deflate_state *s));
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
local void build_tree     OF((deflate_state *s, tree_desc *desc));
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
local int  build_bl_tree  OF((deflate_state *s));
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
                              int blcodes));
local void compress_block OF((deflate_state *s, const ct_data *ltree,
                              const ct_data *dtree));
local int  detect_data_type OF((deflate_state *s));
local unsigned bi_reverse OF((unsigned value, int length));
local void bi_windup      OF((deflate_state *s));
local void bi_flush       OF((deflate_state *s));

#ifdef GEN_TREES_H
local void gen_trees_header OF((void));
#endif

#ifndef ZLIB_DEBUG
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   /* Send a code of the given tree. c and tree must not have side effects */

#else /* !ZLIB_DEBUG */
#  define send_code(s, c, tree) \
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
       send_bits(s, tree[c].Code, tree[c].Len); }
#endif

/* ===========================================================================
 * Output a short LSB first on the stream.
 * IN assertion: there is enough room in pendingBuf.
 */
#define put_short(s, w) { \
    put_byte(s, (uch)((w) & 0xff)); \
    put_byte(s, (uch)((ush)(w) >> 8)); \
}

/* ===========================================================================
 * Send a value on a given number of bits.
 * IN assertion: length <= 16 and value fits in length bits.
 */
#ifdef ZLIB_DEBUG
local void send_bits      OF((deflate_state *s, int value, int length));

local void send_bits(s, value, length)
    deflate_state *s;
    int value;  /* value to send */
    int length; /* number of bits */
{
    Tracevv((stderr," l %2d v %4x ", length, value));
    Assert(length > 0 && length <= 15, "invalid length");
    s->bits_sent += (ulg)length;

    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
     * unused bits in value.
     */
    if (s->bi_valid > (int)Buf_size - length) {
        s->bi_buf |= (ush)value << s->bi_valid;
        put_short(s, s->bi_buf);
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
        s->bi_valid += length - Buf_size;
    } else {
        s->bi_buf |= (ush)value << s->bi_valid;
        s->bi_valid += length;
    }
}
#else /* !ZLIB_DEBUG */

#define send_bits(s, value, length) \
{ int len = length;\
  if (s->bi_valid > (int)Buf_size - len) {\
    int val = (int)value;\
    s->bi_buf |= (ush)val << s->bi_valid;\
    put_short(s, s->bi_buf);\
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
    s->bi_valid += len - Buf_size;\
  } else {\
    s->bi_buf |= (ush)(value) << s->bi_valid;\
    s->bi_valid += len;\
  }\
}
#endif /* ZLIB_DEBUG */


/* the arguments must not have side effects */

/* ===========================================================================
 * Initialize the various 'constant' tables.
 */
local void tr_static_init()
{
#if defined(GEN_TREES_H) || !defined(STDC)
    static int static_init_done = 0;
    int n;        /* iterates over tree elements */
    int bits;     /* bit counter */
    int length;   /* length value */
    int code;     /* code value */
    int dist;     /* distance index */
    ush bl_count[MAX_BITS+1];
    /* number of codes at each bit length for an optimal tree */

    if (static_init_done) return;

    /* For some embedded targets, global variables are not initialized: */
#ifdef NO_INIT_GLOBAL_POINTERS
    static_l_desc.static_tree = static_ltree;
    static_l_desc.extra_bits = extra_lbits;
    static_d_desc.static_tree = static_dtree;
    static_d_desc.extra_bits = extra_dbits;
    static_bl_desc.extra_bits = extra_blbits;
#endif

    /* Initialize the mapping length (0..255) -> length code (0..28) */
    length = 0;
    for (code = 0; code < LENGTH_CODES-1; code++) {
        base_length[code] = length;
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
            _length_code[length++] = (uch)code;
        }
    }
    Assert (length == 256, "tr_static_init: length != 256");
    /* Note that the length 255 (match length 258) can be represented
     * in two different ways: code 284 + 5 bits or code 285, so we
     * overwrite length_code[255] to use the best encoding:
     */
    _length_code[length-1] = (uch)code;

