VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Mount/Mount.vcproj
diff options
context:
space:
mode:
Diffstat (limited to 'src/Mount/Mount.vcproj')
0 files changed, 0 insertions, 0 deletions
#n53'>53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
; ---------------------------------------------------------------------------
; Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
; 
; LICENSE TERMS
; 
; The free distribution and use of this software is allowed (with or without
; changes) provided that:
; 
;  1. source code distributions include the above copyright notice, this
;     list of conditions and the following disclaimer;
; 
;  2. binary distributions include the above copyright notice, this list
;     of conditions and the following disclaimer in their documentation;
; 
;  3. the name of the copyright holder is not used to endorse products
;     built using this software without specific written permission.
; 
; DISCLAIMER
; 
; This software is provided 'as is' with no explicit or implied warranties
; in respect of its properties, including, but not limited to, correctness
; and/or fitness for purpose.
; ---------------------------------------------------------------------------
; Issue 20/12/2007
;
; This code requires ASM_X86_V1C to be set in aesopt.h. It requires the C files
; aeskey.c and aestab.c for support.

;
; Adapted for TrueCrypt:
; - Compatibility with NASM and GCC
;

; An AES implementation for x86 processors using the YASM (or NASM) assembler.
; This is an assembler implementation that covers encryption and decryption
; only and is intended as a replacement of the C file aescrypt.c. It hence
; requires the file aeskey.c for keying and aestab.c for the AES tables. It
; employs full tables rather than compressed tables.

; This code provides the standard AES block size (128 bits, 16 bytes) and the
; three standard AES key sizes (128, 192 and 256 bits). It has the same call
; interface as my C implementation. The ebx, esi, edi and ebp registers are
; preserved across calls but eax, ecx and edx and the artihmetic status flags
; are not.  It is also important that the defines below match those used in the
; C code.  This code uses the VC++ register saving conentions; if it is used
; with another compiler, conventions for using and saving registers may need to
; be checked (and calling conventions).  The YASM command line for the VC++
; custom build step is:
;
;    yasm -Xvc -f win32 -o "$(TargetDir)\$(InputName).obj" "$(InputPath)"
;
;  The calling intefaces are:
;
;     AES_RETURN aes_encrypt(const unsigned char in_blk[],
;                   unsigned char out_blk[], const aes_encrypt_ctx cx[1]);
;
;     AES_RETURN aes_decrypt(const unsigned char in_blk[],
;                   unsigned char out_blk[], const aes_decrypt_ctx cx[1]);
;
;     AES_RETURN aes_encrypt_key<NNN>(const unsigned char key[],
;                                            const aes_encrypt_ctx cx[1]);
;
;     AES_RETURN aes_decrypt_key<NNN>(const unsigned char key[],
;                                            const aes_decrypt_ctx cx[1]);
;
;     AES_RETURN aes_encrypt_key(const unsigned char key[],
;                           unsigned int len, const aes_decrypt_ctx cx[1]);
;
;     AES_RETURN aes_decrypt_key(const unsigned char key[],
;                           unsigned int len, const aes_decrypt_ctx cx[1]);
;
; where <NNN> is 128, 102 or 256.  In the last two calls the length can be in
; either bits or bytes.
;
; Comment in/out the following lines to obtain the desired subroutines. These
; selections MUST match those in the C header file aes.h

; %define AES_128                 ; define if AES with 128 bit keys is needed
; %define AES_192                 ; define if AES with 192 bit keys is needed
%define AES_256                 ; define if AES with 256 bit keys is needed
; %define AES_VAR                 ; define if a variable key size is needed
%define ENCRYPTION              ; define if encryption is needed
%define DECRYPTION              ; define if decryption is needed
%define AES_REV_DKS             ; define if key decryption schedule is reversed
%define LAST_ROUND_TABLES       ; define if tables are to be used for last round

; offsets to parameters

in_blk  equ     4   ; input byte array address parameter
out_blk equ     8   ; output byte array address parameter
ctx     equ    12   ; AES context structure
stk_spc equ    20   ; stack space
%define parms  12   ; parameter space on stack

