VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Main/Forms/BenchmarkDialog.cpp
blob: 95e225e25ae378fef033f38703344d919c7d90d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2016 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "System.h"
#include "Volume/EncryptionModeXTS.h"
#include "Main/GraphicUserInterface.h"
#include "BenchmarkDialog.h"

namespace VeraCrypt
{
	BenchmarkDialog::BenchmarkDialog (wxWindow *parent)
		: BenchmarkDialogBase (parent)
	{
		BenchmarkNoteStaticText->SetLabel (LangString["IDT_BOX_BENCHMARK_INFO"]);
		BenchmarkNoteStaticText->Wrap (RightSizer->GetSize().GetWidth());

		list <size_t> bufferSizes;
		bufferSizes.push_back (1 * BYTES_PER_MB);
		bufferSizes.push_back (5 * BYTES_PER_MB);
		bufferSizes.push_back (10 * BYTES_PER_MB);
		bufferSizes.push_back (50 * BYTES_PER_MB);
		bufferSizes.push_back (100 * BYTES_PER_MB);
		bufferSizes.push_back (200 * BYTES_PER_MB);
		bufferSizes.push_back (500 * BYTES_PER_MB);
		bufferSizes.push_back (1 * BYTES_PER_GB);

		foreach (size_t size, bufferSizes)
		{
			BufferSizeChoice->Append (Gui->SizeToString (size), (void *) size);
		}

		BufferSizeChoice->Select (1);

		list <int> colPermilles;
		BenchmarkListCtrl->InsertColumn (ColumnAlgorithm, LangString["ALGORITHM"], wxLIST_FORMAT_LEFT, 1);
		colPermilles.push_back (322);

		BenchmarkListCtrl->InsertColumn (ColumnEncryption, LangString["ENCRYPTION"], wxLIST_FORMAT_RIGHT, 1);
		colPermilles.push_back (226);

		BenchmarkListCtrl->InsertColumn (ColumnDecryption, LangString["DECRYPTION"], wxLIST_FORMAT_RIGHT, 1);
		colPermilles.push_back (226);

		BenchmarkListCtrl->InsertColumn (ColumnMean, LangString["MEAN"], wxLIST_FORMAT_RIGHT, 1);
		colPermilles.push_back (226);

		Gui->SetListCtrlWidth (BenchmarkListCtrl, 62, false);
		Gui->SetListCtrlHeight (BenchmarkListCtrl, 14);
		Gui->SetListCtrlColumnWidths (BenchmarkListCtrl, colPermilles);

		Layout();
		Fit();
		Center();
	}

	void BenchmarkDialog::OnBenchmarkButtonClick (wxCommandEvent& event)
	{
		list <BenchmarkResult> results;

		wxBusyCursor busy;
		Buffer buffer ((size_t) Gui->GetSelectedData <size_t> (BufferSizeChoice));

		BenchmarkThreadRoutine routine(this, results, buffer);
		Gui->ExecuteWaitThreadRoutine (this, &routine);

		BenchmarkListCtrl->DeleteAllItems();

		foreach (const BenchmarkResult &result, results)
		{
			vector <wstring> fields (BenchmarkListCtrl->GetColumnCount());

			fields[ColumnAlgorithm] = result.AlgorithmName;
			fields[ColumnEncryption] = Gui->SpeedToString (result.EncryptionSpeed);
			fields[ColumnDecryption] = Gui->SpeedToString (result.DecryptionSpeed);
			fields[ColumnMean] = Gui->SpeedToString (result.MeanSpeed);

			Gui->AppendToListCtrl (BenchmarkListCtrl, fields);
		}

		BenchmarkListCtrl->SetColumnWidth(0, wxLIST_AUTOSIZE);
	}

	void BenchmarkDialog::DoBenchmark (list<BenchmarkResult>& results, Buffer& buffer)
	{
		try
		{
			EncryptionAlgorithmList encryptionAlgorithms = EncryptionAlgorithm::GetAvailableAlgorithms();
			foreach (shared_ptr <EncryptionAlgorithm> ea, encryptionAlgorithms)
			{
				if (!ea->IsDeprecated())
				{
					BenchmarkResult result;
					result.AlgorithmName = ea->GetName(true);