    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    dist = 0;
    for (code = 0 ; code < 16; code++) {
        base_dist[code] = dist;
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
            _dist_code[dist++] = (uch)code;
        }
    }
    Assert (dist == 256, "tr_static_init: dist != 256");
    dist >>= 7; /* from now on, all distances are divided by 128 */
    for ( ; code < D_CODES; code++) {
        base_dist[code] = dist << 7;
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
            _dist_code[256 + dist++] = (uch)code;
        }
    }
    Assert (dist == 256, "tr_static_init: 256+dist != 512");

    /* Construct the codes of the static literal tree */
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    n = 0;
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    /* Codes 286 and 287 do not exist, but we must include them in the
     * tree construction to get a canonical Huffman tree (longest code
     * all ones)
     */
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);

    /* The static distance tree is trivial: */
    for (n = 0; n < D_CODES; n++) {
        static_dtree[n].Len = 5;
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
    }
    static_init_done = 1;

#  ifdef GEN_TREES_H
    gen_trees_header();
#  endif
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
}

/* ===========================================================================
 * Genererate the file trees.h describing the static trees.
 */
#ifdef GEN_TREES_H
#  ifndef ZLIB_DEBUG
#    include <stdio.h>
#  endif

#  define SEPARATOR(i, last, width) \
      ((i) == (last)? "\n};\n\n" :    \
       ((i) % (width) == (width)-1 ? ",\n" : ", "))

void gen_trees_header()
{
    FILE *header = fopen("trees.h", "w");
    int i;

    Assert (header != NULL, "Can't open trees.h");
    fprintf(header,
            "/* header created automatically with -DGEN_TREES_H */\n\n");

    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
    for (i = 0; i < L_CODES+2; i++) {
        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
    }

    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
    for (i = 0; i < D_CODES; i++) {
        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
    }

    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
    for (i = 0; i < DIST_CODE_LEN; i++) {
        fprintf(header, "%2u%s", _dist_code[i],
                SEPARATOR(i, DIST_CODE_LEN-1, 20));
    }

    fprintf(header,
        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
        fprintf(header, "%2u%s", _length_code[i],
                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
    }

    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
    for (i = 0; i < LENGTH_CODES; i++) {
        fprintf(header, "%1u%s", base_length[i],
                SEPARATOR(i, LENGTH_CODES-1, 20));
    }

    fprintf(header, "local const int base_dist[D_CODES] = {\n");
    for (i = 0; i < D_CODES; i++) {
        fprintf(header, "%5u%s", base_dist[i],
                SEPARATOR(i, D_CODES-1, 10));
    }

    fclose(header);
}
#endif /* GEN_TREES_H */

/* ===========================================================================
 * Initialize the tree data structures for a new zlib stream.
 */
void ZLIB_INTERNAL _tr_init(s)
    deflate_state *s;
{
    tr_static_init();

    s->l_desc.dyn_tree = s->dyn_ltree;
    s->l_desc.stat_desc = &static_l_desc;

    s->d_desc.dyn_tree = s->dyn_dtree;
    s->d_desc.stat_desc = &static_d_desc;

    s->bl_desc.dyn_tree = s->bl_tree;
    s->bl_desc.stat_desc = &static_bl_desc;

    s->bi_buf = 0;
    s->bi_valid = 0;
#ifdef ZLIB_DEBUG
    s->compressed_len = 0L;
    s->bits_sent = 0L;
#endif

    /* Initialize the first block of the first file: */
    init_block(s);
}

/* ===========================================================================
 * Initialize a new block.
 */
local void init_block(s)
    deflate_state *s;
{
    int n; /* iterates over tree elements */

    /* Initialize the trees. */
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;

    s->dyn_ltree[END_BLOCK].Freq = 1;
    s->opt_len = s->static_len = 0L;
    s->last_lit = s->matches = 0;
}

#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree */


/* ===========================================================================
 * Remove the smallest element from the heap and recreate the heap with
 * one less element. Updates heap and heap_len.
 */
#define pqremove(s, tree, top) \
{\
    top = s->heap[SMALLEST]; \
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
    pqdownheap(s, tree, SMALLEST); \
}

/* ===========================================================================
 * Compares to subtrees, using the tree depth as tie breaker when
 * the subtrees have equal frequency. This minimizes the worst case length.
 */
#define smaller(tree, n, m, depth) \
   (tree[n].Freq < tree[m].Freq || \
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))