; The encryption key schedule has the following in memory layout where N is the
; number of rounds (10, 12 or 14):
;
; lo: | input key (round 0)  |  ; each round is four 32-bit words
;     | encryption round 1   |
;     | encryption round 2   |
;     ....
;     | encryption round N-1 |
; hi: | encryption round N   |
;
; The decryption key schedule is normally set up so that it has the same
; layout as above by actually reversing the order of the encryption key
; schedule in memory (this happens when AES_REV_DKS is set):
;
; lo: | decryption round 0   | =              | encryption round N   |
;     | decryption round 1   | = INV_MIX_COL[ | encryption round N-1 | ]
;     | decryption round 2   | = INV_MIX_COL[ | encryption round N-2 | ]
;     ....                       ....
;     | decryption round N-1 | = INV_MIX_COL[ | encryption round 1   | ]
; hi: | decryption round N   | =              | input key (round 0)  |
;
; with rounds except the first and last modified using inv_mix_column()
; But if AES_REV_DKS is NOT set the order of keys is left as it is for
; encryption so that it has to be accessed in reverse when used for
; decryption (although the inverse mix column modifications are done)
;
; lo: | decryption round 0   | =              | input key (round 0)  |
;     | decryption round 1   | = INV_MIX_COL[ | encryption round 1   | ]
;     | decryption round 2   | = INV_MIX_COL[ | encryption round 2   | ]
;     ....                       ....
;     | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ]
; hi: | decryption round N   | =              | encryption round N   |
;
; This layout is faster when the assembler key scheduling provided here
; is used.
;
; The DLL interface must use the _stdcall convention in which the number
; of bytes of parameter space is added after an @ to the sutine's name.
; We must also remove our parameters from the stack before return (see
; the do_exit macro). Define DLL_EXPORT for the Dynamic Link Library version.

;%define DLL_EXPORT

; End of user defines

%ifdef AES_VAR
%ifndef AES_128
%define AES_128
%endif
%ifndef AES_192
%define AES_192
%endif
%ifndef AES_256
%define AES_256
%endif
%endif

%ifdef AES_VAR
%define KS_LENGTH       60
%elifdef AES_256
%define KS_LENGTH       60
%elifdef AES_192
%define KS_LENGTH       52
%else
%define KS_LENGTH       44
%endif

; These macros implement stack based local variables

%macro  save 2
    mov     [esp+4*%1],%2
%endmacro

%macro  restore 2
    mov     %1,[esp+4*%2]
%endmacro

; the DLL has to implement the _stdcall calling interface on return
; In this case we have to take our parameters (3 4-byte pointers)
; off the stack

%macro  do_name 1-2 parms
%ifndef DLL_EXPORT
    align 32
    global  %1
%1:
%else
    align 32
    global  %1@%2
    export  _%1@%2
%1@%2:
%endif
%endmacro

%macro  do_call 1-2 parms
%ifndef DLL_EXPORT
    call    %1
    add     esp,%2
%else
    call    %1@%2
%endif
%endmacro

%macro  do_exit  0-1 parms
%ifdef DLL_EXPORT
    ret %1
%else
    ret
%endif
%endmacro

%ifdef  ENCRYPTION

    extern  t_fn

%define etab_0(x)   [t_fn+4*x]
%define etab_1(x)   [t_fn+1024+4*x]
%define etab_2(x)   [t_fn+2048+4*x]
%define etab_3(x)   [t_fn+3072+4*x]

%ifdef LAST_ROUND_TABLES

    extern  t_fl

%define eltab_0(x)  [t_fl+4*x]
%define eltab_1(x)  [t_fl+1024+4*x]
%define eltab_2(x)  [t_fl+2048+4*x]
%define eltab_3(x)  [t_fl+3072+4*x]

%else

%define etab_b(x)   byte [t_fn+3072+4*x]

%endif

; ROUND FUNCTION.  Build column[2] on ESI and column[3] on EDI that have the
; round keys pre-loaded. Build column[0] in EBP and column[1] in EBX.
;
; Input:
;
;   EAX     column[0]
;   EBX     column[1]
;   ECX     column[2]
;   EDX     column[3]
;   ESI     column key[round][2]
;   EDI     column key[round][3]
;   EBP     scratch
;
; Output:
;
;   EBP     column[0]   unkeyed
;   EBX     column[1]   unkeyed
;   ESI     column[2]   keyed
;   EDI     column[3]   keyed
;   EAX     scratch
;   ECX     scratch
;   EDX     scratch

