VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/GostCipher.c
blob: 0fd3941a6d3482cef3c84f5c113ffeaea7019b99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/** @file
GOST89 implementation

Copyright (c) 2016. Disk Cryptography Services for EFI (DCS), Alex Kolotnikov

This program and the accompanying materials
are licensed and made available under the terms and conditions
of the Apache License, Version 2.0.  
The full text of the license may be found at
https://opensource.org/licenses/Apache-2.0

Dynamic SBOX idea is from GostCrypt project. Copyright (c) 2008-2011 TrueCrypt Developers Association
**/



#include "GostCipher.h"
#include "Streebog.h"
#include "cpu.h"

#if defined(CIPHER_GOST89)

// Crypto Pro
byte S_CryptoPro[8][16] = {
	{0x1,0x3,0xA,0x9,0x5,0xB,0x4,0xF,0x8,0x6,0x7,0xE,0xD,0x0,0x2,0xC},
	{0xD,0xE,0x4,0x1,0x7,0x0,0x5,0xA,0x3,0xC,0x8,0xF,0x6,0x2,0x9,0xB},
	{0x7,0x6,0x2,0x4,0xD,0x9,0xF,0x0,0xA,0x1,0x5,0xB,0x8,0xE,0xC,0x3},
	{0x7,0x6,0x4,0xB,0x9,0xC,0x2,0xA,0x1,0x8,0x0,0xE,0xF,0xD,0x3,0x5},
	{0x4,0xA,0x7,0xC,0x0,0xF,0x2,0x8,0xE,0x1,0x6,0x5,0xD,0xB,0x9,0x3},
	{0x7,0xF,0xC,0xE,0x9,0x4,0x1,0x0,0x3,0xB,0x5,0x2,0x6,0xA,0x8,0xD},
	{0x5,0xF,0x4,0x0,0x2,0xD,0xB,0x9,0x1,0x7,0x6,0x3,0xC,0xE,0xA,0x8},
	{0xA,0x4,0x5,0x6,0x8,0x1,0x3,0x7,0xD,0xC,0xE,0x0,0x9,0x2,0xB,0xF}
	};

// TC26
byte S_TC26[8][16] =
{
	{ 0xc, 0x4, 0x6, 0x2, 0xa, 0x5, 0xb, 0x9, 0xe, 0x8, 0xd, 0x7, 0x0, 0x3, 0xf, 0x1 },
	{ 0x6, 0x8, 0x2, 0x3, 0x9, 0xa, 0x5, 0xc, 0x1, 0xe, 0x4, 0x7, 0xb, 0xd, 0x0, 0xf },
	{ 0xb, 0x3, 0x5, 0x8, 0x2, 0xf, 0xa, 0xd, 0xe, 0x1, 0x7, 0x4, 0xc, 0x9, 0x6, 0x0 },
	{ 0xc, 0x8, 0x2, 0x1, 0xd, 0x4, 0xf, 0x6, 0x7, 0x0, 0xa, 0x5, 0x3, 0xe, 0x9, 0xb },
	{ 0x7, 0xf, 0x5, 0xa, 0x8, 0x1, 0x6, 0xd, 0x0, 0x9, 0x3, 0xe, 0xb, 0x4, 0x2, 0xc },
	{ 0x5, 0xd, 0xf, 0x6, 0x9, 0x2, 0xc, 0xa, 0xb, 0x7, 0x8, 0x1, 0x4, 0x3, 0xe, 0x0 },
	{ 0x8, 0xe, 0x2, 0x5, 0x6, 0x9, 0x1, 0xc, 0xf, 0x4, 0xb, 0x0, 0xd, 0xa, 0x3, 0x7 },
	{ 0x1, 0x7, 0xe, 0xd, 0x0, 0x5, 0x8, 0x3, 0x4, 0xf, 0xa, 0x6, 0x9, 0xc, 0xb, 0x2 },
};

void gost_prepare_kds(gost_kds* kds) {
	uint32 i;
	// Build substitution tables. 
	for (i = 0; i < 256; ++i) {
		uint32 p;
		p = kds->sbox[7][i >> 4] << 4 | kds->sbox[6][i & 15];
		p = p << 24; p = p << 11 | p >> 21;
		kds->sbox_cvt[i] = p; // S87

		p = kds->sbox[5][i >> 4] << 4 | kds->sbox[4][i & 15];
		p = p << 16; p = p << 11 | p >> 21;
		kds->sbox_cvt[256 + i] = p; // S65

