VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/SerpentFast.h
blob: a5937b6ea6ccd2887cad693e8416eea02bb85a8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/*
* Serpent
* (C) 1999-2007 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

#include "Common/Tcdefs.h"

#pragma once

#ifdef __cplusplus
extern "C"
{
#endif

/* userKey is always 32-bytes long */
void serpent_set_key(const unsigned __int8 userKey[], unsigned __int8 *ks);
void serpent_encrypt_blocks(const unsigned __int8* in, unsigned __int8* out, size_t blocks, unsigned __int8 *ks);
void serpent_decrypt_blocks(const unsigned __int8* in, unsigned __int8* out, size_t blocks, unsigned __int8 *ks);

#define serpent_encrypt(inBlock,outBlock,ks)	serpent_encrypt_blocks(inBlock,outBlock,1,ks)
#define serpent_decrypt(inBlock,outBlock,ks)	serpent_decrypt_blocks(inBlock,outBlock,1,ks)

#ifdef __cplusplus
}
#endif
d='n259' href='#n259'>259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/*
 *  Copyright (c) 2016-2018 Positive Technologies, https://www.ptsecurity.com,
 *  Fast Positive Hash.
 *
 *  Portions Copyright (c) 2010-2018 Leonid Yuriev <leo@yuriev.ru>,
 *  The 1Hippeus project (t1h).
 *
 *  This software is provided 'as-is', without any express or implied
 *  warranty. In no event will the authors be held liable for any damages
 *  arising from the use of this software.
 *
 *  Permission is granted to anyone to use this software for any purpose,
 *  including commercial applications, and to alter it and redistribute it
 *  freely, subject to the following restrictions:
 *
 *  1. The origin of this software must not be misrepresented; you must not
 *     claim that you wrote the original software. If you use this software
 *     in a product, an acknowledgement in the product documentation would be
 *     appreciated but is not required.
 *  2. Altered source versions must be plainly marked as such, and must not be
 *     misrepresented as being the original software.
 *  3. This notice may not be removed or altered from any source distribution.
 */

/*
 * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" }
 * by [Positive Technologies](https://www.ptsecurity.ru)
 *
 * Briefly, it is a 64-bit Hash Function:
 *  1. Created for 64-bit little-endian platforms, in predominantly for x86_64,
 *     but portable and without penalties it can run on any 64-bit CPU.
 *  2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash
 *     and all others portable hash-functions (which do not use specific
 *     hardware tricks).
 *  3. Not suitable for cryptography.
 *
 * The Future will Positive. Всё будет хорошо.
 *
 * ACKNOWLEDGEMENT:
 * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев)
 * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta!
 */

#pragma once

#if defined(_MSC_VER)
#pragma warning(disable : 4201) /* nameless struct/union */
#if _MSC_VER > 1800
#pragma warning(disable : 4464) /* relative include path contains '..' */
#endif                          /* 1800 */
#endif                          /* MSVC */
#include "t1ha.h"

#ifndef T1HA_USE_FAST_ONESHOT_READ
/* Define it to 1 for little bit faster code.
 * Unfortunately this may triggering a false-positive alarms from Valgrind,
 * AddressSanitizer and other similar tool.
 * So, define it to 0 for calmness if doubt. */
#define T1HA_USE_FAST_ONESHOT_READ 1
#endif /* T1HA_USE_FAST_ONESHOT_READ */

/*****************************************************************************/

#include <assert.h>  /* for assert() */
#include <string.h>  /* for memcpy() */

#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__ &&                               \
    __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__
#error Unsupported byte order.
#endif

#define T1HA_UNALIGNED_ACCESS__UNABLE 0
#define T1HA_UNALIGNED_ACCESS__SLOW 1
#define T1HA_UNALIGNED_ACCESS__EFFICIENT 2

#ifndef T1HA_SYS_UNALIGNED_ACCESS
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__EFFICIENT
#elif defined(__ia32__)
#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__EFFICIENT
#elif defined(__e2k__)
#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__SLOW
#elif defined(__ARM_FEATURE_UNALIGNED)
#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__EFFICIENT
#else
#define T1HA_SYS_UNALIGNED_ACCESS T1HA_UNALIGNED_ACCESS__UNABLE
#endif
#endif /* T1HA_SYS_UNALIGNED_ACCESS */