/* ===========================================================================
 * Restore the heap property by moving down the tree starting at node k,
 * exchanging a node with the smallest of its two sons if necessary, stopping
 * when the heap property is re-established (each father smaller than its
 * two sons).
 */
local void pqdownheap(s, tree, k)
    deflate_state *s;
    ct_data *tree;  /* the tree to restore */
    int k;               /* node to move down */
{
    int v = s->heap[k];
    int j = k << 1;  /* left son of k */
    while (j <= s->heap_len) {
        /* Set j to the smallest of the two sons: */
        if (j < s->heap_len &&
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
            j++;
        }
        /* Exit if v is smaller than both sons */
        if (smaller(tree, v, s->heap[j], s->depth)) break;

        /* Exchange v with the smallest son */
        s->heap[k] = s->heap[j];  k = j;

        /* And continue down the tree, setting j to the left son of k */
        j <<= 1;
    }
    s->heap[k] = v;
}

/* ===========================================================================
 * Compute the optimal bit lengths for a tree and update the total bit length
 * for the current block.
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
 *    above are the tree nodes sorted by increasing frequency.
 * OUT assertions: the field len is set to the optimal bit length, the
 *     array bl_count contains the frequencies for each bit length.
 *     The length opt_len is updated; static_len is also updated if stree is
 *     not null.
 */
local void gen_bitlen(s, desc)
    deflate_state *s;
    tree_desc *desc;    /* the tree descriptor */
{
    ct_data *tree        = desc->dyn_tree;
    int max_code         = desc->max_code;
    const ct_data *stree = desc->stat_desc->static_tree;
    const intf *extra    = desc->stat_desc->extra_bits;
    int base             = desc->stat_desc->extra_base;
    int max_length       = desc->stat_desc->max_length;
    int h;              /* heap index */
    int n, m;           /* iterate over the tree elements */
    int bits;           /* bit length */
    int xbits;          /* extra bits */
    ush f;              /* frequency */
    int overflow = 0;   /* number of elements with bit length too large */

    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;

    /* In a first pass, compute the optimal bit lengths (which may
     * overflow in the case of the bit length tree).
     */
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */

    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
        n = s->heap[h];
        bits = tree[tree[n].Dad].Len + 1;
        if (bits > max_length) bits = max_length, overflow++;
        tree[n].Len = (ush)bits;
        /* We overwrite tree[n].Dad which is no longer needed */

        if (n > max_code) continue; /* not a leaf node */

        s->bl_count[bits]++;
        xbits = 0;
        if (n >= base) xbits = extra[n-base];
        f = tree[n].Freq;
        s->opt_len += (ulg)f * (unsigned)(bits + xbits);
        if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
    }
    if (overflow == 0) return;

    Tracev((stderr,"\nbit length overflow\n"));
    /* This happens for example on obj2 and pic of the Calgary corpus */

    /* Find the first bit length which could increase: */
    do {
        bits = max_length-1;
        while (s->bl_count[bits] == 0) bits--;
        s->bl_count[bits]--;      /* move one leaf down the tree */
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
        s->bl_count[max_length]--;
        /* The brother of the overflow item also moves one step up,
         * but this does not affect bl_count[max_length]
         */
        overflow -= 2;
    } while (overflow > 0);

    /* Now recompute all bit lengths, scanning in increasing frequency.
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     * lengths instead of fixing only the wrong ones. This idea is taken
     * from 'ar' written by Haruhiko Okumura.)
     */
    for (bits = max_length; bits != 0; bits--) {
        n = s->bl_count[bits];
        while (n != 0) {
            m = s->heap[--h];
            if (m > max_code) continue;
            if ((unsigned) tree[m].Len != (unsigned) bits) {
                Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
                tree[m].Len = (ush)bits;
            }
            n--;
        }
    }
}

/* ===========================================================================
 * Generate the codes for a given tree and bit counts (which need not be
 * optimal).
 * IN assertion: the array bl_count contains the bit length statistics for
 * the given tree and the field len is set for all tree elements.
 * OUT assertion: the field code is set for all tree elements of non
 *     zero code length.
 */
local void gen_codes (tree, max_code, bl_count)
    ct_data *tree;             /* the tree to decorate */
    int max_code;              /* largest code with non zero frequency */
    ushf *bl_count;            /* number of codes at each bit length */
{
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    unsigned code = 0;         /* running code value */
    int bits;                  /* bit index */
    int n;                     /* code index */

