1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
|
='#n127'>127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
|
; ---------------------------------------------------------------------------
; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
;
; LICENSE TERMS
;
; The free distribution and use of this software is allowed (with or without
; changes) provided that:
;
; 1. source code distributions include the above copyright notice, this
; list of conditions and the following disclaimer;
;
; 2. binary distributions include the above copyright notice, this list
; of conditions and the following disclaimer in their documentation;
;
; 3. the name of the copyright holder is not used to endorse products
; built using this software without specific written permission.
;
; DISCLAIMER
;
; This software is provided 'as is' with no explicit or implied warranties
; in respect of its properties, including, but not limited to, correctness
; and/or fitness for purpose.
; ---------------------------------------------------------------------------
; Issue 20/12/2007
;
; This code requires either ASM_X86_V2 or ASM_X86_V2C to be set in aesopt.h
; and the same define to be set here as well. If AES_V2C is set this file
; requires the C files aeskey.c and aestab.c for support.
; An AES implementation for x86 processors using the YASM (or NASM) assembler.
; This is a full assembler implementation covering encryption, decryption and
; key scheduling. It uses 2k bytes of tables but its encryption and decryption
; performance is very close to that obtained using large tables. Key schedule
; expansion is slower for both encryption and decryption but this is likely to
; be offset by the much smaller load that this version places on the processor
; cache. I acknowledge the contribution made by Daniel Bernstein to aspects of
; the design of the AES round function used here.
;
; This code provides the standard AES block size (128 bits, 16 bytes) and the
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
; interface as my C implementation. The ebx, esi, edi and ebp registers are
; preserved across calls but eax, ecx and edx and the artihmetic status flags
; are not. Although this is a full assembler implementation, it can be used
; in conjunction with my C code which provides faster key scheduling using
; large tables. In this case aeskey.c should be compiled with ASM_X86_V2C
; defined. It is also important that the defines below match those used in the
; C code. This code uses the VC++ register saving conentions; if it is used
; with another compiler, conventions for using and saving registers may need
; to be checked (and calling conventions). The YASM command line for the VC++
; custom build step is:
;
; yasm -Xvc -f win32 -D <Z> -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
;
; For the cryptlib build this is (pcg):
;
; yasm -Xvc -f win32 -D ASM_X86_V2C -o aescrypt2.obj aes_x86_v2.asm
;
; where <Z> is ASM_X86_V2 or ASM_X86_V2C. The calling intefaces are:
;
; AES_RETURN aes_encrypt(const unsigned char in_blk[],
; unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
;
; AES_RETURN aes_decrypt(const unsigned char in_blk[],
; unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
;
; AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
; const aes_encrypt_ctx cx[1]);
;
; AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
; const aes_decrypt_ctx cx[1]);
;
; AES_RETURN aes_encrypt_key(const unsigned char key[],
; unsigned int len, const aes_decrypt_ctx cx[1]);
;
; AES_RETURN aes_decrypt_key(const unsigned char key[],
; unsigned int len, const aes_decrypt_ctx cx[1]);
;
; where <NNN> is 128, 102 or 256. In the last two calls the length can be in
; either bits or bytes.
; The DLL interface must use the _stdcall convention in which the number
; of bytes of parameter space is added after an @ to the sutine's name.
; We must also remove our parameters from the stack before return (see
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.
;
; Adapted for TrueCrypt:
; - All tables generated at run-time
; - Adapted for 16-bit environment
;
CPU 386
USE16
SEGMENT _TEXT PUBLIC CLASS=CODE USE16
SEGMENT _DATA PUBLIC CLASS=DATA USE16
GROUP DGROUP _TEXT _DATA
extern _aes_dec_tab ; Aestab.c
extern _aes_enc_tab
; %define DLL_EXPORT
; The size of the code can be reduced by using functions for the encryption
; and decryption rounds in place of macro expansion
%define REDUCE_CODE_SIZE
; Comment in/out the following lines to obtain the desired subroutines. These
; selections MUST match those in the C header file aes.h
; %define AES_128 ; define if AES with 128 bit keys is needed
; %define AES_192 ; define if AES with 192 bit keys is needed
%define AES_256 ; define if AES with 256 bit keys is needed
; %define AES_VAR ; define if a variable key size is needed
%define ENCRYPTION ; define if encryption is needed
%define DECRYPTION ; define if decryption is needed
; %define AES_REV_DKS ; define if key decryption schedule is reversed
%ifndef ASM_X86_V2C
%define ENCRYPTION_KEY_SCHEDULE ; define if encryption key expansion is needed
%define DECRYPTION_KEY_SCHEDULE ; define if decryption key expansion is needed
%endif
; The encryption key schedule has the following in memory layout where N is the
; number of rounds (10, 12 or 14):
;
; lo: | input key (round 0) | ; each round is four 32-bit words
; | encryption round 1 |
; | encryption round 2 |
; ....
; | encryption round N-1 |
; hi: | encryption round N |
;
; The decryption key schedule is normally set up so that it has the same
; layout as above by actually reversing the order of the encryption key
; schedule in memory (this happens when AES_REV_DKS is set):
;
; lo: | decryption round 0 | = | encryption round N |
; | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ]
; | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ]
; .... ....
; | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ]
; hi: | decryption round N | = | input key (round 0) |
;
; with rounds except the first and last modified using inv_mix_column()
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
; encryption so that it has to be accessed in reverse when used for
; decryption (although the inverse mix column modifications are done)
;
; lo: | decryption round 0 | = | input key (round 0) |
; | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ]
; | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ]
; .... ....
; | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
; hi: | decryption round N | = | encryption round N |
;
; This layout is faster when the assembler key scheduling provided here
; is used.
;
; End of user defines
%ifdef AES_VAR
%ifndef AES_128
%define AES_128
%endif
%ifndef AES_192
%define AES_192
%endif
%ifndef AES_256
%define AES_256
%endif
%endif
%ifdef AES_VAR
%define KS_LENGTH 60
%elifdef AES_256
%define KS_LENGTH 60
%elifdef AES_192
%define KS_LENGTH 52
%else
%define KS_LENGTH 44
%endif
; These macros implement stack based local variables
%macro save 2
mov [esp+4*%1],%2
%endmacro
%macro restore 2
mov %1,[esp+4*%2]
%endmacro
%ifdef REDUCE_CODE_SIZE
%macro mf_call 1
call %1
%endmacro
%else
%macro mf_call 1
%1
%endmacro
%endif
; the DLL has to implement the _stdcall calling interface on return
; In this case we have to take our parameters (3 4-byte pointers)
; off the stack
%define parms 12
%macro do_name 1-2 parms
%ifndef DLL_EXPORT
global %1
%1:
%else
global %1@%2
export %1@%2
%1@%2:
%endif
%endmacro
%macro do_call 1-2 parms
%ifndef DLL_EXPORT
call %1
add esp,%2
%else
call %1@%2
%endif
%endmacro
%macro do_exit 0-1 parms
%ifdef DLL_EXPORT
ret %1
%else
ret
%endif
%endmacro
; finite field multiplies by {02}, {04} and {08}
%define f2(x) ((x<<1)^(((x>>7)&1)*0x11b))
%define f4(x) ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
%define f8(x) ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))
; finite field multiplies required in table generation
%define f3(x) (f2(x) ^ x)
%define f9(x) (f8(x) ^ x)
%define fb(x) (f8(x) ^ f2(x) ^ x)
%define fd(x) (f8(x) ^ f4(x) ^ x)
%define fe(x) (f8(x) ^ f4(x) ^ f2(x))
%define etab_0(x) [_aes_enc_tab+4+8*x]
%define etab_1(x) [_aes_enc_tab+3+8*x]
%define etab_2(x) [_aes_enc_tab+2+8*x]
%define etab_3(x) [_aes_enc_tab+1+8*x]
%define etab_b(x) byte [_aes_enc_tab+1+8*x] ; used with movzx for 0x000000xx
%define etab_w(x) word [_aes_enc_tab+8*x] ; used with movzx for 0x0000xx00
%define btab_0(x) [_aes_enc_tab+6+8*x]
%define btab_1(x) [_aes_enc_tab+5+8*x]
%define btab_2(x) [_aes_enc_tab+4+8*x]
%define btab_3(x) [_aes_enc_tab+3+8*x]
; ROUND FUNCTION. Build column[2] on ESI and column[3] on EDI that have the
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
;
; Input:
;
; EAX column[0]
; EBX column[1]
; ECX column[2]
; EDX column[3]
; ESI column key[round][2]
; EDI column key[round][3]
; EBP scratch
;
; Output:
;
; EBP column[0] unkeyed
; EBX column[1] unkeyed
; ESI column[2] keyed
; EDI column[3] keyed
; EAX scratch
; ECX scratch
; EDX scratch
%macro rnd_fun 2
rol ebx,16
%1 esi, cl, 0, ebp
%1 esi, dh, 1, ebp
%1 esi, bh, 3, ebp
%1 edi, dl, 0, ebp
%1 edi, ah, 1, ebp
%1 edi, bl, 2, ebp
%2 ebp, al, 0, ebp
shr ebx,16
and eax,0xffff0000
or eax,ebx
shr edx,16
%1 ebp, ah, 1, ebx
%1 ebp, dh, 3, ebx
%2 ebx, dl, 2, ebx
%1 ebx, ch, 1, edx
%1 ebx, al, 0, edx
shr eax,16
shr ecx,16
%1 ebp, cl, 2, edx
%1 edi, ch, 3, edx
%1 esi, al, 2, edx
%1 ebx, ah, 3, edx
%endmacro
; Basic MOV and XOR Operations for normal rounds
%macro nr_xor 4
movzx %4,%2
xor %1,etab_%3(%4)
%endmacro
%macro nr_mov 4
movzx %4,%2
mov %1,etab_%3(%4)
%endmacro
; Basic MOV and XOR Operations for last round
%if 1
%macro lr_xor 4
movzx %4,%2
movzx %4,etab_b(%4)
%if %3 != 0
shl %4,8*%3
%endif
xor %1,%4
%endmacro
%macro lr_mov 4
movzx %4,%2
movzx %1,etab_b(%4)
%if %3 != 0
shl %1,8*%3
%endif
%endmacro
%else ; less effective but worth leaving as an option
%macro lr_xor 4
movzx %4,%2
mov %4,btab_%3(%4)
and %4,0x000000ff << 8 * %3
xor %1,%4
%endmacro
%macro lr_mov 4
movzx %4,%2
mov %1,btab_%3(%4)
and %1,0x000000ff << 8 * %3
%endmacro
%endif
; Apply S-Box to the 4 bytes in a 32-bit word and rotate byte positions
%ifdef REDUCE_CODE_SIZE
l3s_col:
movzx ecx,al ; in eax
movzx ecx, etab_b(ecx) ; out eax
xor edx,ecx ; scratch ecx,edx
movzx ecx,ah
movzx ecx, etab_b(ecx)
shl ecx,8
xor edx,ecx
shr eax,16
movzx ecx,al
movzx ecx, etab_b(ecx)
shl ecx,16
xor edx,ecx
movzx ecx,ah
movzx ecx, etab_b(ecx)
shl ecx,24
xor edx,ecx
mov eax,edx
ret
%else
%macro l3s_col 0
movzx ecx,al ; in eax
movzx ecx, etab_b(ecx) ; out eax
xor edx,ecx ; scratch ecx,edx
movzx ecx,ah
movzx ecx, etab_b(ecx)
shl ecx,8
xor edx,ecx
shr eax,16
movzx ecx,al
movzx ecx, etab_b(ecx)
shl ecx,16
xor edx,ecx
movzx ecx,ah
movzx ecx, etab_b(ecx)
shl ecx,24
xor edx,ecx
mov eax,edx
%endmacro
%endif
; offsets to parameters
in_blk equ 2 ; input byte array address parameter
out_blk equ 4 ; output byte array address parameter
ctx equ 6 ; AES context structure
stk_spc equ 20 ; stack space
%ifdef ENCRYPTION
; %define ENCRYPTION_TABLE
%ifdef REDUCE_CODE_SIZE
enc_round:
sub sp, 2
add ebp,16
save 1,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
rnd_fun nr_xor, nr_mov
mov eax,ebp
mov ecx,esi
mov edx,edi
restore ebp,1
xor eax,[ebp]
xor ebx,[ebp+4]
add sp, 2
ret
%else
%macro enc_round 0
add ebp,16
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
rnd_fun nr_xor, nr_mov
mov eax,ebp
mov ecx,esi
mov edx,edi
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
%endif
%macro enc_last_round 0
add ebp,16
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
rnd_fun lr_xor, lr_mov
mov eax,ebp
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
section _TEXT
; AES Encryption Subroutine
do_name _aes_encrypt,12
mov ax, sp
movzx esp, ax
sub esp,stk_spc
mov [esp+16],ebp
mov [esp+12],ebx
mov [esp+ 8],esi
mov [esp+ 4],edi
movzx esi,word [esp+in_blk+stk_spc] ; input pointer
mov eax,[esi ]
mov ebx,[esi+ 4]
mov ecx,[esi+ 8]
mov edx,[esi+12]
movzx ebp,word [esp+ctx+stk_spc] ; key pointer
movzx edi,byte [ebp+4*KS_LENGTH]
xor eax,[ebp ]
xor ebx,[ebp+ 4]
xor ecx,[ebp+ 8]
xor edx,[ebp+12]
; determine the number of rounds
%ifndef AES_256
cmp edi,10*16
je .3
cmp edi,12*16
je .2
cmp edi,14*16
je .1
mov eax,-1
jmp .5
%endif
.1: mf_call enc_round
mf_call enc_round
.2: mf_call enc_round
mf_call enc_round
.3: mf_call enc_round
mf_call enc_round
mf_call enc_round
mf_call enc_round
mf_call enc_round
mf_call enc_round
mf_call enc_round
mf_call enc_round
mf_call enc_round
enc_last_round
movzx edx,word [esp+out_blk+stk_spc]
mov [edx],eax
mov [edx+4],ebx
mov [edx+8],esi
mov [edx+12],edi
xor eax,eax
.5: mov ebp,[esp+16]
mov ebx,[esp+12]
mov esi,[esp+ 8]
mov edi,[esp+ 4]
add esp,stk_spc
do_exit 12
%endif
%macro f_key 2
push ecx
push edx
mov edx,esi
ror eax,8
mf_call l3s_col
mov esi,eax
pop edx
pop ecx
xor esi,rc_val
mov [ebp+%1*%2],esi
xor edi,esi
mov [ebp+%1*%2+4],edi
xor ecx,edi
mov [ebp+%1*%2+8],ecx
xor edx,ecx
mov [ebp+%1*%2+12],edx
mov eax,edx
%if %2 == 24
%if %1 < 7
xor eax,[ebp+%1*%2+16-%2]
mov [ebp+%1*%2+16],eax
xor eax,[ebp+%1*%2+20-%2]
mov [ebp+%1*%2+20],eax
%endif
%elif %2 == 32
%if %1 < 6
push ecx
push edx
mov edx,[ebp+%1*%2+16-%2]
mf_call l3s_col
pop edx
pop ecx
mov [ebp+%1*%2+16],eax
xor eax,[ebp+%1*%2+20-%2]
mov [ebp+%1*%2+20],eax
xor eax,[ebp+%1*%2+24-%2]
mov [ebp+%1*%2+24],eax
xor eax,[ebp+%1*%2+28-%2]
mov [ebp+%1*%2+28],eax
%endif
%endif
%assign rc_val f2(rc_val)
%endmacro
%ifdef ENCRYPTION_KEY_SCHEDULE
%ifdef AES_128
%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif
%assign rc_val 1
do_name _aes_encrypt_key128,8
push ebp
push ebx
push esi
push edi
mov ebp,[esp+24]
mov [ebp+4*KS_LENGTH],dword 10*16
mov ebx,[esp+20]
mov esi,[ebx]
mov [ebp],esi
mov edi,[ebx+4]
mov [ebp+4],edi
mov ecx,[ebx+8]
mov [ebp+8],ecx
mov edx,[ebx+12]
mov [ebp+12],edx
add ebp,16
mov eax,edx
f_key 0,16 ; 11 * 4 = 44 unsigned longs
f_key 1,16 ; 4 + 4 * 10 generated = 44