#define ALIGNMENT_16 2
#define ALIGNMENT_32 4
#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul
#define ALIGNMENT_64 8
#else
#define ALIGNMENT_64 4
#endif

#ifndef PAGESIZE
#define PAGESIZE 4096
#endif /* PAGESIZE */

/***************************************************************************/

#ifndef __has_builtin
#define __has_builtin(x) (0)
#endif

#ifndef __has_warning
#define __has_warning(x) (0)
#endif

#ifndef __has_feature
#define __has_feature(x) (0)
#endif

#ifndef __has_extension
#define __has_extension(x) (0)
#endif

#ifndef __has_attribute
#define __has_attribute(x) (0)
#endif

#if __has_feature(address_sanitizer)
#define __SANITIZE_ADDRESS__ 1
#endif

#ifndef __optimize
#if defined(__clang__) && !__has_attribute(optimize)
#define __optimize(ops)
#elif defined(__GNUC__) || __has_attribute(optimize)
#define __optimize(ops) __attribute__((optimize(ops)))
#else
#define __optimize(ops)
#endif
#endif /* __optimize */

#ifndef __cold
#if defined(__OPTIMIZE__)
#if defined(__e2k__)
#define __cold __optimize(1) __attribute__((cold))
#elif defined(__clang__) && !__has_attribute(cold)
/* just put infrequently used functions in separate section */
#define __cold __attribute__((section("text.unlikely"))) __optimize("Os")
#elif defined(__GNUC__) || __has_attribute(cold)
#define __cold __attribute__((cold)) __optimize("Os")
#else
#define __cold __optimize("Os")
#endif
#else
#define __cold
#endif
#endif /* __cold */


#if defined(_MSC_VER)

#pragma warning(push, 1)

#include <stdlib.h>
#define likely(cond) (cond)
#define unlikely(cond) (cond)
#define unreachable() __assume(0)
#define bswap64(v) byteswap_64(v)
#define bswap32(v) byteswap_32(v)
#define bswap16(v) byteswap_16(v)
#define rot64(v, s) rotr64(v, s)
#define rot32(v, s) rotr32(v, s)
#define __always_inline __forceinline

#ifdef TC_WINDOWS_DRIVER
#undef assert
#define assert ASSERT
#endif

#if defined(_M_X64) || defined(_M_IA64)
#pragma intrinsic(_umul128)
#define mul_64x64_128(a, b, ph) _umul128(a, b, ph)
#endif

#if defined(_M_ARM64) || defined(_M_X64) || defined(_M_IA64)
#pragma intrinsic(__umulh)
#define mul_64x64_high(a, b) __umulh(a, b)
#endif

#pragma warning(pop)
#pragma warning(disable : 4514) /* 'xyz': unreferenced inline function         \
                                   has been removed */
#pragma warning(disable : 4710) /* 'xyz': function not inlined */
#pragma warning(disable : 4711) /* function 'xyz' selected for                 \
                                   automatic inline expansion */
#pragma warning(disable : 4127) /* conditional expression is constant */
#pragma warning(disable : 4702) /* unreachable code */

#define __GNUC_PREREQ(a,b) 0
#define UINT64_C(value)   value ## ULL

#endif                          /* Compiler */

#ifndef likely
#define likely(cond) (cond)
#endif
#ifndef unlikely
#define unlikely(cond) (cond)
#endif
#ifndef __maybe_unused
#define __maybe_unused
#endif
#ifndef __always_inline
#define __always_inline __inline
#endif
#ifndef unreachable
#define unreachable()                                                          \
  do {                                                                         \
  } while (1)
#endif