    /* The distribution counts are first used to generate the code values
     * without bit reversal.
     */
    for (bits = 1; bits <= MAX_BITS; bits++) {
        code = (code + bl_count[bits-1]) << 1;
        next_code[bits] = (ush)code;
    }
    /* Check that the bit counts in bl_count are consistent. The last code
     * must be all ones.
     */
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
            "inconsistent bit counts");
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));

    for (n = 0;  n <= max_code; n++) {
        int len = tree[n].Len;
        if (len == 0) continue;
        /* Now reverse the bits */
        tree[n].Code = (ush)bi_reverse(next_code[len]++, len);

        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    }
}

/* ===========================================================================
 * Construct one Huffman tree and assigns the code bit strings and lengths.
 * Update the total bit length for the current block.
 * IN assertion: the field freq is set for all tree elements.
 * OUT assertions: the fields len and code are set to the optimal bit length
 *     and corresponding code. The length opt_len is updated; static_len is
 *     also updated if stree is not null. The field max_code is set.
 */
local void build_tree(s, desc)
    deflate_state *s;
    tree_desc *desc; /* the tree descriptor */
{
    ct_data *tree         = desc->dyn_tree;
    const ct_data *stree  = desc->stat_desc->static_tree;
    int elems             = desc->stat_desc->elems;
    int n, m;          /* iterate over heap elements */
    int max_code = -1; /* largest code with non zero frequency */
    int node;          /* new node being created */

    /* Construct the initial heap, with least frequent element in
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     * heap[0] is not used.
     */
    s->heap_len = 0, s->heap_max = HEAP_SIZE;

    for (n = 0; n < elems; n++) {
        if (tree[n].Freq != 0) {
            s->heap[++(s->heap_len)] = max_code = n;
            s->depth[n] = 0;
        } else {
            tree[n].Len = 0;
        }
    }

    /* The pkzip format requires that at least one distance code exists,
     * and that at least one bit should be sent even if there is only one
     * possible code. So to avoid special checks later on we force at least
     * two codes of non zero frequency.
     */
    while (s->heap_len < 2) {
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
        tree[node].Freq = 1;
        s->depth[node] = 0;
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
        /* node is 0 or 1 so it does not have extra bits */
    }
    desc->max_code = max_code;

    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     * establish sub-heaps of increasing lengths:
     */
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);

    /* Construct the Huffman tree by repeatedly combining the least two
     * frequent nodes.
     */
    node = elems;              /* next internal node of the tree */
    do {
        pqremove(s, tree, n);  /* n = node of least frequency */
        m = s->heap[SMALLEST]; /* m = node of next least frequency */

        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
        s->heap[--(s->heap_max)] = m;

        /* Create a new node father of n and m */
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
                                s->depth[n] : s->depth[m]) + 1);
        tree[n].Dad = tree[m].Dad = (ush)node;
#ifdef DUMP_BL_TREE
        if (tree == s->bl_tree) {
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
        }
#endif
        /* and insert the new node in the heap */
        s->heap[SMALLEST] = node++;
        pqdownheap(s, tree, SMALLEST);

    } while (s->heap_len >= 2);

    s->heap[--(s->heap_max)] = s->heap[SMALLEST];

    /* At this point, the fields freq and dad are set. We can now
     * generate the bit lengths.
     */
    gen_bitlen(s, (tree_desc *)desc);

    /* The field len is now set, we can generate the bit codes */
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
}

/* ===========================================================================
 * Scan a literal or distance tree to determine the frequencies of the codes
 * in the bit length tree.
 */
local void scan_tree (s, tree, max_code)
    deflate_state *s;
    ct_data *tree;   /* the tree to be scanned */
    int max_code;    /* and its largest code of non zero frequency */
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].Len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    if (nextlen == 0) max_count = 138, min_count = 3;
    tree[max_code+1].Len = (ush)0xffff; /* guard */

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].Len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            s->bl_tree[curlen].Freq += count;
        } else if (curlen != 0) {
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
            s->bl_tree[REP_3_6].Freq++;
        } else if (count <= 10) {
            s->bl_tree[REPZ_3_10].Freq++;
        } else {
            s->bl_tree[REPZ_11_138].Freq++;
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Send a literal or distance tree in compressed form, using the codes in
 * bl_tree.
 */
local void send_tree (s, tree, max_code)
    deflate_state *s;
    ct_data *tree; /* the tree to be scanned */
    int max_code;       /* and its largest code of non zero frequency */
{
    int n;                     /* iterates over all tree elements */
    int prevlen = -1;          /* last emitted length */
    int curlen;                /* length of current code */
    int nextlen = tree[0].Len; /* length of next code */
    int count = 0;             /* repeat count of the current code */
    int max_count = 7;         /* max repeat count */
    int min_count = 4;         /* min repeat count */