f_key 2,16
f_key 3,16
f_key 4,16
f_key 5,16
f_key 6,16
f_key 7,16
f_key 8,16
f_key 9,16
pop edi
pop esi
pop ebx
pop ebp
xor eax,eax
do_exit 8
%endif
%ifdef AES_192
%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif
%assign rc_val 1
do_name _aes_encrypt_key192,8
push ebp
push ebx
push esi
push edi
mov ebp,[esp+24]
mov [ebp+4*KS_LENGTH],dword 12 * 16
mov ebx,[esp+20]
mov esi,[ebx]
mov [ebp],esi
mov edi,[ebx+4]
mov [ebp+4],edi
mov ecx,[ebx+8]
mov [ebp+8],ecx
mov edx,[ebx+12]
mov [ebp+12],edx
mov eax,[ebx+16]
mov [ebp+16],eax
mov eax,[ebx+20]
mov [ebp+20],eax
add ebp,24
f_key 0,24 ; 13 * 4 = 52 unsigned longs
f_key 1,24 ; 6 + 6 * 8 generated = 54
f_key 2,24
f_key 3,24
f_key 4,24
f_key 5,24
f_key 6,24
f_key 7,24
pop edi
pop esi
pop ebx
pop ebp
xor eax,eax
do_exit 8
%endif
%ifdef AES_256
%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif
%assign rc_val 1
do_name _aes_encrypt_key256,8
mov ax, sp
movzx esp, ax
push ebp
push ebx
push esi
push edi
movzx ebp, word [esp+20] ; ks
mov [ebp+4*KS_LENGTH],dword 14 * 16
movzx ebx, word [esp+18] ; key
mov esi,[ebx]
mov [ebp],esi
mov edi,[ebx+4]
mov [ebp+4],edi
mov ecx,[ebx+8]
mov [ebp+8],ecx
mov edx,[ebx+12]
mov [ebp+12],edx
mov eax,[ebx+16]
mov [ebp+16],eax
mov eax,[ebx+20]
mov [ebp+20],eax
mov eax,[ebx+24]
mov [ebp+24],eax
mov eax,[ebx+28]
mov [ebp+28],eax
add ebp,32
f_key 0,32 ; 15 * 4 = 60 unsigned longs
f_key 1,32 ; 8 + 8 * 7 generated = 64
f_key 2,32
f_key 3,32
f_key 4,32
f_key 5,32
f_key 6,32
pop edi
pop esi
pop ebx
pop ebp
xor eax,eax
do_exit 8
%endif
%ifdef AES_VAR
%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif
do_name _aes_encrypt_key,12
mov ecx,[esp+4]
mov eax,[esp+8]
mov edx,[esp+12]
push edx
push ecx
cmp eax,16
je .1
cmp eax,128
je .1
cmp eax,24
je .2
cmp eax,192
je .2
cmp eax,32
je .3
cmp eax,256
je .3
mov eax,-1
add esp,8
do_exit 12
.1: do_call _aes_encrypt_key128,8
do_exit 12
.2: do_call _aes_encrypt_key192,8
do_exit 12
.3: do_call _aes_encrypt_key256,8
do_exit 12
%endif
%endif
%ifdef ENCRYPTION_TABLE
; S-box data - 256 entries
section _DATA
%define u8(x) 0, x, x, f3(x), f2(x), x, x, f3(x)
_aes_enc_tab:
db u8(0x63),u8(0x7c),u8(0x77),u8(0x7b),u8(0xf2),u8(0x6b),u8(0x6f),u8(0xc5)
db u8(0x30),u8(0x01),u8(0x67),u8(0x2b),u8(0xfe),u8(0xd7),u8(0xab),u8(0x76)
db u8(0xca),u8(0x82),u8(0xc9),u8(0x7d),u8(0xfa),u8(0x59),u8(0x47),u8(0xf0)
db u8(0xad),u8(0xd4),u8(0xa2),u8(0xaf),u8(0x9c),u8(0xa4),u8(0x72),u8(0xc0)
db u8(0xb7),u8(0xfd),u8(0x93),u8(0x26),u8(0x36),u8(0x3f),u8(0xf7),u8(0xcc)
db u8(0x34),u8(0xa5),u8(0xe5),u8(0xf1),u8(0x71),u8(0xd8),u8(0x31),u8(0x15)
db u8(0x04),u8(0xc7),u8(0x23),u8(0xc3),u8(0x18),u8(0x96),u8(0x05),u8(0x9a)
db u8(0x07),u8(0x12),u8(0x80),u8(0xe2),u8(0xeb),u8(0x27),u8(0xb2),u8(0x75)
db u8(0x09),u8(0x83),u8(0x2c),u8(0x1a),u8(0x1b),u8(0x6e),u8(0x5a),u8(0xa0)
db u8(0x52),u8(0x3b),u8(0xd6),u8(0xb3),u8(0x29),u8(0xe3),u8(0x2f),u8(0x84)
db u8(0x53),u8(0xd1),u8(0x00),u8(0xed),u8(0x20),u8(0xfc),u8(0xb1),u8(0x5b)
db u8(0x6a),u8(0xcb),u8(0xbe),u8(0x39),u8(0x4a),u8(0x4c),u8(0x58),u8(0xcf)
db u8(0xd0),u8(0xef),u8(0xaa),u8(0xfb),u8(0x43),u8(0x4d),u8(0x33),u8(0x85)
db u8(0x45),u8(0xf9),u8(0x02),u8(0x7f),u8(0x50),u8(0x3c),u8(0x9f),u8(0xa8)
db u8(0x51),u8(0xa3),u8(0x40),u8(0x8f),u8(0x92),u8(0x9d),u8(0x38),u8(0xf5)
db u8(0xbc),u8(0xb6),u8(0xda),u8(0x21),u8(0x10),u8(0xff),u8(0xf3),u8(0xd2)
db u8(0xcd),u8(0x0c),u8(0x13),u8(0xec),u8(0x5f),u8(0x97),u8(0x44),u8(0x17)
db u8(0xc4),u8(0xa7),u8(0x7e),u8(0x3d),u8(0x64),u8(0x5d),u8(0x19),u8(0x73)
db u8(0x60),u8(0x81),u8(0x4f),u8(0xdc),u8(0x22),u8(0x2a),u8(0x90),u8(0x88)
db u8(0x46),u8(0xee),u8(0xb8),u8(0x14),u8(0xde),u8(0x5e),u8(0x0b),u8(0xdb)
db u8(0xe0),u8(0x32),u8(0x3a),u8(0x0a),u8(0x49),u8(0x06),u8(0x24),u8(0x5c)
