VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Main/UserInterfaceException.h
AgeCommit message (Expand)AuthorFilesLines
2017-06-23Update IDRIX copyright yearMounir IDRASSI1-1/+1
2016-05-10Remove trailing whitespaceDavid Foerster1-1/+1
2016-01-20Copyright: update dates to include 2016.Mounir IDRASSI1-1/+1
2015-08-06Update license information to reflect the use of a dual license Apache 2.0 an...Mounir IDRASSI1-5/+9
2014-11-08Change namespace from TrueCrypt to VeraCrypt. Rename method from Resources Re...Mounir IDRASSI1-1/+1
2014-11-08Add TrueCrypt 7.1a MacOSX/Linux specific source files.Mounir IDRASSI1-0/+36
='#n81'>81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
; ---------------------------------------------------------------------------
; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
; 
; LICENSE TERMS
; 
; The free distribution and use of this software is allowed (with or without
; changes) provided that:
; 
;  1. source code distributions include the above copyright notice, this
;     list of conditions and the following disclaimer;
; 
;  2. binary distributions include the above copyright notice, this list
;     of conditions and the following disclaimer in their documentation;
; 
;  3. the name of the copyright holder is not used to endorse products
;     built using this software without specific written permission.
; 
; DISCLAIMER
; 
; This software is provided 'as is' with no explicit or implied warranties
; in respect of its properties, including, but not limited to, correctness
; and/or fitness for purpose.
; ---------------------------------------------------------------------------
; Issue 20/12/2007
;
; This code requires either ASM_X86_V2 or ASM_X86_V2C to be set in aesopt.h
; and the same define to be set here as well. If AES_V2C is set this file
; requires the C files aeskey.c and aestab.c for support.

; An AES implementation for x86 processors using the YASM (or NASM) assembler.
; This is a full assembler implementation covering encryption, decryption and
; key scheduling. It uses 2k bytes of tables but its encryption and decryption
; performance is very close to that obtained using large tables.  Key schedule
; expansion is slower for both encryption and decryption but this is likely to
; be offset by the much smaller load that this version places on the processor
; cache. I acknowledge the contribution made by Daniel Bernstein to aspects of
; the design of the AES round function used here.
;
; This code provides the standard AES block size (128 bits, 16 bytes) and the
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
; interface as my C implementation. The ebx, esi, edi and ebp registers are
; preserved across calls but eax, ecx and edx and the artihmetic status flags
; are not.  Although this is a full assembler implementation, it can be used
; in conjunction with my C code which provides faster key scheduling using
; large tables. In this case aeskey.c should be compiled with ASM_X86_V2C
; defined.  It is also important that the defines below match those used in the
; C code.  This code uses the VC++ register saving conentions; if it is used
; with another compiler, conventions for using and saving registers may need
; to be checked (and calling conventions).  The YASM command line for the VC++
; custom build step is:
;
;    yasm -Xvc -f win32 -D <Z> -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
;
; For the cryptlib build this is (pcg):
;
;	yasm -Xvc -f win32 -D ASM_X86_V2C -o aescrypt2.obj aes_x86_v2.asm
;
; where <Z> is ASM_X86_V2 or ASM_X86_V2C.  The calling intefaces are:
;
;     AES_RETURN aes_encrypt(const unsigned char in_blk[],
;                   unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
;
;     AES_RETURN aes_decrypt(const unsigned char in_blk[],
;                   unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
;
;     AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
;                                            const aes_encrypt_ctx cx[1]);
;
;     AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
;                                            const aes_decrypt_ctx cx[1]);
;
;     AES_RETURN aes_encrypt_key(const unsigned char key[],
;                           unsigned int len, const aes_decrypt_ctx cx[1]);
;
;     AES_RETURN aes_decrypt_key(const unsigned char key[],
;                           unsigned int len, const aes_decrypt_ctx cx[1]);
;
; where <NNN> is 128, 102 or 256.  In the last two calls the length can be in
; either bits or bytes.

; The DLL interface must use the _stdcall convention in which the number
; of bytes of parameter space is added after an @ to the sutine's name.
; We must also remove our parameters from the stack before return (see
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.

;
; Adapted for TrueCrypt:
; - All tables generated at run-time
; - Adapted for 16-bit environment
;

CPU 386
USE16
SEGMENT _TEXT PUBLIC CLASS=CODE USE16
SEGMENT _DATA PUBLIC CLASS=DATA USE16

GROUP DGROUP _TEXT _DATA

extern _aes_dec_tab		; Aestab.c
extern _aes_enc_tab

; %define DLL_EXPORT

; The size of the code can be reduced by using functions for the encryption
; and decryption rounds in place of macro expansion

%define REDUCE_CODE_SIZE

; Comment in/out the following lines to obtain the desired subroutines. These
; selections MUST match those in the C header file aes.h

; %define AES_128                 ; define if AES with 128 bit keys is needed
; %define AES_192                 ; define if AES with 192 bit keys is needed
%define AES_256                 ; define if AES with 256 bit keys is needed
; %define AES_VAR                 ; define if a variable key size is needed
%define ENCRYPTION              ; define if encryption is needed
%define DECRYPTION              ; define if decryption is needed
; %define AES_REV_DKS             ; define if key decryption schedule is reversed

%ifndef ASM_X86_V2C
%define ENCRYPTION_KEY_SCHEDULE ; define if encryption key expansion is needed
%define DECRYPTION_KEY_SCHEDULE ; define if decryption key expansion is needed
%endif