#ifndef read_unaligned
#if defined(__GNUC__) || __has_attribute(packed)
typedef struct {
  uint8_t unaligned_8;
  uint16_t unaligned_16;
  uint32_t unaligned_32;
  uint64_t unaligned_64;
} __attribute__((packed)) t1ha_unaligned_proxy;
#define read_unaligned(ptr, bits)                                              \
  (((const t1ha_unaligned_proxy *)((const uint8_t *)(ptr)-offsetof(            \
        t1ha_unaligned_proxy, unaligned_##bits)))                              \
       ->unaligned_##bits)
#elif defined(_MSC_VER)
#pragma warning(                                                               \
    disable : 4235) /* nonstandard extension used: '__unaligned'               \
                     * keyword not supported on this architecture */
#define read_unaligned(ptr, bits) (*(const __unaligned uint##bits##_t *)(ptr))
#else
#pragma pack(push, 1)
typedef struct {
  uint8_t unaligned_8;
  uint16_t unaligned_16;
  uint32_t unaligned_32;
  uint64_t unaligned_64;
} t1ha_unaligned_proxy;
#pragma pack(pop)
#define read_unaligned(ptr, bits)                                              \
  (((const t1ha_unaligned_proxy *)((const uint8_t *)(ptr)-offsetof(            \
        t1ha_unaligned_proxy, unaligned_##bits)))                              \
       ->unaligned_##bits)
#endif
#endif /* read_unaligned */

#ifndef read_aligned
#if __GNUC_PREREQ(4, 8) || __has_builtin(__builtin_assume_aligned)
#define read_aligned(ptr, bits)                                                \
  (*(const uint##bits##_t *)__builtin_assume_aligned(ptr, ALIGNMENT_##bits))
#elif (__GNUC_PREREQ(3, 3) || __has_attribute(aligned)) && !defined(__clang__)
#define read_aligned(ptr, bits)                                                \
  (*(const uint##bits##_t __attribute__((aligned(ALIGNMENT_##bits))) *)(ptr))
#elif __has_attribute(assume_aligned)

static __always_inline const
    uint16_t *__attribute__((assume_aligned(ALIGNMENT_16)))
    cast_aligned_16(const void *ptr) {
  return (const uint16_t *)ptr;
}
static __always_inline const
    uint32_t *__attribute__((assume_aligned(ALIGNMENT_32)))
    cast_aligned_32(const void *ptr) {
  return (const uint32_t *)ptr;
}
static __always_inline const
    uint64_t *__attribute__((assume_aligned(ALIGNMENT_64)))
    cast_aligned_64(const void *ptr) {
  return (const uint64_t *)ptr;
}

#define read_aligned(ptr, bits) (*cast_aligned_##bits(ptr))

#elif defined(_MSC_VER)
#define read_aligned(ptr, bits)                                                \
  (*(const __declspec(align(ALIGNMENT_##bits)) uint##bits##_t *)(ptr))
#else
#define read_aligned(ptr, bits) (*(const uint##bits##_t *)(ptr))
#endif
#endif /* read_aligned */

#ifndef prefetch
#if (__GNUC_PREREQ(4, 0) || __has_builtin(__builtin_prefetch)) &&              \
    !defined(__ia32__)
#define prefetch(ptr) __builtin_prefetch(ptr)
#elif defined(_M_ARM64) || defined(_M_ARM)
#define prefetch(ptr) __prefetch(ptr)
#else
#define prefetch(ptr)                                                          \
  do {                                                                         \
    (void)(ptr);                                                               \
  } while (0)
#endif
#endif /* prefetch */

#if __has_warning("-Wconstant-logical-operand")
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wconstant-logical-operand"
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wconstant-logical-operand"
#else
#pragma warning disable "constant-logical-operand"
#endif
#endif /* -Wconstant-logical-operand */

#if __has_warning("-Wtautological-pointer-compare")
#if defined(__clang__)
#pragma clang diagnostic ignored "-Wtautological-pointer-compare"
#elif defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wtautological-pointer-compare"
#else
#pragma warning disable "tautological-pointer-compare"
#endif
#endif /* -Wtautological-pointer-compare */