db u8(0xc2),u8(0xd3),u8(0xac),u8(0x62),u8(0x91),u8(0x95),u8(0xe4),u8(0x79)
db u8(0xe7),u8(0xc8),u8(0x37),u8(0x6d),u8(0x8d),u8(0xd5),u8(0x4e),u8(0xa9)
db u8(0x6c),u8(0x56),u8(0xf4),u8(0xea),u8(0x65),u8(0x7a),u8(0xae),u8(0x08)
db u8(0xba),u8(0x78),u8(0x25),u8(0x2e),u8(0x1c),u8(0xa6),u8(0xb4),u8(0xc6)
db u8(0xe8),u8(0xdd),u8(0x74),u8(0x1f),u8(0x4b),u8(0xbd),u8(0x8b),u8(0x8a)
db u8(0x70),u8(0x3e),u8(0xb5),u8(0x66),u8(0x48),u8(0x03),u8(0xf6),u8(0x0e)
db u8(0x61),u8(0x35),u8(0x57),u8(0xb9),u8(0x86),u8(0xc1),u8(0x1d),u8(0x9e)
db u8(0xe1),u8(0xf8),u8(0x98),u8(0x11),u8(0x69),u8(0xd9),u8(0x8e),u8(0x94)
db u8(0x9b),u8(0x1e),u8(0x87),u8(0xe9),u8(0xce),u8(0x55),u8(0x28),u8(0xdf)
db u8(0x8c),u8(0xa1),u8(0x89),u8(0x0d),u8(0xbf),u8(0xe6),u8(0x42),u8(0x68)
db u8(0x41),u8(0x99),u8(0x2d),u8(0x0f),u8(0xb0),u8(0x54),u8(0xbb),u8(0x16)
%endif
%ifdef DECRYPTION
; %define DECRYPTION_TABLE
%define dtab_0(x) [_aes_dec_tab+ 8*x]
%define dtab_1(x) [_aes_dec_tab+3+8*x]
%define dtab_2(x) [_aes_dec_tab+2+8*x]
%define dtab_3(x) [_aes_dec_tab+1+8*x]
%define dtab_x(x) byte [_aes_dec_tab+7+8*x]
%macro irn_fun 2
rol eax,16
%1 esi, cl, 0, ebp
%1 esi, bh, 1, ebp
%1 esi, al, 2, ebp
%1 edi, dl, 0, ebp
%1 edi, ch, 1, ebp
%1 edi, ah, 3, ebp
%2 ebp, bl, 0, ebp
shr eax,16
and ebx,0xffff0000
or ebx,eax
shr ecx,16
%1 ebp, bh, 1, eax
%1 ebp, ch, 3, eax
%2 eax, cl, 2, ecx
%1 eax, bl, 0, ecx
%1 eax, dh, 1, ecx
shr ebx,16
shr edx,16
%1 esi, dh, 3, ecx
%1 ebp, dl, 2, ecx
%1 eax, bh, 3, ecx
%1 edi, bl, 2, ecx
%endmacro
; Basic MOV and XOR Operations for normal rounds
%macro ni_xor 4
movzx %4,%2
xor %1,dtab_%3(%4)
%endmacro
%macro ni_mov 4
movzx %4,%2
mov %1,dtab_%3(%4)
%endmacro
; Basic MOV and XOR Operations for last round
%macro li_xor 4
movzx %4,%2
movzx %4,dtab_x(%4)
%if %3 != 0
shl %4,8*%3
%endif
xor %1,%4
%endmacro
%macro li_mov 4
movzx %4,%2
movzx %1,dtab_x(%4)
%if %3 != 0
shl %1,8*%3
%endif
%endmacro
%ifdef REDUCE_CODE_SIZE
dec_round:
sub sp, 2
%ifdef AES_REV_DKS
add ebp,16
%else
sub ebp,16
%endif
save 1,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
irn_fun ni_xor, ni_mov
mov ebx,ebp
mov ecx,esi
mov edx,edi
restore ebp,1
xor eax,[ebp]
xor ebx,[ebp+4]
add sp, 2
ret
%else
%macro dec_round 0
%ifdef AES_REV_DKS
add ebp,16
%else
sub ebp,16
%endif
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
irn_fun ni_xor, ni_mov
mov ebx,ebp
mov ecx,esi
mov edx,edi
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
%endif
%macro dec_last_round 0
%ifdef AES_REV_DKS
add ebp,16
%else
sub ebp,16
%endif
save 0,ebp
mov esi,[ebp+8]
mov edi,[ebp+12]
irn_fun li_xor, li_mov
mov ebx,ebp
restore ebp,0
xor eax,[ebp]
xor ebx,[ebp+4]
%endmacro
section _TEXT
; AES Decryption Subroutine
do_name _aes_decrypt,12
mov ax, sp
movzx esp, ax
sub esp,stk_spc
mov [esp+16],ebp
mov [esp+12],ebx
mov [esp+ 8],esi
mov [esp+ 4],edi
; input four columns and xor in first round key
movzx esi,word [esp+in_blk+stk_spc] ; input pointer
mov eax,[esi ]
mov ebx,[esi+ 4]
mov ecx,[esi+ 8]
mov edx,[esi+12]
lea esi,[esi+16]
movzx ebp, word [esp+ctx+stk_spc] ; key pointer
movzx edi,byte[ebp+4*KS_LENGTH]
%ifndef AES_REV_DKS ; if decryption key schedule is not reversed
lea ebp,[ebp+edi] ; we have to access it from the top down
%endif
xor eax,[ebp ] ; key schedule
xor ebx,[ebp+ 4]
xor ecx,[ebp+ 8]
xor edx,[ebp+12]
; determine the number of rounds
%ifndef AES_256
cmp edi,10*16
je .3
cmp edi,12*16
je .2
cmp edi,14*16
je .1
mov eax,-1
jmp .5
%endif
.1: mf_call dec_round
mf_call dec_round
.2: mf_call dec_round
mf_call dec_round
.3: mf_call dec_round
mf_call dec_round
mf_call dec_round
mf_call dec_round
mf_call dec_round
mf_call dec_round
mf_call dec_round
mf_call dec_round
mf_call dec_round
dec_last_round
; move final values to the output array.