; The encryption key schedule has the following in memory layout where N is the
; number of rounds (10, 12 or 14):
;
; lo: | input key (round 0)  |  ; each round is four 32-bit words
;     | encryption round 1   |
;     | encryption round 2   |
;     ....
;     | encryption round N-1 |
; hi: | encryption round N   |
;
; The decryption key schedule is normally set up so that it has the same
; layout as above by actually reversing the order of the encryption key
; schedule in memory (this happens when AES_REV_DKS is set):
;
; lo: | decryption round 0   | =              | encryption round N   |
;     | decryption round 1   | = INV_MIX_COL[ | encryption round N-1 | ]
;     | decryption round 2   | = INV_MIX_COL[ | encryption round N-2 | ]
;     ....                       ....
;     | decryption round N-1 | = INV_MIX_COL[ | encryption round 1   | ]
; hi: | decryption round N   | =              | input key (round 0)  |
;
; with rounds except the first and last modified using inv_mix_column()
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
; encryption so that it has to be accessed in reverse when used for
; decryption (although the inverse mix column modifications are done)
;
; lo: | decryption round 0   | =              | input key (round 0)  |
;     | decryption round 1   | = INV_MIX_COL[ | encryption round 1   | ]
;     | decryption round 2   | = INV_MIX_COL[ | encryption round 2   | ]
;     ....                       ....
;     | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
; hi: | decryption round N   | =              | encryption round N   |
;
; This layout is faster when the assembler key scheduling provided here
; is used.
;
; End of user defines

%ifdef AES_VAR
%ifndef AES_128
%define AES_128
%endif
%ifndef AES_192
%define AES_192
%endif
%ifndef AES_256
%define AES_256
%endif
%endif

%ifdef AES_VAR
%define KS_LENGTH       60
%elifdef AES_256
%define KS_LENGTH       60
%elifdef AES_192
%define KS_LENGTH       52
%else
%define KS_LENGTH       44
%endif

; These macros implement stack based local variables

%macro  save 2
    mov     [esp+4*%1],%2
%endmacro

%macro  restore 2
    mov     %1,[esp+4*%2]
%endmacro

%ifdef  REDUCE_CODE_SIZE
    %macro mf_call 1
        call %1
    %endmacro
%else
    %macro mf_call 1
        %1
    %endmacro
%endif

; the DLL has to implement the _stdcall calling interface on return
; In this case we have to take our parameters (3 4-byte pointers)
; off the stack

%define parms 12

%macro  do_name 1-2 parms
%ifndef DLL_EXPORT
    global  %1
%1:
%else
    global  %1@%2
    export  %1@%2
%1@%2:
%endif
%endmacro

%macro  do_call 1-2 parms
%ifndef DLL_EXPORT
    call    %1
    add     esp,%2
%else
    call    %1@%2
%endif
%endmacro

%macro  do_exit  0-1 parms
%ifdef DLL_EXPORT
    ret %1
%else
    ret
%endif
%endmacro

; finite field multiplies by {02}, {04} and {08}

%define f2(x)   ((x<<1)^(((x>>7)&1)*0x11b))
%define f4(x)   ((x<<2)^(((x>>6)&1)*0x11b)^(((x>>6)&2)*0x11b))
%define f8(x)   ((x<<3)^(((x>>5)&1)*0x11b)^(((x>>5)&2)*0x11b)^(((x>>5)&4)*0x11b))

; finite field multiplies required in table generation

%define f3(x)   (f2(x) ^ x)
%define f9(x)   (f8(x) ^ x)
%define fb(x)   (f8(x) ^ f2(x) ^ x)
%define fd(x)   (f8(x) ^ f4(x) ^ x)
%define fe(x)   (f8(x) ^ f4(x) ^ f2(x))

%define etab_0(x)   [_aes_enc_tab+4+8*x]
%define etab_1(x)   [_aes_enc_tab+3+8*x]
%define etab_2(x)   [_aes_enc_tab+2+8*x]
%define etab_3(x)   [_aes_enc_tab+1+8*x]
%define etab_b(x)   byte [_aes_enc_tab+1+8*x] ; used with movzx for 0x000000xx
%define etab_w(x)   word [_aes_enc_tab+8*x]   ; used with movzx for 0x0000xx00

%define btab_0(x)   [_aes_enc_tab+6+8*x]
%define btab_1(x)   [_aes_enc_tab+5+8*x]
%define btab_2(x)   [_aes_enc_tab+4+8*x]
%define btab_3(x)   [_aes_enc_tab+3+8*x]

; ROUND FUNCTION.  Build column[2] on ESI and column[3] on EDI that have the
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
;
; Input:
;
;   EAX     column[0]
;   EBX     column[1]
;   ECX     column[2]
;   EDX     column[3]
;   ESI     column key[round][2]
;   EDI     column key[round][3]
;   EBP     scratch
;
; Output:
;
;   EBP     column[0]   unkeyed
;   EBX     column[1]   unkeyed
;   ESI     column[2]   keyed
;   EDI     column[3]   keyed
;   EAX     scratch
;   ECX     scratch
;   EDX     scratch

%macro rnd_fun 2

    rol     ebx,16
    %1      esi, cl, 0, ebp
    %1      esi, dh, 1, ebp
    %1      esi, bh, 3, ebp
    %1      edi, dl, 0, ebp
    %1      edi, ah, 1, ebp
    %1      edi, bl, 2, ebp
    %2      ebp, al, 0, ebp
    shr     ebx,16
    and     eax,0xffff0000
    or      eax,ebx
    shr     edx,16
    %1      ebp, ah, 1, ebx
    %1      ebp, dh, 3, ebx
    %2      ebx, dl, 2, ebx
    %1      ebx, ch, 1, edx
    %1      ebx, al, 0, edx
    shr     eax,16
    shr     ecx,16
    %1      ebp, cl, 2, edx
    %1      edi, ch, 3, edx
    %1      esi, al, 2, edx
    %1      ebx, ah, 3, edx

%endmacro

; Basic MOV and XOR Operations for normal rounds

%macro  nr_xor  4
    movzx   %4,%2
    xor     %1,etab_%3(%4)
%endmacro

%macro  nr_mov  4
    movzx   %4,%2
    mov     %1,etab_%3(%4)
%endmacro

; Basic MOV and XOR Operations for last round

%if 1

    %macro  lr_xor  4
        movzx   %4,%2
        movzx   %4,etab_b(%4)
    %if %3 != 0
        shl     %4,8*%3
    %endif
        xor     %1,%4
    %endmacro

    %macro  lr_mov  4
        movzx   %4,%2
        movzx   %1,etab_b(%4)
    %if %3 != 0
        shl     %1,8*%3
    %endif
    %endmacro

%else       ; less effective but worth leaving as an option

    %macro  lr_xor  4
        movzx   %4,%2
        mov     %4,btab_%3(%4)
        and     %4,0x000000ff << 8 * %3
        xor     %1,%4
    %endmacro