/***************************************************************************/

#if __GNUC_PREREQ(4, 0)
#pragma GCC visibility push(hidden)
#endif /* __GNUC_PREREQ(4,0) */

/*---------------------------------------------------------- Little Endian */

#ifndef fetch16_le_aligned
static __always_inline uint16_t fetch16_le_aligned(const void *v) {
  assert(((uintptr_t)v) % ALIGNMENT_16 == 0);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return read_aligned(v, 16);
#else
  return bswap16(read_aligned(v, 16));
#endif
}
#endif /* fetch16_le_aligned */

#ifndef fetch16_le_unaligned
static __always_inline uint16_t fetch16_le_unaligned(const void *v) {
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
  const uint8_t *p = (const uint8_t *)v;
  return p[0] | (uint16_t)p[1] << 8;
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return read_unaligned(v, 16);
#else
  return bswap16(read_unaligned(v, 16));
#endif
}
#endif /* fetch16_le_unaligned */

#ifndef fetch32_le_aligned
static __always_inline uint32_t fetch32_le_aligned(const void *v) {
  assert(((uintptr_t)v) % ALIGNMENT_32 == 0);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return read_aligned(v, 32);
#else
  return bswap32(read_aligned(v, 32));
#endif
}
#endif /* fetch32_le_aligned */

#ifndef fetch32_le_unaligned
static __always_inline uint32_t fetch32_le_unaligned(const void *v) {
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
  return fetch16_le_unaligned(v) |
         (uint32_t)fetch16_le_unaligned((const uint8_t *)v + 2) << 16;
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return read_unaligned(v, 32);
#else
  return bswap32(read_unaligned(v, 32));
#endif
}
#endif /* fetch32_le_unaligned */

#ifndef fetch64_le_aligned
static __always_inline uint64_t fetch64_le_aligned(const void *v) {
  assert(((uintptr_t)v) % ALIGNMENT_64 == 0);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return read_aligned(v, 64);
#else
  return bswap64(read_aligned(v, 64));
#endif
}
#endif /* fetch64_le_aligned */

#ifndef fetch64_le_unaligned
static __always_inline uint64_t fetch64_le_unaligned(const void *v) {
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
  return fetch32_le_unaligned(v) |
         (uint64_t)fetch32_le_unaligned((const uint8_t *)v + 4) << 32;
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  return read_unaligned(v, 64);
#else
  return bswap64(read_unaligned(v, 64));
#endif
}
#endif /* fetch64_le_unaligned */

static __always_inline uint64_t tail64_le_aligned(const void *v, size_t tail) {
  const uint8_t *const p = (const uint8_t *)v;
#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__)
  /* We can perform a 'oneshot' read, which is little bit faster. */
  const unsigned shift = ((8 - tail) & 7) << 3;
  return fetch64_le_aligned(p) & ((~UINT64_C(0)) >> shift);
#else
  uint64_t r = 0;
  switch (tail & 7) {
  default:
    unreachable();
/* fall through */
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  /* For most CPUs this code is better when not needed byte reordering. */
  case 0:
    return fetch64_le_aligned(p);
  case 7:
    r = (uint64_t)p[6] << 8;
  /* fall through */
  case 6:
    r += p[5];
    r <<= 8;
  /* fall through */
  case 5:
    r += p[4];
    r <<= 32;
  /* fall through */
  case 4:
    return r + fetch32_le_aligned(p);
  case 3:
    r = (uint64_t)p[2] << 16;
  /* fall through */
  case 2:
    return r + fetch16_le_aligned(p);
  case 1:
    return p[0];
#else
  case 0:
    r = p[7] << 8;
  /* fall through */
  case 7:
    r += p[6];
    r <<= 8;
  /* fall through */
  case 6:
    r += p[5];
    r <<= 8;
  /* fall through */
  case 5:
    r += p[4];
    r <<= 8;
  /* fall through */
  case 4:
    r += p[3];
    r <<= 8;
  /* fall through */
  case 3:
    r += p[2];
    r <<= 8;
  /* fall through */
  case 2:
    r += p[1];
    r <<= 8;
  /* fall through */
  case 1:
    return r + p[0];
#endif
  }
#endif /* T1HA_USE_FAST_ONESHOT_READ */
}

