VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/t1ha.h
blob: 97615b5141dc2f076d256f5d1b778e2bbd979052 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
 *  Copyright (c) 2016-2018 Positive Technologies, https://www.ptsecurity.com,
 *  Fast Positive Hash.
 *
 *  Portions Copyright (c) 2010-2018 Leonid Yuriev <leo@yuriev.ru>,
 *  The 1Hippeus project (t1h).
 *
 *  This software is provided 'as-is', without any express or implied
 *  warranty. In no event will the authors be held liable for any damages
 *  arising from the use of this software.
 *
 *  Permission is granted to anyone to use this software for any purpose,
 *  including commercial applications, and to alter it and redistribute it
 *  freely, subject to the following restrictions:
 *
 *  1. The origin of this software must not be misrepresented; you must not
 *     claim that you wrote the original software. If you use this software
 *     in a product, an acknowledgement in the product documentation would be
 *     appreciated but is not required.
 *  2. Altered source versions must be plainly marked as such, and must not be
 *     misrepresented as being the original software.
 *  3. This notice may not be removed or altered from any source distribution.
 */

/*
 * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" }
 * by [Positive Technologies](https://www.ptsecurity.ru)
 *
 * Briefly, it is a 64-bit Hash Function:
 *  1. Created for 64-bit little-endian platforms, in predominantly for x86_64,
 *     but portable and without penalties it can run on any 64-bit CPU.
 *  2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash
 *     and all others portable hash-functions (which do not use specific
 *     hardware tricks).
 *  3. Not suitable for cryptography.
 *
 * The Future will Positive. Всё будет хорошо.
 *
 * ACKNOWLEDGEMENT:
 * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев)
 * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta!
 */

#pragma once

/*****************************************************************************
 *
 * PLEASE PAY ATTENTION TO THE FOLLOWING NOTES
 * about macros definitions which controls t1ha behaviour and/or performance.
 *
 *
 * 1) T1HA_SYS_UNALIGNED_ACCESS = Defines the system/platform/CPU/architecture
 *                                abilities for unaligned data access.
 *
 *    By default, when the T1HA_SYS_UNALIGNED_ACCESS not defined,
 *    it will defined on the basis hardcoded knowledge about of capabilities
 *    of most common CPU architectures. But you could override this
 *    default behavior when build t1ha library itself:
 *
 *      // To disable unaligned access at all.
 *      #define T1HA_SYS_UNALIGNED_ACCESS 0
 *
 *      // To enable unaligned access, but indicate that it significally slow.
 *      #define T1HA_SYS_UNALIGNED_ACCESS 1
 *
 *      // To enable unaligned access, and indicate that it effecient.
 *      #define T1HA_SYS_UNALIGNED_ACCESS 2
 *
 *
 * 2) T1HA_USE_FAST_ONESHOT_READ = Controls the data reads at the end of buffer.
 *
 *    When defined to non-zero, t1ha will use 'one shot' method for reading
 *    up to 8 bytes at the end of data. In this case just the one 64-bit read
 *    will be performed even when the available less than 8 bytes.
 *
 *    This is little bit faster that switching by length of data tail.
 *    Unfortunately this will triggering a false-positive alarms from Valgrind,
 *    AddressSanitizer and other similar tool.
 *
 *    By default, t1ha defines it to 1, but you could override this
 *    default behavior when build t1ha library itself:
 *
 *      // For little bit faster and small code.
 *      #define T1HA_USE_FAST_ONESHOT_READ 1
 *
 *      // For calmness if doubt.
 *      #define T1HA_USE_FAST_ONESHOT_READ 0
 *
 *
 * 3) T1HA0_RUNTIME_SELECT = Controls choice fastest function in runtime.
 *
 *    t1ha library offers the t1ha0() function as the fastest for current CPU.
 *    But actual CPU's features/capabilities and may be significantly different,
 *    especially on x86 platform. Therefore, internally, t1ha0() may require
 *    dynamic dispatching for choice best implementation.
 *
 *    By default, t1ha enables such runtime choice and (may be) corresponding
 *    indirect calls if it reasonable, but you could override this default
 *    behavior when build t1ha library itself:
 *
 *      // To enable runtime choice of fastest implementation.
 *      #define T1HA0_RUNTIME_SELECT 1
 *
 *      // To disable runtime choice of fastest implementation.
 *      #define T1HA0_RUNTIME_SELECT 0
 *
 *    When T1HA0_RUNTIME_SELECT is nonzero the t1ha0_resolve() function could
 *    be used to get actual t1ha0() implementation address at runtime. This is
 *    useful for two cases:
 *      - calling by local pointer-to-function usually is little
 *        bit faster (less overhead) than via a PLT thru the DSO boundary.
 *      - GNU Indirect functions (see below) don't supported by environment
 *        and calling by t1ha0_funcptr is not available and/or expensive.
 *
 * 4) T1HA_USE_INDIRECT_FUNCTIONS = Controls usage of GNU Indirect functions.
 *
 *    In continue of T1HA0_RUNTIME_SELECT the T1HA_USE_INDIRECT_FUNCTIONS
 *    controls usage of ELF indirect functions feature. In general, when
 *    available, this reduces overhead of indirect function's calls though
 *    a DSO-bundary (https://sourceware.org/glibc/wiki/GNU_IFUNC).
 *
 *    By default, t1ha engage GNU Indirect functions when it available
 *    and useful, but you could override this default behavior when build
 *    t1ha library itself:
 *
 *      // To enable use of GNU ELF Indirect functions.
 *      #define T1HA_USE_INDIRECT_FUNCTIONS 1
 *
 *      // To disable use of GNU ELF Indirect functions. This may be useful
 *      // if the actual toolchain or the system's loader don't support ones.
 *      #define T1HA_USE_INDIRECT_FUNCTIONS 0
 *
 * 5) T1HA0_AESNI_AVAILABLE = Controls AES-NI detection and dispatching on x86.
 *
 *    In continue of T1HA0_RUNTIME_SELECT the T1HA0_AESNI_AVAILABLE controls
 *    detection and usage of AES-NI CPU's feature. On the other hand, this
 *    requires compiling parts of t1ha library with certain properly options,
 *    and could be difficult or inconvenient in some cases.
 *
 *    By default, t1ha engade AES-NI for t1ha0() on the x86 platform, but
 *    you could override this default behavior when build t1ha library itself:
 *
 *      // To disable detection and usage of AES-NI instructions for t1ha0().
 *      // This may be useful when you unable to build t1ha library properly
 *      // or known that AES-NI will be unavailable at the deploy.
 *      #define T1HA0_AESNI_AVAILABLE 0
 *
 *      // To force detection and usage of AES-NI instructions for t1ha0(),
 *      // but I don't known reasons to anybody would need this.
 *      #define T1HA0_AESNI_AVAILABLE 1
 *
 * 6) T1HA0_DISABLED, T1HA1_DISABLED, T1HA2_DISABLED = Controls availability of
 *    t1ha functions.
 *
 *    In some cases could be useful to import/use only few of t1ha functions
 *    or just the one. So, this definitions allows disable corresponding parts
 *    of t1ha library.
 *
 *      // To disable t1ha0(), t1ha0_32le(), t1ha0_32be() and all AES-NI.
 *      #define T1HA0_DISABLED
 *
 *      // To disable t1ha1_le() and t1ha1_be().
 *      #define T1HA1_DISABLED
 *
 *      // To disable t1ha2_atonce(), t1ha2_atonce128() and so on.
 *      #define T1HA2_DISABLED
 *
 *****************************************************************************/