    /* tree[max_code+1].Len = -1; */  /* guard already set */
    if (nextlen == 0) max_count = 138, min_count = 3;

    for (n = 0; n <= max_code; n++) {
        curlen = nextlen; nextlen = tree[n+1].Len;
        if (++count < max_count && curlen == nextlen) {
            continue;
        } else if (count < min_count) {
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);

        } else if (curlen != 0) {
            if (curlen != prevlen) {
                send_code(s, curlen, s->bl_tree); count--;
            }
            Assert(count >= 3 && count <= 6, " 3_6?");
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);

        } else if (count <= 10) {
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);

        } else {
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
        }
        count = 0; prevlen = curlen;
        if (nextlen == 0) {
            max_count = 138, min_count = 3;
        } else if (curlen == nextlen) {
            max_count = 6, min_count = 3;
        } else {
            max_count = 7, min_count = 4;
        }
    }
}

/* ===========================================================================
 * Construct the Huffman tree for the bit lengths and return the index in
 * bl_order of the last bit length code to send.
 */
local int build_bl_tree(s)
    deflate_state *s;
{
    int max_blindex;  /* index of last bit length code of non zero freq */

    /* Determine the bit length frequencies for literal and distance trees */
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);

    /* Build the bit length tree: */
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
    /* opt_len now includes the length of the tree representations, except
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     */

    /* Determine the number of bit length codes to send. The pkzip format
     * requires that at least 4 bit length codes be sent. (appnote.txt says
     * 3 but the actual value used is 4.)
     */
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
    }
    /* Update opt_len to include the bit length tree and counts */
    s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
            s->opt_len, s->static_len));

    return max_blindex;
}

/* ===========================================================================
 * Send the header for a block using dynamic Huffman trees: the counts, the
 * lengths of the bit length codes, the literal tree and the distance tree.
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 */
local void send_all_trees(s, lcodes, dcodes, blcodes)
    deflate_state *s;
    int lcodes, dcodes, blcodes; /* number of codes for each tree */
{
    int rank;                    /* index in bl_order */

    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
            "too many codes");
    Tracev((stderr, "\nbl counts: "));
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
    send_bits(s, dcodes-1,   5);
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
    for (rank = 0; rank < blcodes; rank++) {
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
    }
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));

    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));

    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
}

/* ===========================================================================
 * Send a stored block
 */
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
    deflate_state *s;
    charf *buf;       /* input block */
    ulg stored_len;   /* length of input block */
    int last;         /* one if this is the last block for a file */
{
    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
    bi_windup(s);        /* align on byte boundary */
    put_short(s, (ush)stored_len);
    put_short(s, (ush)~stored_len);
    zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
    s->pending += stored_len;
#ifdef ZLIB_DEBUG
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
    s->compressed_len += (stored_len + 4) << 3;
    s->bits_sent += 2*16;
    s->bits_sent += stored_len<<3;
#endif
}

/* ===========================================================================
 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
 */
void ZLIB_INTERNAL _tr_flush_bits(s)
    deflate_state *s;
{
    bi_flush(s);
}

/* ===========================================================================
 * Send one empty static block to give enough lookahead for inflate.
 * This takes 10 bits, of which 7 may remain in the bit buffer.
 */
void ZLIB_INTERNAL _tr_align(s)
    deflate_state *s;
{
    send_bits(s, STATIC_TREES<<1, 3);
    send_code(s, END_BLOCK, static_ltree);
#ifdef ZLIB_DEBUG
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
#endif
    bi_flush(s);
}

/* ===========================================================================
 * Determine the best encoding for the current block: dynamic trees, static
 * trees or store, and write out the encoded block.
 */
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
    deflate_state *s;
    charf *buf;       /* input block, or NULL if too old */
    ulg stored_len;   /* length of input block */
    int last;         /* one if this is the last block for a file */
{
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
    int max_blindex = 0;  /* index of last bit length code of non zero freq */