    %macro  lr_mov  4
        movzx   %4,%2
        mov     %1,btab_%3(%4)
        and     %1,0x000000ff << 8 * %3
    %endmacro

%endif

; Apply S-Box to the 4 bytes in a 32-bit word and rotate byte positions

%ifdef REDUCE_CODE_SIZE
    
l3s_col:
    movzx   ecx,al              ; in      eax
    movzx   ecx, etab_b(ecx)    ; out     eax
    xor     edx,ecx             ; scratch ecx,edx
    movzx   ecx,ah
    movzx   ecx, etab_b(ecx)
    shl     ecx,8
    xor     edx,ecx
    shr     eax,16
    movzx   ecx,al
    movzx   ecx, etab_b(ecx)
    shl     ecx,16
    xor     edx,ecx
    movzx   ecx,ah
    movzx   ecx, etab_b(ecx)
    shl     ecx,24
    xor     edx,ecx
    mov     eax,edx
    ret

%else

%macro l3s_col 0

    movzx   ecx,al              ; in      eax
    movzx   ecx, etab_b(ecx)    ; out     eax
    xor     edx,ecx             ; scratch ecx,edx
    movzx   ecx,ah
    movzx   ecx, etab_b(ecx)
    shl     ecx,8
    xor     edx,ecx
    shr     eax,16
    movzx   ecx,al
    movzx   ecx, etab_b(ecx)
    shl     ecx,16
    xor     edx,ecx
    movzx   ecx,ah
    movzx   ecx, etab_b(ecx)
    shl     ecx,24
    xor     edx,ecx
    mov     eax,edx

%endmacro

%endif
    
; offsets to parameters

in_blk  equ     2   ; input byte array address parameter
out_blk equ     4   ; output byte array address parameter
ctx     equ     6   ; AES context structure
stk_spc equ    20   ; stack space

%ifdef  ENCRYPTION

; %define ENCRYPTION_TABLE

%ifdef REDUCE_CODE_SIZE

enc_round:
	sub		sp, 2
    add     ebp,16
    save    1,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    rnd_fun nr_xor, nr_mov

    mov     eax,ebp
    mov     ecx,esi
    mov     edx,edi
    restore ebp,1
    xor     eax,[ebp]
    xor     ebx,[ebp+4]
	add		sp, 2
    ret
    
%else

%macro enc_round 0

    add     ebp,16
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    rnd_fun nr_xor, nr_mov

    mov     eax,ebp
    mov     ecx,esi
    mov     edx,edi
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

%endif

%macro enc_last_round 0

    add     ebp,16
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    rnd_fun lr_xor, lr_mov

    mov     eax,ebp
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

    section _TEXT

; AES Encryption Subroutine

    do_name _aes_encrypt,12

	mov		ax, sp
	movzx	esp, ax

    sub     esp,stk_spc
    mov     [esp+16],ebp
    mov     [esp+12],ebx
    mov     [esp+ 8],esi
    mov     [esp+ 4],edi

    movzx   esi,word [esp+in_blk+stk_spc] ; input pointer
    mov     eax,[esi   ]
    mov     ebx,[esi+ 4]
    mov     ecx,[esi+ 8]
    mov     edx,[esi+12]

    movzx   ebp,word [esp+ctx+stk_spc]    ; key pointer
    movzx   edi,byte [ebp+4*KS_LENGTH]
    xor     eax,[ebp   ]
    xor     ebx,[ebp+ 4]
    xor     ecx,[ebp+ 8]
    xor     edx,[ebp+12]

; determine the number of rounds

%ifndef AES_256
    cmp     edi,10*16
    je      .3
    cmp     edi,12*16
    je      .2
    cmp     edi,14*16
    je      .1
    mov     eax,-1
    jmp     .5
%endif

.1: mf_call enc_round
    mf_call enc_round
.2: mf_call enc_round
    mf_call enc_round
.3: mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    mf_call enc_round
    enc_last_round

    movzx   edx,word [esp+out_blk+stk_spc]
    mov     [edx],eax
    mov     [edx+4],ebx
    mov     [edx+8],esi
    mov     [edx+12],edi
    xor     eax,eax

.5: mov     ebp,[esp+16]
    mov     ebx,[esp+12]
    mov     esi,[esp+ 8]
    mov     edi,[esp+ 4]
    add     esp,stk_spc
    do_exit 12

%endif

%macro f_key 2

    push    ecx
    push    edx
    mov     edx,esi
    ror     eax,8
    mf_call l3s_col
    mov     esi,eax
    pop     edx
    pop     ecx
    xor     esi,rc_val

    mov     [ebp+%1*%2],esi
    xor     edi,esi
    mov     [ebp+%1*%2+4],edi
    xor     ecx,edi
    mov     [ebp+%1*%2+8],ecx
    xor     edx,ecx
    mov     [ebp+%1*%2+12],edx
    mov     eax,edx

%if %2 == 24

%if %1 < 7
    xor     eax,[ebp+%1*%2+16-%2]
    mov     [ebp+%1*%2+16],eax
    xor     eax,[ebp+%1*%2+20-%2]
    mov     [ebp+%1*%2+20],eax
%endif

%elif %2 == 32

%if %1 < 6
    push    ecx
    push    edx
    mov     edx,[ebp+%1*%2+16-%2]
    mf_call l3s_col
    pop     edx
    pop     ecx
    mov     [ebp+%1*%2+16],eax
    xor     eax,[ebp+%1*%2+20-%2]
    mov     [ebp+%1*%2+20],eax
    xor     eax,[ebp+%1*%2+24-%2]
    mov     [ebp+%1*%2+24],eax
    xor     eax,[ebp+%1*%2+28-%2]
    mov     [ebp+%1*%2+28],eax
%endif

%endif

%assign rc_val f2(rc_val)