%macro rnd_fun 2

    rol     ebx,16
    %1      esi, cl, 0, ebp
    %1      esi, dh, 1, ebp
    %1      esi, bh, 3, ebp
    %1      edi, dl, 0, ebp
    %1      edi, ah, 1, ebp
    %1      edi, bl, 2, ebp
    %2      ebp, al, 0, ebp
    shr     ebx,16
    and     eax,0xffff0000
    or      eax,ebx
    shr     edx,16
    %1      ebp, ah, 1, ebx
    %1      ebp, dh, 3, ebx
    %2      ebx, dl, 2, ebx
    %1      ebx, ch, 1, edx
    %1      ebx, al, 0, edx
    shr     eax,16
    shr     ecx,16
    %1      ebp, cl, 2, edx
    %1      edi, ch, 3, edx
    %1      esi, al, 2, edx
    %1      ebx, ah, 3, edx

%endmacro

; Basic MOV and XOR Operations for normal rounds

%macro  nr_xor  4
    movzx   %4,%2
    xor     %1,etab_%3(%4)
%endmacro

%macro  nr_mov  4
    movzx   %4,%2
    mov     %1,etab_%3(%4)
%endmacro

; Basic MOV and XOR Operations for last round

%ifdef LAST_ROUND_TABLES

    %macro  lr_xor  4
        movzx   %4,%2
        xor     %1,eltab_%3(%4)
    %endmacro

    %macro  lr_mov  4
        movzx   %4,%2
        mov     %1,eltab_%3(%4)
    %endmacro

%else

    %macro  lr_xor  4
        movzx   %4,%2
        movzx   %4,etab_b(%4)
    %if %3 != 0
        shl     %4,8*%3
    %endif
        xor     %1,%4
    %endmacro

    %macro  lr_mov  4
        movzx   %4,%2
        movzx   %1,etab_b(%4)
    %if %3 != 0
        shl     %1,8*%3
    %endif
    %endmacro

%endif

%macro enc_round 0

    add     ebp,16
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    rnd_fun nr_xor, nr_mov

    mov     eax,ebp
    mov     ecx,esi
    mov     edx,edi
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

%macro enc_last_round 0

    add     ebp,16
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    rnd_fun lr_xor, lr_mov

    mov     eax,ebp
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

    section .text align=32

; AES Encryption Subroutine

    do_name aes_encrypt

    sub     esp,stk_spc
    mov     [esp+16],ebp
    mov     [esp+12],ebx
    mov     [esp+ 8],esi
    mov     [esp+ 4],edi

    mov     esi,[esp+in_blk+stk_spc] ; input pointer
    mov     eax,[esi   ]
    mov     ebx,[esi+ 4]
    mov     ecx,[esi+ 8]
    mov     edx,[esi+12]

    mov     ebp,[esp+ctx+stk_spc]    ; key pointer
    movzx   edi,byte [ebp+4*KS_LENGTH]
    xor     eax,[ebp   ]
    xor     ebx,[ebp+ 4]
    xor     ecx,[ebp+ 8]
    xor     edx,[ebp+12]

; determine the number of rounds

    cmp     edi,10*16
    je      .3
    cmp     edi,12*16
    je      .2
    cmp     edi,14*16
    je      .1
    mov     eax,-1
    jmp     .5

.1: enc_round
    enc_round
.2: enc_round
    enc_round
.3: enc_round
    enc_round
    enc_round
    enc_round
    enc_round
    enc_round
    enc_round
    enc_round
    enc_round
    enc_last_round

    mov     edx,[esp+out_blk+stk_spc]
    mov     [edx],eax
    mov     [edx+4],ebx
    mov     [edx+8],esi
    mov     [edx+12],edi
    xor     eax,eax

.5: mov     ebp,[esp+16]
    mov     ebx,[esp+12]
    mov     esi,[esp+ 8]
    mov     edi,[esp+ 4]
    add     esp,stk_spc
    do_exit

%endif

%ifdef  DECRYPTION

    extern  t_in

%define dtab_0(x)   [t_in+4*x]
%define dtab_1(x)   [t_in+1024+4*x]
%define dtab_2(x)   [t_in+2048+4*x]
%define dtab_3(x)   [t_in+3072+4*x]

%ifdef LAST_ROUND_TABLES

    extern  t_il

%define dltab_0(x)  [t_il+4*x]
%define dltab_1(x)  [t_il+1024+4*x]
%define dltab_2(x)  [t_il+2048+4*x]
%define dltab_3(x)  [t_il+3072+4*x]

%else

    extern  _t_ibox

%define dtab_x(x)   byte [_t_ibox+x]