    /* Build the Huffman trees unless a stored block is forced */
    if (s->level > 0) {

        /* Check if the file is binary or text */
        if (s->strm->data_type == Z_UNKNOWN)
            s->strm->data_type = detect_data_type(s);

        /* Construct the literal and distance trees */
        build_tree(s, (tree_desc *)(&(s->l_desc)));
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
                s->static_len));

        build_tree(s, (tree_desc *)(&(s->d_desc)));
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
                s->static_len));
        /* At this point, opt_len and static_len are the total bit lengths of
         * the compressed block data, excluding the tree representations.
         */

        /* Build the bit length tree for the above two trees, and get the index
         * in bl_order of the last bit length code to send.
         */
        max_blindex = build_bl_tree(s);

        /* Determine the best encoding. Compute the block lengths in bytes. */
        opt_lenb = (s->opt_len+3+7)>>3;
        static_lenb = (s->static_len+3+7)>>3;

        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
                s->last_lit));

        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;

    } else {
        Assert(buf != (char*)0, "lost buf");
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
    }

#ifdef FORCE_STORED
    if (buf != (char*)0) { /* force stored block */
#else
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
                       /* 4: two words for the lengths */
#endif
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
         * Otherwise we can't have processed more than WSIZE input bytes since
         * the last block flush, because compression would have been
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
         * transform a block into a stored block.
         */
        _tr_stored_block(s, buf, stored_len, last);

#ifdef FORCE_STATIC
    } else if (static_lenb >= 0) { /* force static trees */
#else
    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
#endif
        send_bits(s, (STATIC_TREES<<1)+last, 3);
        compress_block(s, (const ct_data *)static_ltree,
                       (const ct_data *)static_dtree);
#ifdef ZLIB_DEBUG
        s->compressed_len += 3 + s->static_len;
#endif
    } else {
        send_bits(s, (DYN_TREES<<1)+last, 3);
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
                       max_blindex+1);
        compress_block(s, (const ct_data *)s->dyn_ltree,
                       (const ct_data *)s->dyn_dtree);
#ifdef ZLIB_DEBUG
        s->compressed_len += 3 + s->opt_len;
#endif
    }
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
    /* The above check is made mod 2^32, for files larger than 512 MB
     * and uLong implemented on 32 bits.
     */
    init_block(s);

    if (last) {
        bi_windup(s);
#ifdef ZLIB_DEBUG
        s->compressed_len += 7;  /* align on byte boundary */
#endif
    }
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
           s->compressed_len-7*last));
}

/* ===========================================================================
 * Save the match info and tally the frequency counts. Return true if
 * the current block must be flushed.
 */
int ZLIB_INTERNAL _tr_tally (s, dist, lc)
    deflate_state *s;
    unsigned dist;  /* distance of matched string */
    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
{
    s->d_buf[s->last_lit] = (ush)dist;
    s->l_buf[s->last_lit++] = (uch)lc;
    if (dist == 0) {
        /* lc is the unmatched char */
        s->dyn_ltree[lc].Freq++;
    } else {
        s->matches++;
        /* Here, lc is the match length - MIN_MATCH */
        dist--;             /* dist = match distance - 1 */
        Assert((ush)dist < (ush)MAX_DIST(s) &&
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");

        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
        s->dyn_dtree[d_code(dist)].Freq++;
    }

#ifdef TRUNCATE_BLOCK
    /* Try to guess if it is profitable to stop the current block here */
    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
        /* Compute an upper bound for the compressed length */
        ulg out_length = (ulg)s->last_lit*8L;
        ulg in_length = (ulg)((long)s->strstart - s->block_start);
        int dcode;
        for (dcode = 0; dcode < D_CODES; dcode++) {
            out_length += (ulg)s->dyn_dtree[dcode].Freq *
                (5L+extra_dbits[dcode]);
        }
        out_length >>= 3;
        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
               s->last_lit, in_length, out_length,
               100L - out_length*100L/in_length));
        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
    }
#endif
    return (s->last_lit == s->lit_bufsize-1);
    /* We avoid equality with lit_bufsize because of wraparound at 64K
     * on 16 bit machines and because stored blocks are restricted to
     * 64K-1 bytes.
     */
}