%endmacro

%ifdef ENCRYPTION_KEY_SCHEDULE

%ifdef  AES_128

%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif

%assign rc_val  1

    do_name _aes_encrypt_key128,8

    push    ebp
    push    ebx
    push    esi
    push    edi

    mov     ebp,[esp+24]
    mov     [ebp+4*KS_LENGTH],dword 10*16
    mov     ebx,[esp+20]

    mov     esi,[ebx]
    mov     [ebp],esi
    mov     edi,[ebx+4]
    mov     [ebp+4],edi
    mov     ecx,[ebx+8]
    mov     [ebp+8],ecx
    mov     edx,[ebx+12]
    mov     [ebp+12],edx
    add     ebp,16
    mov     eax,edx

    f_key   0,16        ; 11 * 4 = 44 unsigned longs
    f_key   1,16        ; 4 + 4 * 10 generated = 44
    f_key   2,16
    f_key   3,16
    f_key   4,16
    f_key   5,16
    f_key   6,16
    f_key   7,16
    f_key   8,16
    f_key   9,16

    pop     edi
    pop     esi
    pop     ebx
    pop     ebp
    xor     eax,eax
    do_exit  8

%endif

%ifdef  AES_192

%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif

%assign rc_val  1

    do_name _aes_encrypt_key192,8

    push    ebp
    push    ebx
    push    esi
    push    edi

    mov     ebp,[esp+24]
    mov     [ebp+4*KS_LENGTH],dword 12 * 16
    mov     ebx,[esp+20]

    mov     esi,[ebx]
    mov     [ebp],esi
    mov     edi,[ebx+4]
    mov     [ebp+4],edi
    mov     ecx,[ebx+8]
    mov     [ebp+8],ecx
    mov     edx,[ebx+12]
    mov     [ebp+12],edx
    mov     eax,[ebx+16]
    mov     [ebp+16],eax
    mov     eax,[ebx+20]
    mov     [ebp+20],eax
    add     ebp,24

    f_key   0,24        ; 13 * 4 = 52 unsigned longs
    f_key   1,24        ; 6 + 6 * 8 generated = 54
    f_key   2,24
    f_key   3,24
    f_key   4,24
    f_key   5,24
    f_key   6,24
    f_key   7,24

    pop     edi
    pop     esi
    pop     ebx
    pop     ebp
    xor     eax,eax
    do_exit  8

%endif

%ifdef  AES_256

%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif

%assign rc_val  1

    do_name _aes_encrypt_key256,8

	mov		ax, sp
	movzx	esp, ax
	
    push    ebp
    push    ebx
    push    esi
    push    edi

    movzx   ebp, word [esp+20] ; ks
    mov     [ebp+4*KS_LENGTH],dword 14 * 16
    movzx   ebx, word [esp+18] ; key

    mov     esi,[ebx]
    mov     [ebp],esi
    mov     edi,[ebx+4]
    mov     [ebp+4],edi
    mov     ecx,[ebx+8]
    mov     [ebp+8],ecx
    mov     edx,[ebx+12]
    mov     [ebp+12],edx
    mov     eax,[ebx+16]
    mov     [ebp+16],eax
    mov     eax,[ebx+20]
    mov     [ebp+20],eax
    mov     eax,[ebx+24]
    mov     [ebp+24],eax
    mov     eax,[ebx+28]
    mov     [ebp+28],eax
    add     ebp,32

    f_key   0,32        ; 15 * 4 = 60 unsigned longs
    f_key   1,32        ; 8 + 8 * 7 generated = 64
    f_key   2,32
    f_key   3,32
    f_key   4,32
    f_key   5,32
    f_key   6,32

    pop     edi
    pop     esi
    pop     ebx
    pop     ebp
    xor     eax,eax
    do_exit  8

%endif

%ifdef  AES_VAR

%ifndef ENCRYPTION_TABLE
; %define ENCRYPTION_TABLE
%endif

    do_name _aes_encrypt_key,12

    mov     ecx,[esp+4]
    mov     eax,[esp+8]
    mov     edx,[esp+12]
    push    edx
    push    ecx

    cmp     eax,16
    je      .1
    cmp     eax,128
    je      .1

    cmp     eax,24
    je      .2
    cmp     eax,192
    je      .2

    cmp     eax,32
    je      .3
    cmp     eax,256
    je      .3
    mov     eax,-1
    add     esp,8
    do_exit 12

.1: do_call _aes_encrypt_key128,8
    do_exit 12
.2: do_call _aes_encrypt_key192,8
    do_exit 12
.3: do_call _aes_encrypt_key256,8
    do_exit 12

%endif

%endif

%ifdef ENCRYPTION_TABLE

; S-box data - 256 entries

    section _DATA

%define u8(x)   0, x, x, f3(x), f2(x), x, x, f3(x)