#if T1HA_USE_FAST_ONESHOT_READ &&                                              \
    T1HA_SYS_UNALIGNED_ACCESS != T1HA_UNALIGNED_ACCESS__UNABLE &&              \
    defined(PAGESIZE) && PAGESIZE > 42 && !defined(__SANITIZE_ADDRESS__)
#define can_read_underside(ptr, size)                                          \
  (((PAGESIZE - (size)) & (uintptr_t)(ptr)) != 0)
#endif /* T1HA_USE_FAST_ONESHOT_READ */

static __always_inline uint64_t tail64_le_unaligned(const void *v,
                                                    size_t tail) {
  const uint8_t *p = (const uint8_t *)v;
#if defined(can_read_underside) &&                                             \
    (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul)
  /* On some systems (e.g. x86_64) we can perform a 'oneshot' read, which
   * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
   * for the reminder. */
  const unsigned offset = (8 - tail) & 7;
  const unsigned shift = offset << 3;
  if (likely(can_read_underside(p, 8))) {
    p -= offset;
    return fetch64_le_unaligned(p) >> shift;
  }
  return fetch64_le_unaligned(p) & ((~UINT64_C(0)) >> shift);
#else
  uint64_t r = 0;
  switch (tail & 7) {
  default:
    unreachable();
/* fall through */
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT &&           \
    __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  /* For most CPUs this code is better when not needed
   * copying for alignment or byte reordering. */
  case 0:
    return fetch64_le_unaligned(p);
  case 7:
    r = (uint64_t)p[6] << 8;
  /* fall through */
  case 6:
    r += p[5];
    r <<= 8;
  /* fall through */
  case 5:
    r += p[4];
    r <<= 32;
  /* fall through */
  case 4:
    return r + fetch32_le_unaligned(p);
  case 3:
    r = (uint64_t)p[2] << 16;
  /* fall through */
  case 2:
    return r + fetch16_le_unaligned(p);
  case 1:
    return p[0];
#else
  /* For most CPUs this code is better than a
   * copying for alignment and/or byte reordering. */
  case 0:
    r = p[7] << 8;
  /* fall through */
  case 7:
    r += p[6];
    r <<= 8;
  /* fall through */
  case 6:
    r += p[5];
    r <<= 8;
  /* fall through */
  case 5:
    r += p[4];
    r <<= 8;
  /* fall through */
  case 4:
    r += p[3];
    r <<= 8;
  /* fall through */
  case 3:
    r += p[2];
    r <<= 8;
  /* fall through */
  case 2:
    r += p[1];
    r <<= 8;
  /* fall through */
  case 1:
    return r + p[0];
#endif
  }
#endif /* can_read_underside */
}

/*------------------------------------------------------------- Big Endian */

#ifndef fetch16_be_aligned
static __maybe_unused __always_inline uint16_t
fetch16_be_aligned(const void *v) {
  assert(((uintptr_t)v) % ALIGNMENT_16 == 0);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  return read_aligned(v, 16);
#else
  return bswap16(read_aligned(v, 16));
#endif
}
#endif /* fetch16_be_aligned */

#ifndef fetch16_be_unaligned
static __maybe_unused __always_inline uint16_t
fetch16_be_unaligned(const void *v) {
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
  const uint8_t *p = (const uint8_t *)v;
  return (uint16_t)p[0] << 8 | p[1];
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  return read_unaligned(v, 16);
#else
  return bswap16(read_unaligned(v, 16));
#endif
}
#endif /* fetch16_be_unaligned */

#ifndef fetch32_be_aligned
static __maybe_unused __always_inline uint32_t
fetch32_be_aligned(const void *v) {
  assert(((uintptr_t)v) % ALIGNMENT_32 == 0);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  return read_aligned(v, 32);
#else
  return bswap32(read_aligned(v, 32));
#endif
}
#endif /* fetch32_be_aligned */