#define T1HA_VERSION_MAJOR 2
#define T1HA_VERSION_MINOR 1
#define T1HA_VERSION_RELEASE 0

#include "Common/Tcdefs.h"
#include "config.h"
#include "misc.h"

#ifdef __cplusplus
extern "C" {
#endif

#define T1HA_ALIGN_PREFIX CRYPTOPP_ALIGN_DATA(32)
#define T1HA_ALIGN_SUFFIX

#ifdef _MSC_VER
#define uint8_t byte
#define uint16_t uint16
#define uint32_t uint32
#define uint64_t uint64
#endif

typedef union T1HA_ALIGN_PREFIX t1ha_state256 {
  uint8_t bytes[32];
  uint32_t u32[8];
  uint64_t u64[4];
  struct {
    uint64_t a, b, c, d;
  } n;
} t1ha_state256_t T1HA_ALIGN_SUFFIX;

typedef struct t1ha_context {
  t1ha_state256_t state;
  t1ha_state256_t buffer;
  size_t partial;
  uint64_t total;
} t1ha_context_t;

/******************************************************************************
 *
 *  t1ha2 = 64 and 128-bit, SLIGHTLY MORE ATTENTION FOR QUALITY AND STRENGTH.
 *
 *    - The recommended version of "Fast Positive Hash" with good quality
 *      for checksum, hash tables and fingerprinting.
 *    - Portable and extremely efficiency on modern 64-bit CPUs.
 *      Designed for 64-bit little-endian platforms,
 *      in other cases will runs slowly.
 *    - Great quality of hashing and still faster than other non-t1ha hashes.
 *      Provides streaming mode and 128-bit result.
 *
 * Note: Due performance reason 64- and 128-bit results are completely
 *       different each other, i.e. 64-bit result is NOT any part of 128-bit.
 */

/* The at-once variant with 64-bit result */
uint64_t t1ha2_atonce(const void *data, size_t length, uint64_t seed);

/* The at-once variant with 128-bit result.
 * Argument `extra_result` is NOT optional and MUST be valid.
 * The high 64-bit part of 128-bit hash will be always unconditionally
 * stored to the address given by `extra_result` argument. */
uint64_t t1ha2_atonce128(uint64_t *__restrict extra_result,
                                  const void *__restrict data, size_t length,
                                  uint64_t seed);

/* The init/update/final trinity for streaming.
 * Return 64 or 128-bit result depentently from `extra_result` argument. */
void t1ha2_init(t1ha_context_t *ctx, uint64_t seed_x, uint64_t seed_y);
void t1ha2_update(t1ha_context_t *__restrict ctx,
                           const void *__restrict data, size_t length);

/* Argument `extra_result` is optional and MAY be NULL.
 *  - If `extra_result` is NOT NULL then the 128-bit hash will be calculated,
 *    and high 64-bit part of it will be stored to the address given
 *    by `extra_result` argument.
 *  - Otherwise the 64-bit hash will be calculated
 *    and returned from function directly.
 *
 * Note: Due performance reason 64- and 128-bit results are completely
 *       different each other, i.e. 64-bit result is NOT any part of 128-bit. */
uint64_t t1ha2_final(t1ha_context_t *__restrict ctx,
                              uint64_t *__restrict extra_result /* optional */);


int t1ha_selfcheck__t1ha2_atonce(void);
int t1ha_selfcheck__t1ha2_atonce128(void);
int t1ha_selfcheck__t1ha2_stream(void);
int t1ha_selfcheck__t1ha2(void);

#ifdef __cplusplus
}
#endif