_aes_enc_tab:
    db  u8(0x63),u8(0x7c),u8(0x77),u8(0x7b),u8(0xf2),u8(0x6b),u8(0x6f),u8(0xc5)
    db  u8(0x30),u8(0x01),u8(0x67),u8(0x2b),u8(0xfe),u8(0xd7),u8(0xab),u8(0x76)
    db  u8(0xca),u8(0x82),u8(0xc9),u8(0x7d),u8(0xfa),u8(0x59),u8(0x47),u8(0xf0)
    db  u8(0xad),u8(0xd4),u8(0xa2),u8(0xaf),u8(0x9c),u8(0xa4),u8(0x72),u8(0xc0)
    db  u8(0xb7),u8(0xfd),u8(0x93),u8(0x26),u8(0x36),u8(0x3f),u8(0xf7),u8(0xcc)
    db  u8(0x34),u8(0xa5),u8(0xe5),u8(0xf1),u8(0x71),u8(0xd8),u8(0x31),u8(0x15)
    db  u8(0x04),u8(0xc7),u8(0x23),u8(0xc3),u8(0x18),u8(0x96),u8(0x05),u8(0x9a)
    db  u8(0x07),u8(0x12),u8(0x80),u8(0xe2),u8(0xeb),u8(0x27),u8(0xb2),u8(0x75)
    db  u8(0x09),u8(0x83),u8(0x2c),u8(0x1a),u8(0x1b),u8(0x6e),u8(0x5a),u8(0xa0)
    db  u8(0x52),u8(0x3b),u8(0xd6),u8(0xb3),u8(0x29),u8(0xe3),u8(0x2f),u8(0x84)
    db  u8(0x53),u8(0xd1),u8(0x00),u8(0xed),u8(0x20),u8(0xfc),u8(0xb1),u8(0x5b)
    db  u8(0x6a),u8(0xcb),u8(0xbe),u8(0x39),u8(0x4a),u8(0x4c),u8(0x58),u8(0xcf)
    db  u8(0xd0),u8(0xef),u8(0xaa),u8(0xfb),u8(0x43),u8(0x4d),u8(0x33),u8(0x85)
    db  u8(0x45),u8(0xf9),u8(0x02),u8(0x7f),u8(0x50),u8(0x3c),u8(0x9f),u8(0xa8)
    db  u8(0x51),u8(0xa3),u8(0x40),u8(0x8f),u8(0x92),u8(0x9d),u8(0x38),u8(0xf5)
    db  u8(0xbc),u8(0xb6),u8(0xda),u8(0x21),u8(0x10),u8(0xff),u8(0xf3),u8(0xd2)
    db  u8(0xcd),u8(0x0c),u8(0x13),u8(0xec),u8(0x5f),u8(0x97),u8(0x44),u8(0x17)
    db  u8(0xc4),u8(0xa7),u8(0x7e),u8(0x3d),u8(0x64),u8(0x5d),u8(0x19),u8(0x73)
    db  u8(0x60),u8(0x81),u8(0x4f),u8(0xdc),u8(0x22),u8(0x2a),u8(0x90),u8(0x88)
    db  u8(0x46),u8(0xee),u8(0xb8),u8(0x14),u8(0xde),u8(0x5e),u8(0x0b),u8(0xdb)
    db  u8(0xe0),u8(0x32),u8(0x3a),u8(0x0a),u8(0x49),u8(0x06),u8(0x24),u8(0x5c)
    db  u8(0xc2),u8(0xd3),u8(0xac),u8(0x62),u8(0x91),u8(0x95),u8(0xe4),u8(0x79)
    db  u8(0xe7),u8(0xc8),u8(0x37),u8(0x6d),u8(0x8d),u8(0xd5),u8(0x4e),u8(0xa9)
    db  u8(0x6c),u8(0x56),u8(0xf4),u8(0xea),u8(0x65),u8(0x7a),u8(0xae),u8(0x08)
    db  u8(0xba),u8(0x78),u8(0x25),u8(0x2e),u8(0x1c),u8(0xa6),u8(0xb4),u8(0xc6)
    db  u8(0xe8),u8(0xdd),u8(0x74),u8(0x1f),u8(0x4b),u8(0xbd),u8(0x8b),u8(0x8a)
    db  u8(0x70),u8(0x3e),u8(0xb5),u8(0x66),u8(0x48),u8(0x03),u8(0xf6),u8(0x0e)
    db  u8(0x61),u8(0x35),u8(0x57),u8(0xb9),u8(0x86),u8(0xc1),u8(0x1d),u8(0x9e)
    db  u8(0xe1),u8(0xf8),u8(0x98),u8(0x11),u8(0x69),u8(0xd9),u8(0x8e),u8(0x94)
    db  u8(0x9b),u8(0x1e),u8(0x87),u8(0xe9),u8(0xce),u8(0x55),u8(0x28),u8(0xdf)
    db  u8(0x8c),u8(0xa1),u8(0x89),u8(0x0d),u8(0xbf),u8(0xe6),u8(0x42),u8(0x68)
    db  u8(0x41),u8(0x99),u8(0x2d),u8(0x0f),u8(0xb0),u8(0x54),u8(0xbb),u8(0x16)

%endif

%ifdef  DECRYPTION

; %define DECRYPTION_TABLE

%define dtab_0(x)   [_aes_dec_tab+  8*x]
%define dtab_1(x)   [_aes_dec_tab+3+8*x]
%define dtab_2(x)   [_aes_dec_tab+2+8*x]
%define dtab_3(x)   [_aes_dec_tab+1+8*x]
%define dtab_x(x)   byte [_aes_dec_tab+7+8*x]

%macro irn_fun 2

    rol eax,16
    %1      esi, cl, 0, ebp
    %1      esi, bh, 1, ebp
    %1      esi, al, 2, ebp
    %1      edi, dl, 0, ebp
    %1      edi, ch, 1, ebp
    %1      edi, ah, 3, ebp
    %2      ebp, bl, 0, ebp
    shr     eax,16
    and     ebx,0xffff0000
    or      ebx,eax
    shr     ecx,16
    %1      ebp, bh, 1, eax
    %1      ebp, ch, 3, eax
    %2      eax, cl, 2, ecx
    %1      eax, bl, 0, ecx
    %1      eax, dh, 1, ecx
    shr     ebx,16
    shr     edx,16
    %1      esi, dh, 3, ecx
    %1      ebp, dl, 2, ecx
    %1      eax, bh, 3, ecx
    %1      edi, bl, 2, ecx

%endmacro

; Basic MOV and XOR Operations for normal rounds

%macro  ni_xor  4
    movzx   %4,%2
    xor     %1,dtab_%3(%4)
%endmacro

%macro  ni_mov  4
    movzx   %4,%2
    mov     %1,dtab_%3(%4)
%endmacro

; Basic MOV and XOR Operations for last round

%macro  li_xor  4
    movzx   %4,%2
    movzx   %4,dtab_x(%4)
%if %3 != 0
    shl     %4,8*%3
%endif
    xor     %1,%4
%endmacro

%macro  li_mov  4
    movzx   %4,%2
    movzx   %1,dtab_x(%4)
%if %3 != 0
    shl     %1,8*%3
%endif
%endmacro

%ifdef REDUCE_CODE_SIZE

dec_round:
	sub		sp, 2
%ifdef AES_REV_DKS
    add     ebp,16
%else
    sub     ebp,16
%endif
    save    1,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    irn_fun ni_xor, ni_mov

    mov     ebx,ebp
    mov     ecx,esi
    mov     edx,edi
    restore ebp,1
    xor     eax,[ebp]
    xor     ebx,[ebp+4]
   	add		sp, 2
    ret

%else

%macro dec_round 0

%ifdef AES_REV_DKS
    add     ebp,16
%else
    sub     ebp,16
%endif
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    irn_fun ni_xor, ni_mov

    mov     ebx,ebp
    mov     ecx,esi
    mov     edx,edi
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