		p = kds->sbox[3][i >> 4] << 4 | kds->sbox[2][i & 15];
		p = p << 8; p = p << 11 | p >> 21;
		kds->sbox_cvt[256 * 2 + i] = p; // S43

		p = kds->sbox[1][i >> 4] << 4 | kds->sbox[0][i & 15];
		p = p << 11 | p >> 21;
		kds->sbox_cvt[256 * 3 + i] = p; // S21
	}
}


static void xor_s_box(byte s_box[8][16], byte *seed)
{
   int i;
   for (i = 0; i < 16; i++)
   {
      s_box[0][i] ^= (seed[ (i * 4) + 0 ]   ) & 0xF;
      s_box[1][i] ^= (seed[ (i * 4) + 0 ]>>4) & 0xF;
      s_box[2][i] ^= (seed[ (i * 4) + 1 ]   ) & 0xF;
      s_box[3][i] ^= (seed[ (i * 4) + 1 ]>>4) & 0xF;
      s_box[4][i] ^= (seed[ (i * 4) + 2 ]   ) & 0xF;
      s_box[5][i] ^= (seed[ (i * 4) + 2 ]>>4) & 0xF;
      s_box[6][i] ^= (seed[ (i * 4) + 3 ]   ) & 0xF;
      s_box[7][i] ^= (seed[ (i * 4) + 3 ]>>4) & 0xF;
   }
}

void gost_set_key(const byte *key, gost_kds *ks, int useDynamicSbox)
{
	memcpy(ks->key, key, GOST_KEYSIZE);
	memcpy(ks->sbox, S_TC26, sizeof(ks->sbox));

    if (useDynamicSbox)
    {
	    STREEBOG_CTX sctx;
	    byte sbox_seed[64];
#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	    KFLOATING_SAVE floatingPointState;
	    NTSTATUS saveStatus = STATUS_SUCCESS;
	    if (HasSSE2() || HasSSE41())
		    saveStatus = KeSaveFloatingPointState (&floatingPointState);
#endif
	    //Generate pseudorandom data based on the key
	    STREEBOG_init(&sctx);
	    STREEBOG_add(&sctx, ks->key, 32);
	    STREEBOG_finalize(&sctx, sbox_seed);

#if defined (DEVICE_DRIVER) && !defined (_WIN64)
	    if (NT_SUCCESS (saveStatus) && (HasSSE2() || HasSSE41()))
		    KeRestoreFloatingPointState (&floatingPointState);
#endif

	    xor_s_box(ks->sbox, sbox_seed);
    }

	gost_prepare_kds(ks);
}

static uint32 f(uint32 v, uint32* sbox){
   byte* x =(byte*) &v;
   /* Do substitutions */
   return sbox[x[3]] | sbox[256 + x[2]] | sbox[256*2 + x[1]] | sbox[256*3 + x[0]];
}

void gost_encrypt_block(uint64 in_, uint64* out_, gost_kds* kds) {
   uint32* in  = (uint32*)&in_;
   uint32* out = (uint32*)out_;
	uint32* key = (uint32*)kds->key;
	uint32* sbox = kds->sbox_cvt;

   // As named in the GOST
   uint32 n1 = in[0];
   uint32 n2 = in[1];

	n2 ^= f(n1+key[0], sbox);
   n1 ^= f(n2+key[1], sbox);
   n2 ^= f(n1+key[2], sbox);
   n1 ^= f(n2+key[3], sbox);
   n2 ^= f(n1+key[4], sbox);
   n1 ^= f(n2+key[5], sbox);
   n2 ^= f(n1+key[6], sbox);
   n1 ^= f(n2+key[7], sbox);

   n2 ^= f(n1+key[0], sbox);
   n1 ^= f(n2+key[1], sbox);
   n2 ^= f(n1+key[2], sbox);
   n1 ^= f(n2+key[3], sbox);
   n2 ^= f(n1+key[4], sbox);
   n1 ^= f(n2+key[5], sbox);
   n2 ^= f(n1+key[6], sbox);
   n1 ^= f(n2+key[7], sbox);

   n2 ^= f(n1+key[0], sbox);
   n1 ^= f(n2+key[1], sbox);
   n2 ^= f(n1+key[2], sbox);
   n1 ^= f(n2+key[3], sbox);
   n2 ^= f(n1+key[4], sbox);
   n1 ^= f(n2+key[5], sbox);
   n2 ^= f(n1+key[6], sbox);
   n1 ^= f(n2+key[7], sbox);

   n2 ^= f(n1+key[7], sbox);
   n1 ^= f(n2+key[6], sbox);
   n2 ^= f(n1+key[5], sbox);
   n1 ^= f(n2+key[4], sbox);
   n2 ^= f(n1+key[3], sbox);
   n1 ^= f(n2+key[2], sbox);
   n2 ^= f(n1+key[1], sbox);
   n1 ^= f(n2+key[0], sbox);