#ifndef fetch32_be_unaligned
static __maybe_unused __always_inline uint32_t
fetch32_be_unaligned(const void *v) {
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
  return (uint32_t)fetch16_be_unaligned(v) << 16 |
         fetch16_be_unaligned((const uint8_t *)v + 2);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  return read_unaligned(v, 32);
#else
  return bswap32(read_unaligned(v, 32));
#endif
}
#endif /* fetch32_be_unaligned */

#ifndef fetch64_be_aligned
static __maybe_unused __always_inline uint64_t
fetch64_be_aligned(const void *v) {
  assert(((uintptr_t)v) % ALIGNMENT_64 == 0);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  return read_aligned(v, 64);
#else
  return bswap64(read_aligned(v, 64));
#endif
}
#endif /* fetch64_be_aligned */

#ifndef fetch64_be_unaligned
static __maybe_unused __always_inline uint64_t
fetch64_be_unaligned(const void *v) {
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__UNABLE
  return (uint64_t)fetch32_be_unaligned(v) << 32 |
         fetch32_be_unaligned((const uint8_t *)v + 4);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  return read_unaligned(v, 64);
#else
  return bswap64(read_unaligned(v, 64));
#endif
}
#endif /* fetch64_be_unaligned */

static __maybe_unused __always_inline uint64_t tail64_be_aligned(const void *v,
                                                                 size_t tail) {
  const uint8_t *const p = (const uint8_t *)v;
#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__)
  /* We can perform a 'oneshot' read, which is little bit faster. */
  const unsigned shift = ((8 - tail) & 7) << 3;
  return fetch64_be_aligned(p) >> shift;
#else
  switch (tail & 7) {
  default:
    unreachable();
/* fall through */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  /* For most CPUs this code is better when not byte reordering. */
  case 1:
    return p[0];
  case 2:
    return fetch16_be_aligned(p);
  case 3:
    return (uint32_t)fetch16_be_aligned(p) << 8 | p[2];
  case 4:
    return fetch32_be_aligned(p);
  case 5:
    return (uint64_t)fetch32_be_aligned(p) << 8 | p[4];
  case 6:
    return (uint64_t)fetch32_be_aligned(p) << 16 | fetch16_be_aligned(p + 4);
  case 7:
    return (uint64_t)fetch32_be_aligned(p) << 24 |
           (uint32_t)fetch16_be_aligned(p + 4) << 8 | p[6];
  case 0:
    return fetch64_be_aligned(p);
#else
  case 1:
    return p[0];
  case 2:
    return p[1] | (uint32_t)p[0] << 8;
  case 3:
    return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
  case 4:
    return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
           (uint32_t)p[0] << 24;
  case 5:
    return p[4] | (uint32_t)p[3] << 8 | (uint32_t)p[2] << 16 |
           (uint32_t)p[1] << 24 | (uint64_t)p[0] << 32;
  case 6:
    return p[5] | (uint32_t)p[4] << 8 | (uint32_t)p[3] << 16 |
           (uint32_t)p[2] << 24 | (uint64_t)p[1] << 32 | (uint64_t)p[0] << 40;
  case 7:
    return p[6] | (uint32_t)p[5] << 8 | (uint32_t)p[4] << 16 |
           (uint32_t)p[3] << 24 | (uint64_t)p[2] << 32 | (uint64_t)p[1] << 40 |
           (uint64_t)p[0] << 48;
  case 0:
    return p[7] | (uint32_t)p[6] << 8 | (uint32_t)p[5] << 16 |
           (uint32_t)p[4] << 24 | (uint64_t)p[3] << 32 | (uint64_t)p[2] << 40 |
           (uint64_t)p[1] << 48 | (uint64_t)p[0] << 56;
#endif
  }
#endif /* T1HA_USE_FAST_ONESHOT_READ */
}