%endif

%macro dec_last_round 0

%ifdef AES_REV_DKS
    add     ebp,16
%else
    sub     ebp,16
%endif
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    irn_fun li_xor, li_mov

    mov     ebx,ebp
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

    section _TEXT

; AES Decryption Subroutine

    do_name _aes_decrypt,12
    
	mov		ax, sp
	movzx	esp, ax

    sub     esp,stk_spc
    mov     [esp+16],ebp
    mov     [esp+12],ebx
    mov     [esp+ 8],esi
    mov     [esp+ 4],edi

; input four columns and xor in first round key

    movzx   esi,word [esp+in_blk+stk_spc] ; input pointer
    mov     eax,[esi   ]
    mov     ebx,[esi+ 4]
    mov     ecx,[esi+ 8]
    mov     edx,[esi+12]
    lea     esi,[esi+16]

    movzx   ebp, word [esp+ctx+stk_spc]    ; key pointer
    movzx   edi,byte[ebp+4*KS_LENGTH]
%ifndef  AES_REV_DKS        ; if decryption key schedule is not reversed
    lea     ebp,[ebp+edi] ; we have to access it from the top down
%endif
    xor     eax,[ebp   ]  ; key schedule
    xor     ebx,[ebp+ 4]
    xor     ecx,[ebp+ 8]
    xor     edx,[ebp+12]

; determine the number of rounds

%ifndef AES_256
    cmp     edi,10*16
    je      .3
    cmp     edi,12*16
    je      .2
    cmp     edi,14*16
    je      .1
    mov     eax,-1
    jmp     .5
%endif

.1: mf_call dec_round
    mf_call dec_round
.2: mf_call dec_round
    mf_call dec_round
.3: mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    mf_call dec_round
    dec_last_round

; move final values to the output array.

    movzx   ebp,word [esp+out_blk+stk_spc]
    mov     [ebp],eax
    mov     [ebp+4],ebx
    mov     [ebp+8],esi
    mov     [ebp+12],edi
    xor     eax,eax

.5: mov     ebp,[esp+16]
    mov     ebx,[esp+12]
    mov     esi,[esp+ 8]
    mov     edi,[esp+ 4]
    add     esp,stk_spc
    do_exit 12

%endif

%ifdef REDUCE_CODE_SIZE

inv_mix_col:
    movzx   ecx,dl          ; input  eax, edx
    movzx   ecx,etab_b(ecx) ; output eax
    mov     eax,dtab_0(ecx) ; used   ecx
    movzx   ecx,dh
    shr     edx,16
    movzx   ecx,etab_b(ecx)
    xor     eax,dtab_1(ecx)
    movzx   ecx,dl
    movzx   ecx,etab_b(ecx)
    xor     eax,dtab_2(ecx)
    movzx   ecx,dh
    movzx   ecx,etab_b(ecx)
    xor     eax,dtab_3(ecx)
    ret

%else

%macro  inv_mix_col 0   

    movzx   ecx,dl          ; input  eax, edx
    movzx   ecx,etab_b(ecx) ; output eax
    mov     eax,dtab_0(ecx) ; used   ecx
    movzx   ecx,dh
    shr     edx,16
    movzx   ecx,etab_b(ecx)
    xor     eax,dtab_1(ecx)
    movzx   ecx,dl
    movzx   ecx,etab_b(ecx)
    xor     eax,dtab_2(ecx)
    movzx   ecx,dh
    movzx   ecx,etab_b(ecx)
    xor     eax,dtab_3(ecx)

%endmacro

%endif

%ifdef DECRYPTION_KEY_SCHEDULE

%ifdef AES_128

%ifndef DECRYPTION_TABLE
; %define DECRYPTION_TABLE
%endif

    do_name _aes_decrypt_key128,8

    push    ebp
    push    ebx
    push    esi
    push    edi
    mov     eax,[esp+24]    ; context
    mov     edx,[esp+20]    ; key
    push    eax
    push    edx
    do_call _aes_encrypt_key128,8   ; generate expanded encryption key
    mov     eax,10*16
    mov     esi,[esp+24]    ; pointer to first round key
    lea     edi,[esi+eax]   ; pointer to last round key
    add     esi,32
                            ; the inverse mix column transformation
    mov     edx,[esi-16]    ; needs to be applied to all round keys
    mf_call inv_mix_col     ; except first and last. Hence start by
    mov     [esi-16],eax    ; transforming the four sub-keys in the
    mov     edx,[esi-12]    ; second round key
    mf_call inv_mix_col
    mov     [esi-12],eax    ; transformations for subsequent rounds
    mov     edx,[esi-8]     ; can then be made more efficient by
    mf_call inv_mix_col     ; noting that for three of the four sub-keys
    mov     [esi-8],eax     ; in the encryption round key ek[r]:
    mov     edx,[esi-4]     ;
    mf_call inv_mix_col     ;   ek[r][n] = ek[r][n-1] ^ ek[r-1][n]
    mov     [esi-4],eax     ;
                            ; where n is 1..3. Hence the corresponding
.0: mov     edx,[esi]       ; subkeys in the decryption round key dk[r]
    mf_call inv_mix_col     ; also obey since inv_mix_col is linear in
    mov     [esi],eax       ; GF(256):
    xor     eax,[esi-12]    ;
    mov     [esi+4],eax     ;   dk[r][n] = dk[r][n-1] ^ dk[r-1][n]
    xor     eax,[esi-8]     ;
    mov     [esi+8],eax     ; So we only need one inverse mix column
    xor     eax,[esi-4]     ; operation (n = 0) for each four word cycle
    mov     [esi+12],eax    ; in the expanded key.
    add     esi,16
    cmp     edi,esi
    jg      .0
    jmp     dec_end