%endif

%macro irn_fun 2

    rol eax,16
    %1      esi, cl, 0, ebp
    %1      esi, bh, 1, ebp
    %1      esi, al, 2, ebp
    %1      edi, dl, 0, ebp
    %1      edi, ch, 1, ebp
    %1      edi, ah, 3, ebp
    %2      ebp, bl, 0, ebp
    shr     eax,16
    and     ebx,0xffff0000
    or      ebx,eax
    shr     ecx,16
    %1      ebp, bh, 1, eax
    %1      ebp, ch, 3, eax
    %2      eax, cl, 2, ecx
    %1      eax, bl, 0, ecx
    %1      eax, dh, 1, ecx
    shr     ebx,16
    shr     edx,16
    %1      esi, dh, 3, ecx
    %1      ebp, dl, 2, ecx
    %1      eax, bh, 3, ecx
    %1      edi, bl, 2, ecx

%endmacro

; Basic MOV and XOR Operations for normal rounds

%macro  ni_xor  4
    movzx   %4,%2
    xor     %1,dtab_%3(%4)
%endmacro

%macro  ni_mov  4
    movzx   %4,%2
    mov     %1,dtab_%3(%4)
%endmacro

; Basic MOV and XOR Operations for last round

%ifdef LAST_ROUND_TABLES

%macro  li_xor  4
    movzx   %4,%2
    xor     %1,dltab_%3(%4)
%endmacro

%macro  li_mov  4
    movzx   %4,%2
    mov     %1,dltab_%3(%4)
%endmacro

%else

    %macro  li_xor  4
        movzx   %4,%2
        movzx   %4,dtab_x(%4)
    %if %3 != 0
        shl     %4,8*%3
    %endif
        xor     %1,%4
    %endmacro

    %macro  li_mov  4
        movzx   %4,%2
        movzx   %1,dtab_x(%4)
    %if %3 != 0
        shl     %1,8*%3
    %endif
    %endmacro

%endif

%macro dec_round 0

%ifdef AES_REV_DKS
    add     ebp,16
%else
    sub     ebp,16
%endif
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    irn_fun ni_xor, ni_mov

    mov     ebx,ebp
    mov     ecx,esi
    mov     edx,edi
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

%macro dec_last_round 0

%ifdef AES_REV_DKS
    add     ebp,16
%else
    sub     ebp,16
%endif
    save    0,ebp
    mov     esi,[ebp+8]
    mov     edi,[ebp+12]

    irn_fun li_xor, li_mov

    mov     ebx,ebp
    restore ebp,0
    xor     eax,[ebp]
    xor     ebx,[ebp+4]

%endmacro

    section .text

; AES Decryption Subroutine

    do_name aes_decrypt

    sub     esp,stk_spc
    mov     [esp+16],ebp
    mov     [esp+12],ebx
    mov     [esp+ 8],esi
    mov     [esp+ 4],edi

; input four columns and xor in first round key

    mov     esi,[esp+in_blk+stk_spc] ; input pointer
    mov     eax,[esi   ]
    mov     ebx,[esi+ 4]
    mov     ecx,[esi+ 8]
    mov     edx,[esi+12]
    lea     esi,[esi+16]

    mov     ebp,[esp+ctx+stk_spc]    ; key pointer
    movzx   edi,byte[ebp+4*KS_LENGTH]
%ifndef  AES_REV_DKS        ; if decryption key schedule is not reversed
    lea     ebp,[ebp+edi]   ; we have to access it from the top down
%endif
    xor     eax,[ebp   ]    ; key schedule
    xor     ebx,[ebp+ 4]
    xor     ecx,[ebp+ 8]
    xor     edx,[ebp+12]

; determine the number of rounds

    cmp     edi,10*16
    je      .3
    cmp     edi,12*16
    je      .2
    cmp     edi,14*16
    je      .1
    mov     eax,-1
    jmp     .5

.1: dec_round
    dec_round
.2: dec_round
    dec_round
.3: dec_round
    dec_round
    dec_round
    dec_round
    dec_round
    dec_round
    dec_round
    dec_round
    dec_round
    dec_last_round

; move final values to the output array.

    mov     ebp,[esp+out_blk+stk_spc]
    mov     [ebp],eax
    mov     [ebp+4],ebx
    mov     [ebp+8],esi
    mov     [ebp+12],edi
    xor     eax,eax

.5: mov     ebp,[esp+16]
    mov     ebx,[esp+12]
    mov     esi,[esp+ 8]
    mov     edi,[esp+ 4]
    add     esp,stk_spc
    do_exit

%endif