static __maybe_unused __always_inline uint64_t
tail64_be_unaligned(const void *v, size_t tail) {
  const uint8_t *p = (const uint8_t *)v;
#if defined(can_read_underside) &&                                             \
    (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul)
  /* On some systems (e.g. x86_64) we can perform a 'oneshot' read, which
   * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
   * for the reminder. */
  const unsigned offset = (8 - tail) & 7;
  const unsigned shift = offset << 3;
  if (likely(can_read_underside(p, 8))) {
    p -= offset;
    return fetch64_be_unaligned(p) & ((~UINT64_C(0)) >> shift);
  }
  return fetch64_be_unaligned(p) >> shift;
#else
  switch (tail & 7) {
  default:
    unreachable();
/* fall through */
#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT &&           \
    __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  /* For most CPUs this code is better when not needed
   * copying for alignment or byte reordering. */
  case 1:
    return p[0];
  case 2:
    return fetch16_be_unaligned(p);
  case 3:
    return (uint32_t)fetch16_be_unaligned(p) << 8 | p[2];
  case 4:
    return fetch32_be(p);
  case 5:
    return (uint64_t)fetch32_be_unaligned(p) << 8 | p[4];
  case 6:
    return (uint64_t)fetch32_be_unaligned(p) << 16 |
           fetch16_be_unaligned(p + 4);
  case 7:
    return (uint64_t)fetch32_be_unaligned(p) << 24 |
           (uint32_t)fetch16_be_unaligned(p + 4) << 8 | p[6];
  case 0:
    return fetch64_be_unaligned(p);
#else
  /* For most CPUs this code is better than a
   * copying for alignment and/or byte reordering. */
  case 1:
    return p[0];
  case 2:
    return p[1] | (uint32_t)p[0] << 8;
  case 3:
    return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
  case 4:
    return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
           (uint32_t)p[0] << 24;
  case 5:
    return p[4] | (uint32_t)p[3] << 8 | (uint32_t)p[2] << 16 |
           (uint32_t)p[1] << 24 | (uint64_t)p[0] << 32;
  case 6:
    return p[5] | (uint32_t)p[4] << 8 | (uint32_t)p[3] << 16 |
           (uint32_t)p[2] << 24 | (uint64_t)p[1] << 32 | (uint64_t)p[0] << 40;
  case 7:
    return p[6] | (uint32_t)p[5] << 8 | (uint32_t)p[4] << 16 |
           (uint32_t)p[3] << 24 | (uint64_t)p[2] << 32 | (uint64_t)p[1] << 40 |
           (uint64_t)p[0] << 48;
  case 0:
    return p[7] | (uint32_t)p[6] << 8 | (uint32_t)p[5] << 16 |
           (uint32_t)p[4] << 24 | (uint64_t)p[3] << 32 | (uint64_t)p[2] << 40 |
           (uint64_t)p[1] << 48 | (uint64_t)p[0] << 56;
#endif
  }
#endif /* can_read_underside */
}

/***************************************************************************/

#ifndef rot64
static __always_inline uint64_t rot64(uint64_t v, unsigned s) {
  return (v >> s) | (v << (64 - s));
}
#endif /* rot64 */

#ifndef mul_32x32_64
static __always_inline uint64_t mul_32x32_64(uint32_t a, uint32_t b) {
  return a * (uint64_t)b;
}
#endif /* mul_32x32_64 */

#ifndef add64carry_first
static __maybe_unused __always_inline unsigned
add64carry_first(uint64_t base, uint64_t addend, uint64_t *sum) {
#if __has_builtin(__builtin_addcll)
  unsigned long long carryout;
  *sum = __builtin_addcll(base, addend, 0, &carryout);
  return (unsigned)carryout;
#else
  *sum = base + addend;
  return *sum < addend;
#endif /* __has_builtin(__builtin_addcll) */
}
#endif /* add64carry_fist */

#ifndef add64carry_next
static __maybe_unused __always_inline unsigned
add64carry_next(unsigned carry, uint64_t base, uint64_t addend, uint64_t *sum) {
#if __has_builtin(__builtin_addcll)
  unsigned long long carryout;
  *sum = __builtin_addcll(base, addend, carry, &carryout);
  return (unsigned)carryout;
#else
  *sum = base + addend + carry;
  return *sum < addend || (carry && *sum == addend);
#endif /* __has_builtin(__builtin_addcll) */
}
#endif /* add64carry_next */