/* ===========================================================================
 * Send the block data compressed using the given Huffman trees
 */
local void compress_block(s, ltree, dtree)
    deflate_state *s;
    const ct_data *ltree; /* literal tree */
    const ct_data *dtree; /* distance tree */
{
    unsigned dist;      /* distance of matched string */
    int lc;             /* match length or unmatched char (if dist == 0) */
    unsigned lx = 0;    /* running index in l_buf */
    unsigned code;      /* the code to send */
    int extra;          /* number of extra bits to send */

    if (s->last_lit != 0) do {
        dist = s->d_buf[lx];
        lc = s->l_buf[lx++];
        if (dist == 0) {
            send_code(s, lc, ltree); /* send a literal byte */
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
        } else {
            /* Here, lc is the match length - MIN_MATCH */
            code = _length_code[lc];
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
            extra = extra_lbits[code];
            if (extra != 0) {
                lc -= base_length[code];
                send_bits(s, lc, extra);       /* send the extra length bits */
            }
            dist--; /* dist is now the match distance - 1 */
            code = d_code(dist);
            Assert (code < D_CODES, "bad d_code");

            send_code(s, code, dtree);       /* send the distance code */
            extra = extra_dbits[code];
            if (extra != 0) {
                dist -= (unsigned)base_dist[code];
                send_bits(s, dist, extra);   /* send the extra distance bits */
            }
        } /* literal or match pair ? */

        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
               "pendingBuf overflow");

    } while (lx < s->last_lit);

    send_code(s, END_BLOCK, ltree);
}

/* ===========================================================================
 * Check if the data type is TEXT or BINARY, using the following algorithm:
 * - TEXT if the two conditions below are satisfied:
 *    a) There are no non-portable control characters belonging to the
 *       "black list" (0..6, 14..25, 28..31).
 *    b) There is at least one printable character belonging to the
 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
 * - BINARY otherwise.
 * - The following partially-portable control characters form a
 *   "gray list" that is ignored in this detection algorithm:
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
 * IN assertion: the fields Freq of dyn_ltree are set.
 */
local int detect_data_type(s)
    deflate_state *s;
{
    /* black_mask is the bit mask of black-listed bytes
     * set bits 0..6, 14..25, and 28..31
     * 0xf3ffc07f = binary 11110011111111111100000001111111
     */
    unsigned long black_mask = 0xf3ffc07fUL;
    int n;

    /* Check for non-textual ("black-listed") bytes. */
    for (n = 0; n <= 31; n++, black_mask >>= 1)
        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
            return Z_BINARY;

    /* Check for textual ("white-listed") bytes. */
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
            || s->dyn_ltree[13].Freq != 0)
        return Z_TEXT;
    for (n = 32; n < LITERALS; n++)
        if (s->dyn_ltree[n].Freq != 0)
            return Z_TEXT;

    /* There are no "black-listed" or "white-listed" bytes:
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
     */
    return Z_BINARY;
}

/* ===========================================================================
 * Reverse the first len bits of a code, using straightforward code (a faster
 * method would use a table)
 * IN assertion: 1 <= len <= 15
 */
local unsigned bi_reverse(code, len)
    unsigned code; /* the value to invert */
    int len;       /* its bit length */
{
    register unsigned res = 0;
    do {
        res |= code & 1;
        code >>= 1, res <<= 1;
    } while (--len > 0);
    return res >> 1;
}

/* ===========================================================================
 * Flush the bit buffer, keeping at most 7 bits in it.
 */
local void bi_flush(s)
    deflate_state *s;
{
    if (s->bi_valid == 16) {
        put_short(s, s->bi_buf);
        s->bi_buf = 0;
        s->bi_valid = 0;
    } else if (s->bi_valid >= 8) {
        put_byte(s, (Byte)s->bi_buf);
        s->bi_buf >>= 8;
        s->bi_valid -= 8;
    }
}

/* ===========================================================================
 * Flush the bit buffer and align the output on a byte boundary
 */
local void bi_windup(s)
    deflate_state *s;
{
    if (s->bi_valid > 8) {
        put_short(s, s->bi_buf);
    } else if (s->bi_valid > 0) {
        put_byte(s, (Byte)s->bi_buf);
    }
    s->bi_buf = 0;
    s->bi_valid = 0;
#ifdef ZLIB_DEBUG
    s->bits_sent = (s->bits_sent+7) & ~7;
#endif
}