movzx ebp,word [esp+out_blk+stk_spc]
mov [ebp],eax
mov [ebp+4],ebx
mov [ebp+8],esi
mov [ebp+12],edi
xor eax,eax
.5: mov ebp,[esp+16]
mov ebx,[esp+12]
mov esi,[esp+ 8]
mov edi,[esp+ 4]
add esp,stk_spc
do_exit 12
%endif
%ifdef REDUCE_CODE_SIZE
inv_mix_col:
movzx ecx,dl ; input eax, edx
movzx ecx,etab_b(ecx) ; output eax
mov eax,dtab_0(ecx) ; used ecx
movzx ecx,dh
shr edx,16
movzx ecx,etab_b(ecx)
xor eax,dtab_1(ecx)
movzx ecx,dl
movzx ecx,etab_b(ecx)
xor eax,dtab_2(ecx)
movzx ecx,dh
movzx ecx,etab_b(ecx)
xor eax,dtab_3(ecx)
ret
%else
%macro inv_mix_col 0
movzx ecx,dl ; input eax, edx
movzx ecx,etab_b(ecx) ; output eax
mov eax,dtab_0(ecx) ; used ecx
movzx ecx,dh
shr edx,16
movzx ecx,etab_b(ecx)
xor eax,dtab_1(ecx)
movzx ecx,dl
movzx ecx,etab_b(ecx)
xor eax,dtab_2(ecx)
movzx ecx,dh
movzx ecx,etab_b(ecx)
xor eax,dtab_3(ecx)
%endmacro
%endif
%ifdef DECRYPTION_KEY_SCHEDULE
%ifdef AES_128
%ifndef DECRYPTION_TABLE
; %define DECRYPTION_TABLE
%endif
do_name _aes_decrypt_key128,8
push ebp
push ebx
push esi
push edi
mov eax,[esp+24] ; context
mov edx,[esp+20] ; key
push eax
push edx
do_call _aes_encrypt_key128,8 ; generate expanded encryption key
mov eax,10*16
mov esi,[esp+24] ; pointer to first round key
lea edi,[esi+eax] ; pointer to last round key
add esi,32
; the inverse mix column transformation
mov edx,[esi-16] ; needs to be applied to all round keys
mf_call inv_mix_col ; except first and last. Hence start by
mov [esi-16],eax ; transforming the four sub-keys in the
mov edx,[esi-12] ; second round key
mf_call inv_mix_col
mov [esi-12],eax ; transformations for subsequent rounds
mov edx,[esi-8] ; can then be made more efficient by
mf_call inv_mix_col ; noting that for three of the four sub-keys
mov [esi-8],eax ; in the encryption round key ek[r]:
mov edx,[esi-4] ;
mf_call inv_mix_col ; ek[r][n] = ek[r][n-1] ^ ek[r-1][n]
mov [esi-4],eax ;
; where n is 1..3. Hence the corresponding
.0: mov edx,[esi] ; subkeys in the decryption round key dk[r]
mf_call inv_mix_col ; also obey since inv_mix_col is linear in
mov [esi],eax ; GF(256):
xor eax,[esi-12] ;
mov [esi+4],eax ; dk[r][n] = dk[r][n-1] ^ dk[r-1][n]
xor eax,[esi-8] ;
mov [esi+8],eax ; So we only need one inverse mix column
xor eax,[esi-4] ; operation (n = 0) for each four word cycle
mov [esi+12],eax ; in the expanded key.