#ifndef add64carry_last
static __maybe_unused __always_inline void
add64carry_last(unsigned carry, uint64_t base, uint64_t addend, uint64_t *sum) {
#if __has_builtin(__builtin_addcll)
  unsigned long long carryout;
  *sum = __builtin_addcll(base, addend, carry, &carryout);
  (void)carryout;
#else
  *sum = base + addend + carry;
#endif /* __has_builtin(__builtin_addcll) */
}
#endif /* add64carry_last */

#ifndef mul_64x64_128
static __maybe_unused __always_inline uint64_t mul_64x64_128(uint64_t a,
                                                             uint64_t b,
                                                             uint64_t *h) {
#if defined(__SIZEOF_INT128__) ||                                              \
    (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
  __uint128_t r = (__uint128_t)a * (__uint128_t)b;
  /* modern GCC could nicely optimize this */
  *h = (uint64_t)(r >> 64);
  return (uint64_t)r;
#elif defined(mul_64x64_high)
  *h = mul_64x64_high(a, b);
  return a * b;
#else
  /* performs 64x64 to 128 bit multiplication */
  const uint64_t ll = mul_32x32_64((uint32_t)a, (uint32_t)b);
  const uint64_t lh = mul_32x32_64(a >> 32, (uint32_t)b);
  const uint64_t hl = mul_32x32_64((uint32_t)a, b >> 32);
  const uint64_t hh = mul_32x32_64(a >> 32, b >> 32);

  /* Few simplification are possible here for 32-bit architectures,
   * but thus we would lost compatibility with the original 64-bit
   * version.  Think is very bad idea, because then 32-bit t1ha will
   * still (relatively) very slowly and well yet not compatible. */
  uint64_t l;
  add64carry_last(add64carry_first(ll, lh << 32, &l), hh, lh >> 32, h);
  add64carry_last(add64carry_first(l, hl << 32, &l), *h, hl >> 32, h);
  return l;
#endif
}
#endif /* mul_64x64_128() */

#ifndef mul_64x64_high
static __maybe_unused __always_inline uint64_t mul_64x64_high(uint64_t a,
                                                              uint64_t b) {
  uint64_t h;
  mul_64x64_128(a, b, &h);
  return h;
}
#endif /* mul_64x64_high */

/***************************************************************************/

/* 'magic' primes */
static const uint64_t prime_0 = UINT64_C(0xEC99BF0D8372CAAB);
static const uint64_t prime_1 = UINT64_C(0x82434FE90EDCEF39);
static const uint64_t prime_2 = UINT64_C(0xD4F06DB99D67BE4B);
static const uint64_t prime_3 = UINT64_C(0xBD9CACC22C6E9571);
static const uint64_t prime_4 = UINT64_C(0x9C06FAF4D023E3AB);
static const uint64_t prime_5 = UINT64_C(0xC060724A8424F345);
static const uint64_t prime_6 = UINT64_C(0xCB5AF53AE3AAAC31);

/* xor high and low parts of full 128-bit product */
static __maybe_unused __always_inline uint64_t mux64(uint64_t v,
                                                     uint64_t prime) {
  uint64_t l, h;
  l = mul_64x64_128(v, prime, &h);
  return l ^ h;
}

static __always_inline uint64_t final64(uint64_t a, uint64_t b) {
  uint64_t x = (a + rot64(b, 41)) * prime_0;
  uint64_t y = (rot64(a, 23) + b) * prime_6;
  return mux64(x ^ y, prime_5);
}

static __always_inline void mixup64(uint64_t *__restrict a,
                                    uint64_t *__restrict b, uint64_t v,
                                    uint64_t prime) {
  uint64_t h;
  *a ^= mul_64x64_128(*b + v, prime, &h);
  *b += h;
}