   // There is no swap after the last round
   out[0] = n2;
   out[1] = n1;
}

void gost_decrypt_block(uint64 in_, uint64* out_, gost_kds* kds) {
   uint32* in  = (uint32*)&in_;
   uint32* out = (uint32*)out_;
	uint32* key = (uint32*)kds->key;
	uint32* sbox = kds->sbox_cvt;

   // As named in the GOST
   uint32 n1 = in[0];
   uint32 n2 = in[1];

   n2 ^= f(n1+key[0], sbox);
   n1 ^= f(n2+key[1], sbox);
   n2 ^= f(n1+key[2], sbox);
   n1 ^= f(n2+key[3], sbox);
   n2 ^= f(n1+key[4], sbox);
   n1 ^= f(n2+key[5], sbox);
   n2 ^= f(n1+key[6], sbox);
   n1 ^= f(n2+key[7], sbox);

   n2 ^= f(n1+key[7], sbox);
   n1 ^= f(n2+key[6], sbox);
   n2 ^= f(n1+key[5], sbox);
   n1 ^= f(n2+key[4], sbox);
   n2 ^= f(n1+key[3], sbox);
   n1 ^= f(n2+key[2], sbox);
   n2 ^= f(n1+key[1], sbox);
   n1 ^= f(n2+key[0], sbox);

   n2 ^= f(n1+key[7], sbox);
   n1 ^= f(n2+key[6], sbox);
   n2 ^= f(n1+key[5], sbox);
   n1 ^= f(n2+key[4], sbox);
   n2 ^= f(n1+key[3], sbox);
   n1 ^= f(n2+key[2], sbox);
   n2 ^= f(n1+key[1], sbox);
   n1 ^= f(n2+key[0], sbox);

   n2 ^= f(n1+key[7], sbox);
   n1 ^= f(n2+key[6], sbox);
   n2 ^= f(n1+key[5], sbox);
   n1 ^= f(n2+key[4], sbox);
   n2 ^= f(n1+key[3], sbox);
   n1 ^= f(n2+key[2], sbox);
   n2 ^= f(n1+key[1], sbox);
   n1 ^= f(n2+key[0], sbox);

   out[0] = n2;
   out[1] = n1;
}

#if defined(_M_AMD64)
void gost_encrypt_128_CBC_asm(const byte *in, byte *out, gost_kds *ks, uint64 count);
void gost_decrypt_128_CBC_asm(const byte *in, byte *out, gost_kds *ks, uint64 count);
#endif

void gost_encrypt(const byte *in, byte *out, gost_kds *ks, int count) {
#if defined(_M_AMD64)
	gost_encrypt_128_CBC_asm(in, out, ks, (uint64)count);
#else
	while (count > 0) {
		// encrypt two blocks in CBC mode
		gost_encrypt_block(*((uint64*)in), (uint64*)out, ks);
		*((gst_udword*)(out + 8)) = *((gst_udword*)(in + 8)) ^ *((gst_udword*)(out));
		*((gst_udword*)(out + 12)) = *((gst_udword*)(in + 12)) ^ *((gst_udword*)(out + 4));
		gost_encrypt_block(*((uint64*)(out + 8)), (uint64*)(out + 8), ks);
		count--;
		in += 16;
		out += 16;
	}
#endif
}

void gost_decrypt(const byte *in, byte *out, gost_kds *ks, int count) {
#if defined(_M_AMD64)
	gost_decrypt_128_CBC_asm(in, out, ks, (uint64)count);
#else
	while (count > 0) {
		// decrypt two blocks in CBC mode
		gost_decrypt_block(*((uint64*)(in + 8)), (uint64*)(out + 8), ks);
		*((gst_udword*)(out + 8)) ^= *((gst_udword*)(in));;
		*((gst_udword*)(out + 12)) ^= *((gst_udword*)(in + 4));;
		gost_decrypt_block(*((uint64*)(in)), (uint64*)(out), ks);
		count--;
		in += 16;
		out += 16;
	}
#endif
}

#endif