add esi,16
cmp edi,esi
jg .0
jmp dec_end
%endif
%ifdef AES_192
%ifndef DECRYPTION_TABLE
; %define DECRYPTION_TABLE
%endif
do_name _aes_decrypt_key192,8
push ebp
push ebx
push esi
push edi
mov eax,[esp+24] ; context
mov edx,[esp+20] ; key
push eax
push edx
do_call _aes_encrypt_key192,8 ; generate expanded encryption key
mov eax,12*16
mov esi,[esp+24] ; first round key
lea edi,[esi+eax] ; last round key
add esi,48 ; the first 6 words are the key, of
; which the top 2 words are part of
mov edx,[esi-32] ; the second round key and hence
mf_call inv_mix_col ; need to be modified. After this we
mov [esi-32],eax ; need to do a further six values prior
mov edx,[esi-28] ; to using a more efficient technique
mf_call inv_mix_col ; based on:
mov [esi-28],eax ;
; dk[r][n] = dk[r][n-1] ^ dk[r-1][n]
mov edx,[esi-24] ;
mf_call inv_mix_col ; for n = 1 .. 5 where the key expansion
mov [esi-24],eax ; cycle is now 6 words long
mov edx,[esi-20]
mf_call inv_mix_col
mov [esi-20],eax
mov edx,[esi-16]
mf_call inv_mix_col
mov [esi-16],eax
mov edx,[esi-12]
mf_call inv_mix_col
mov [esi-12],eax
mov edx,[esi-8]
mf_call inv_mix_col
mov [esi-8],eax
mov edx,[esi-4]
mf_call inv_mix_col
mov [esi-4],eax
.0: mov edx,[esi] ; the expanded key is 13 * 4 = 44 32-bit words
mf_call inv_mix_col ; of which 11 * 4 = 44 have to be modified
mov [esi],eax ; using inv_mix_col. We have already done 8
xor eax,[esi-20] ; of these so 36 are left - hence we need
mov [esi+4],eax ; exactly 6 loops of six here
xor eax,[esi-16]
mov [esi+8],eax
xor eax,[esi-12]
mov [esi+12],eax
xor eax,[esi-8]
mov [esi+16],eax
xor eax,[esi-4]
mov [esi+20],eax
add esi,24
cmp edi,esi
jg .0
jmp dec_end
%endif
%ifdef AES_256
%ifndef DECRYPTION_TABLE
; %define DECRYPTION_TABLE
%endif
do_name _aes_decrypt_key256,8
mov ax, sp
movzx esp, ax
push ebp
push ebx
push esi
push edi
movzx eax, word [esp+20] ; ks
movzx edx, word [esp+18] ; key
push ax
push dx
do_call _aes_encrypt_key256,4 ; generate expanded encryption key
mov eax,14*16
movzx esi, word [esp+20] ; ks
lea edi,[esi+eax]
add esi,64
mov edx,[esi-48] ; the primary key is 8 words, of which
mf_call inv_mix_col ; the top four require modification
mov [esi-48],eax
mov edx,[esi-44]
mf_call inv_mix_col
mov [esi-44],eax
mov edx,[esi-40]
mf_call inv_mix_col
mov [esi-40],eax
mov edx,[esi-36]
mf_call inv_mix_col
mov [esi-36],eax
mov edx,[esi-32] ; the encryption key expansion cycle is
mf_call inv_mix_col ; now eight words long so we need to
mov [esi-32],eax ; start by doing one complete block
mov edx,[esi-28]
mf_call inv_mix_col
mov [esi-28],eax
mov edx,[esi-24]
mf_call inv_mix_col
mov [esi-24],eax
mov edx,[esi-20]
mf_call inv_mix_col
mov [esi-20],eax
mov edx,[esi-16]
mf_call inv_mix_col
mov [esi-16],eax
mov edx,[esi-12]
mf_call inv_mix_col
mov [esi-12],eax
mov edx,[esi-8]
mf_call inv_mix_col
mov [esi-8],eax
mov edx,[esi-4]
mf_call inv_mix_col
mov [esi-4],eax
.0: mov edx,[esi] ; we can now speed up the remaining
mf_call inv_mix_col ; rounds by using the technique
mov [esi],eax ; outlined earlier. But note that
xor eax,[esi-28] ; there is one extra inverse mix
mov [esi+4],eax ; column operation as the 256 bit
xor eax,[esi-24] ; key has an extra non-linear step
mov [esi+8],eax ; for the midway element.