%endif

%ifdef AES_192

%ifndef DECRYPTION_TABLE
; %define DECRYPTION_TABLE
%endif

    do_name _aes_decrypt_key192,8

    push    ebp
    push    ebx
    push    esi
    push    edi
    mov     eax,[esp+24]    ; context
    mov     edx,[esp+20]    ; key
    push    eax
    push    edx
    do_call _aes_encrypt_key192,8   ; generate expanded encryption key
    mov     eax,12*16
    mov     esi,[esp+24]    ; first round key
    lea     edi,[esi+eax]   ; last round key
    add     esi,48          ; the first 6 words are the key, of
                            ; which the top 2 words are part of
    mov     edx,[esi-32]    ; the second round key and hence
    mf_call inv_mix_col     ; need to be modified. After this we
    mov     [esi-32],eax    ; need to do a further six values prior
    mov     edx,[esi-28]    ; to using a more efficient technique
    mf_call inv_mix_col     ; based on:
    mov     [esi-28],eax    ;
                            ; dk[r][n] = dk[r][n-1] ^ dk[r-1][n]
    mov     edx,[esi-24]    ;
    mf_call inv_mix_col     ; for n = 1 .. 5 where the key expansion
    mov     [esi-24],eax    ; cycle is now 6 words long
    mov     edx,[esi-20]
    mf_call inv_mix_col
    mov     [esi-20],eax
    mov     edx,[esi-16]
    mf_call inv_mix_col
    mov     [esi-16],eax
    mov     edx,[esi-12]
    mf_call inv_mix_col
    mov     [esi-12],eax
    mov     edx,[esi-8]
    mf_call inv_mix_col
    mov     [esi-8],eax
    mov     edx,[esi-4]
    mf_call inv_mix_col
    mov     [esi-4],eax

.0: mov     edx,[esi]       ; the expanded key is 13 * 4 = 44 32-bit words
    mf_call inv_mix_col     ; of which 11 * 4 = 44 have to be modified
    mov     [esi],eax       ; using inv_mix_col.  We have already done 8
    xor     eax,[esi-20]    ; of these so 36 are left - hence we need
    mov     [esi+4],eax     ; exactly 6 loops of six here
    xor     eax,[esi-16]
    mov     [esi+8],eax
    xor     eax,[esi-12]
    mov     [esi+12],eax
    xor     eax,[esi-8]
    mov     [esi+16],eax
    xor     eax,[esi-4]
    mov     [esi+20],eax
    add     esi,24
    cmp     edi,esi
    jg      .0
    jmp     dec_end

%endif

%ifdef AES_256

%ifndef DECRYPTION_TABLE
; %define DECRYPTION_TABLE
%endif

    do_name _aes_decrypt_key256,8
    
    mov		ax, sp
	movzx	esp, ax
    push    ebp
    push    ebx
    push    esi
    push    edi
    
    movzx   eax, word [esp+20] ; ks
    movzx   edx, word [esp+18] ; key
    push    ax
    push    dx
    do_call _aes_encrypt_key256,4   ; generate expanded encryption key
    mov     eax,14*16
    movzx   esi, word [esp+20] ; ks
    lea     edi,[esi+eax]
    add     esi,64

    mov     edx,[esi-48]    ; the primary key is 8 words, of which
    mf_call inv_mix_col     ; the top four require modification
    mov     [esi-48],eax
    mov     edx,[esi-44]
    mf_call inv_mix_col
    mov     [esi-44],eax
    mov     edx,[esi-40]
    mf_call inv_mix_col
    mov     [esi-40],eax
    mov     edx,[esi-36]
    mf_call inv_mix_col
    mov     [esi-36],eax

    mov     edx,[esi-32]    ; the encryption key expansion cycle is
    mf_call inv_mix_col     ; now eight words long so we need to
    mov     [esi-32],eax    ; start by doing one complete block
    mov     edx,[esi-28]
    mf_call inv_mix_col
    mov     [esi-28],eax
    mov     edx,[esi-24]
    mf_call inv_mix_col
    mov     [esi-24],eax
    mov     edx,[esi-20]
    mf_call inv_mix_col
    mov     [esi-20],eax
    mov     edx,[esi-16]
    mf_call inv_mix_col
    mov     [esi-16],eax
    mov     edx,[esi-12]
    mf_call inv_mix_col
    mov     [esi-12],eax
    mov     edx,[esi-8]
    mf_call inv_mix_col
    mov     [esi-8],eax
    mov     edx,[esi-4]
    mf_call inv_mix_col
    mov     [esi-4],eax

.0: mov     edx,[esi]       ; we can now speed up the remaining
    mf_call inv_mix_col     ; rounds by using the technique
    mov     [esi],eax       ; outlined earlier.  But note that
    xor     eax,[esi-28]    ; there is one extra inverse mix
    mov     [esi+4],eax     ; column operation as the 256 bit
    xor     eax,[esi-24]    ; key has an extra non-linear step
    mov     [esi+8],eax     ; for the midway element.
    xor     eax,[esi-20]
    mov     [esi+12],eax    ; the expanded key is 15 * 4 = 60
    mov     edx,[esi+16]    ; 32-bit words of which 52 need to
    mf_call inv_mix_col     ; be modified.  We have already done
    mov     [esi+16],eax    ; 12 so 40 are left - which means
    xor     eax,[esi-12]    ; that we need exactly 5 loops of 8
    mov     [esi+20],eax
    xor     eax,[esi-8]
    mov     [esi+24],eax
    xor     eax,[esi-4]
    mov     [esi+28],eax
    add     esi,32
    cmp     edi,esi
    jg      .0

%endif

dec_end:

%ifdef AES_REV_DKS

    movzx   esi,word [esp+20]	; this reverses the order of the
.1: mov     eax,[esi]			; round keys if required
    mov     ebx,[esi+4]
    mov     ebp,[edi]
    mov     edx,[edi+4]
    mov     [esi],ebp
    mov     [esi+4],edx
    mov     [edi],eax
    mov     [edi+4],ebx

    mov     eax,[esi+8]
    mov     ebx,[esi+12]
    mov     ebp,[edi+8]
    mov     edx,[edi+12]
    mov     [esi+8],ebp
    mov     [esi+12],edx
    mov     [edi+8],eax
    mov     [edi+12],ebx

    add     esi,16
    sub     edi,16
    cmp     edi,esi
    jg      .1

%endif

    pop     edi
    pop     esi
    pop     ebx
    pop     ebp
    xor     eax,eax
    do_exit  8