xor eax,[esi-20]
mov [esi+12],eax ; the expanded key is 15 * 4 = 60
mov edx,[esi+16] ; 32-bit words of which 52 need to
mf_call inv_mix_col ; be modified. We have already done
mov [esi+16],eax ; 12 so 40 are left - which means
xor eax,[esi-12] ; that we need exactly 5 loops of 8
mov [esi+20],eax
xor eax,[esi-8]
mov [esi+24],eax
xor eax,[esi-4]
mov [esi+28],eax
add esi,32
cmp edi,esi
jg .0
%endif
dec_end:
%ifdef AES_REV_DKS
movzx esi,word [esp+20] ; this reverses the order of the
.1: mov eax,[esi] ; round keys if required
mov ebx,[esi+4]
mov ebp,[edi]
mov edx,[edi+4]
mov [esi],ebp
mov [esi+4],edx
mov [edi],eax
mov [edi+4],ebx
mov eax,[esi+8]
mov ebx,[esi+12]
mov ebp,[edi+8]
mov edx,[edi+12]
mov [esi+8],ebp
mov [esi+12],edx
mov [edi+8],eax
mov [edi+12],ebx
add esi,16
sub edi,16
cmp edi,esi
jg .1
%endif
pop edi
pop esi
pop ebx
pop ebp
xor eax,eax
do_exit 8
%ifdef AES_VAR
do_name _aes_decrypt_key,12
mov ecx,[esp+4]
mov eax,[esp+8]
mov edx,[esp+12]
push edx
push ecx
cmp eax,16
je .1
cmp eax,128
je .1
cmp eax,24
je .2
cmp eax,192
je .2
cmp eax,32
je .3
cmp eax,256
je .3
mov eax,-1
add esp,8
do_exit 12
.1: do_call _aes_decrypt_key128,8
do_exit 12
.2: do_call _aes_decrypt_key192,8
do_exit 12
.3: do_call _aes_decrypt_key256,8
do_exit 12
%endif
%endif
%ifdef DECRYPTION_TABLE
; Inverse S-box data - 256 entries
section _DATA
%define v8(x) fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x
_aes_dec_tab:
db v8(0x52),v8(0x09),v8(0x6a),v8(0xd5),v8(0x30),v8(0x36),v8(0xa5),v8(0x38)
db v8(0xbf),v8(0x40),v8(0xa3),v8(0x9e),v8(0x81),v8(0xf3),v8(0xd7),v8(0xfb)
db v8(0x7c),v8(0xe3),v8(0x39),v8(0x82),v8(0x9b),v8(0x2f),v8(0xff),v8(0x87)
db v8(0x34),v8(0x8e),v8(0x43),v8(0x44),v8(0xc4),v8(0xde),v8(0xe9),v8(0xcb)
db v8(0x54),v8(0x7b),v8(0x94),v8(0x32),v8(0xa6),v8(0xc2),v8(0x23),v8(0x3d)
db v8(0xee),v8(0x4c),v8(0x95),v8(0x0b),v8(0x42),v8(0xfa),v8(0xc3),v8(0x4e)
db v8(0x08),v8(0x2e),v8(0xa1),v8(0x66),v8(0x28),v8(0xd9),v8(0x24),v8(0xb2)
db v8(0x76),v8(0x5b),v8(0xa2),v8(0x49),v8(0x6d),v8(0x8b),v8(0xd1),v8(0x25)
db v8(0x72),v8(0xf8),v8(0xf6),v8(0x64),v8(0x86),v8(0x68),v8(0x98),v8(0x16)
db v8(0xd4),v8(0xa4),v8(0x5c),v8(0xcc),v8(0x5d),v8(0x65),v8(0xb6),v8(0x92)
db v8(0x6c),v8(0x70),v8(0x48),v8(0x50),v8(0xfd),v8(0xed),v8(0xb9),v8(0xda)
db v8(0x5e),v8(0x15),v8(0x46),v8(0x57),v8(0xa7),v8(0x8d),v8(0x9d),v8(0x84)
db v8(0x90),v8(0xd8),v8(0xab),v8(0x00),v8(0x8c),v8(0xbc),v8(0xd3),v8(0x0a)
db v8(0xf7),v8(0xe4),v8(0x58),v8(0x05),v8(0xb8),v8(0xb3),v8(0x45),v8(0x06)
db v8(0xd0),v8(0x2c),v8(0x1e),v8(0x8f),v8(0xca),v8(0x3f),v8(0x0f),v8(0x02)
db v8(0xc1),v8(0xaf),v8(0xbd),v8(0x03),v8(0x01),v8(0x13),v8(0x8a),v8(0x6b)
db v8(0x3a),v8(0x91),v8(0x11),v8(0x41),v8(0x4f),v8(0x67),v8(0xdc),v8(0xea)
db v8(0x97),v8(0xf2),v8(0xcf),v8(0xce),v8(0xf0),v8(0xb4),v8(0xe6),v8(0x73)
db v8(0x96),v8(0xac),v8(0x74),v8(0x22),v8(0xe7),v8(0xad),v8(0x35),v8(0x85)
db v8(0xe2),v8(0xf9),v8(0x37),v8(0xe8),v8(0x1c),v8(0x75),v8(0xdf),v8(0x6e)
db v8(0x47),v8(0xf1),v8(0x1a),v8(0x71),v8(0x1d),v8(0x29),v8(0xc5),v8(0x89)
db v8(0x6f),v8(0xb7),v8(0x62),v8(0x0e),v8(0xaa),v8(0x18),v8(0xbe),v8(0x1b)
db v8(0xfc),v8(0x56),v8(0x3e),v8(0x4b),v8(0xc6),v8(0xd2),v8(0x79),v8(0x20)
db v8(0x9a),v8(0xdb),v8(0xc0),v8(0xfe),v8(0x78),v8(0xcd),v8(0x5a),v8(0xf4)
db v8(0x1f),v8(0xdd),v8(0xa8),v8(0x33),v8(0x88),v8(0x07),v8(0xc7),v8(0x31)
db v8(0xb1),v8(0x12),v8(0x10),v8(0x59),v8(0x27),v8(0x80),v8(0xec),v8(0x5f)
db v8(0x60),v8(0x51),v8(0x7f),v8(0xa9),v8(0x19),v8(0xb5),v8(0x4a),v8(0x0d)
db v8(0x2d),v8(0xe5),v8(0x7a),v8(0x9f),v8(0x93),v8(0xc9),v8(0x9c),v8(0xef)
db v8(0xa0),v8(0xe0),v8(0x3b),v8(0x4d),v8(0xae),v8(0x2a),v8(0xf5),v8(0xb0)
db v8(0xc8),v8(0xeb),v8(0xbb),v8(0x3c),v8(0x83),v8(0x53),v8(0x99),v8(0x61)
db v8(0x17),v8(0x2b),v8(0x04),v8(0x7e),v8(0xba),v8(0x77),v8(0xd6),v8(0x26)
db v8(0xe1),v8(0x69),v8(0x14),v8(0x63),v8(0x55),v8(0x21),v8(0x0c),v8(0x7d)
%endif
|