%ifdef AES_VAR

    do_name _aes_decrypt_key,12

    mov     ecx,[esp+4]
    mov     eax,[esp+8]
    mov     edx,[esp+12]
    push    edx
    push    ecx

    cmp     eax,16
    je      .1
    cmp     eax,128
    je      .1

    cmp     eax,24
    je      .2
    cmp     eax,192
    je      .2

    cmp     eax,32
    je      .3
    cmp     eax,256
    je      .3
    mov     eax,-1
    add     esp,8
    do_exit 12

.1: do_call _aes_decrypt_key128,8
    do_exit 12
.2: do_call _aes_decrypt_key192,8
    do_exit 12
.3: do_call _aes_decrypt_key256,8
    do_exit 12

%endif

%endif

%ifdef DECRYPTION_TABLE

; Inverse S-box data - 256 entries

    section _DATA

%define v8(x)   fe(x), f9(x), fd(x), fb(x), fe(x), f9(x), fd(x), x

_aes_dec_tab:
    db  v8(0x52),v8(0x09),v8(0x6a),v8(0xd5),v8(0x30),v8(0x36),v8(0xa5),v8(0x38)
    db  v8(0xbf),v8(0x40),v8(0xa3),v8(0x9e),v8(0x81),v8(0xf3),v8(0xd7),v8(0xfb)
    db  v8(0x7c),v8(0xe3),v8(0x39),v8(0x82),v8(0x9b),v8(0x2f),v8(0xff),v8(0x87)
    db  v8(0x34),v8(0x8e),v8(0x43),v8(0x44),v8(0xc4),v8(0xde),v8(0xe9),v8(0xcb)
    db  v8(0x54),v8(0x7b),v8(0x94),v8(0x32),v8(0xa6),v8(0xc2),v8(0x23),v8(0x3d)
    db  v8(0xee),v8(0x4c),v8(0x95),v8(0x0b),v8(0x42),v8(0xfa),v8(0xc3),v8(0x4e)
    db  v8(0x08),v8(0x2e),v8(0xa1),v8(0x66),v8(0x28),v8(0xd9),v8(0x24),v8(0xb2)
    db  v8(0x76),v8(0x5b),v8(0xa2),v8(0x49),v8(0x6d),v8(0x8b),v8(0xd1),v8(0x25)
    db  v8(0x72),v8(0xf8),v8(0xf6),v8(0x64),v8(0x86),v8(0x68),v8(0x98),v8(0x16)
    db  v8(0xd4),v8(0xa4),v8(0x5c),v8(0xcc),v8(0x5d),v8(0x65),v8(0xb6),v8(0x92)
    db  v8(0x6c),v8(0x70),v8(0x48),v8(0x50),v8(0xfd),v8(0xed),v8(0xb9),v8(0xda)
    db  v8(0x5e),v8(0x15),v8(0x46),v8(0x57),v8(0xa7),v8(0x8d),v8(0x9d),v8(0x84)
    db  v8(0x90),v8(0xd8),v8(0xab),v8(0x00),v8(0x8c),v8(0xbc),v8(0xd3),v8(0x0a)
    db  v8(0xf7),v8(0xe4),v8(0x58),v8(0x05),v8(0xb8),v8(0xb3),v8(0x45),v8(0x06)
    db  v8(0xd0),v8(0x2c),v8(0x1e),v8(0x8f),v8(0xca),v8(0x3f),v8(0x0f),v8(0x02)
    db  v8(0xc1),v8(0xaf),v8(0xbd),v8(0x03),v8(0x01),v8(0x13),v8(0x8a),v8(0x6b)
    db  v8(0x3a),v8(0x91),v8(0x11),v8(0x41),v8(0x4f),v8(0x67),v8(0xdc),v8(0xea)
    db  v8(0x97),v8(0xf2),v8(0xcf),v8(0xce),v8(0xf0),v8(0xb4),v8(0xe6),v8(0x73)
    db  v8(0x96),v8(0xac),v8(0x74),v8(0x22),v8(0xe7),v8(0xad),v8(0x35),v8(0x85)
    db  v8(0xe2),v8(0xf9),v8(0x37),v8(0xe8),v8(0x1c),v8(0x75),v8(0xdf),v8(0x6e)
    db  v8(0x47),v8(0xf1),v8(0x1a),v8(0x71),v8(0x1d),v8(0x29),v8(0xc5),v8(0x89)
    db  v8(0x6f),v8(0xb7),v8(0x62),v8(0x0e),v8(0xaa),v8(0x18),v8(0xbe),v8(0x1b)
    db  v8(0xfc),v8(0x56),v8(0x3e),v8(0x4b),v8(0xc6),v8(0xd2),v8(0x79),v8(0x20)
    db  v8(0x9a),v8(0xdb),v8(0xc0),v8(0xfe),v8(0x78),v8(0xcd),v8(0x5a),v8(0xf4)
    db  v8(0x1f),v8(0xdd),v8(0xa8),v8(0x33),v8(0x88),v8(0x07),v8(0xc7),v8(0x31)
    db  v8(0xb1),v8(0x12),v8(0x10),v8(0x59),v8(0x27),v8(0x80),v8(0xec),v8(0x5f)
    db  v8(0x60),v8(0x51),v8(0x7f),v8(0xa9),v8(0x19),v8(0xb5),v8(0x4a),v8(0x0d)
    db  v8(0x2d),v8(0xe5),v8(0x7a),v8(0x9f),v8(0x93),v8(0xc9),v8(0x9c),v8(0xef)
    db  v8(0xa0),v8(0xe0),v8(0x3b),v8(0x4d),v8(0xae),v8(0x2a),v8(0xf5),v8(0xb0)
    db  v8(0xc8),v8(0xeb),v8(0xbb),v8(0x3c),v8(0x83),v8(0x53),v8(0x99),v8(0x61)
    db  v8(0x17),v8(0x2b),v8(0x04),v8(0x7e),v8(0xba),v8(0x77),v8(0xd6),v8(0x26)
    db  v8(0xe1),v8(0x69),v8(0x14),v8(0x63),v8(0x55),v8(0x21),v8(0x0c),v8(0x7d)

%endif