					Buffer key (ea->GetKeySize());
					ea->SetKey (key);

					shared_ptr <EncryptionMode> xts (new EncryptionModeXTS);
					xts->SetKey (key);
					ea->SetMode (xts);

					wxLongLong startTime = wxGetLocalTimeMillis();

					// CPU "warm up" (an attempt to prevent skewed results on systems where CPU frequency gradually changes depending on CPU load).
					do
					{
						ea->EncryptSectors (buffer, 0, buffer.Size() / ENCRYPTION_DATA_UNIT_SIZE, ENCRYPTION_DATA_UNIT_SIZE);
					}
					while (wxGetLocalTimeMillis().GetValue() - startTime.GetValue() < 20);

					uint64 size = 0;
					uint64 time;
					startTime = wxGetLocalTimeMillis();

					do
					{
						ea->EncryptSectors (buffer, 0, buffer.Size() / ENCRYPTION_DATA_UNIT_SIZE, ENCRYPTION_DATA_UNIT_SIZE);
						size += buffer.Size();
						time = (uint64) (wxGetLocalTimeMillis().GetValue() - startTime.GetValue());
					}
					while (time < 100);

					result.EncryptionSpeed = size * 1000 / time;

					startTime = wxGetLocalTimeMillis();
					size = 0;

					do
					{
						ea->DecryptSectors (buffer, 0, buffer.Size() / ENCRYPTION_DATA_UNIT_SIZE, ENCRYPTION_DATA_UNIT_SIZE);
						size += buffer.Size();
						time = (uint64) (wxGetLocalTimeMillis().GetValue() - startTime.GetValue());
					}
					while (time < 100);

					result.DecryptionSpeed = size * 1000 / time;
					result.MeanSpeed = (result.EncryptionSpeed + result.DecryptionSpeed) / 2;

					bool inserted = false;
					for (list <BenchmarkResult>::iterator i = results.begin(); i != results.end(); ++i)
					{
						if (i->MeanSpeed < result.MeanSpeed)
						{
							results.insert (i, result);
							inserted = true;
							break;
						}
					}

					if (!inserted)
						results.push_back (result);
				}
			}

		}
		catch (exception &e)
		{
			Gui->ShowError (e);
		}
	}
}
sultSuccess && --tryCount != 0); if (!silent && result != BiosResultSuccess) PrintDiskError (result, write, drive, nullptr, &chs); return result; } BiosResult ReadWriteSectors (bool write, byte *buffer, byte drive, const ChsAddress &chs, byte sectorCount, bool silent) { uint16 codeSeg; __asm mov codeSeg, cs return ReadWriteSectors (write, codeSeg, (uint16) buffer, drive, chs, sectorCount, silent); } BiosResult ReadSectors (byte *buffer, byte drive, const ChsAddress &chs, byte sectorCount, bool silent) { return ReadWriteSectors (false, buffer, drive, chs, sectorCount, silent); } BiosResult WriteSectors (byte *buffer, byte drive, const ChsAddress &chs, byte sectorCount, bool silent) { return ReadWriteSectors (true, buffer, drive, chs, sectorCount, silent); } static BiosResult ReadWriteSectors (bool write, BiosLbaPacket &dapPacket, byte drive, const uint64 &sector, uint16 sectorCount, bool silent) { CheckStack(); if (!IsLbaSupported (drive)) { DriveGeometry geometry; BiosResult result = GetDriveGeometry (drive, geometry, silent); if (result != BiosResultSuccess) return result; ChsAddress chs; LbaToChs (geometry, sector, chs); return ReadWriteSectors (write, (uint16) (dapPacket.Buffer >> 16), (uint16) dapPacket.Buffer, drive, chs, sectorCount, silent); } dapPacket.Size = sizeof (dapPacket); dapPacket.Reserved = 0; dapPacket.SectorCount = sectorCount; dapPacket.Sector = sector; byte function = write ? 0x43 : 0x42; BiosResult result; byte tryCount = TC_MAX_BIOS_DISK_IO_RETRIES; do { result = BiosResultSuccess; __asm { mov bx, 0x55aa mov dl, drive mov si, [dapPacket] mov ah, function xor al, al int 0x13 jnc ok // If CF=0, ignore AH to prevent issues caused by potential bugs in BIOSes mov result, ah ok: } if (result == BiosResultEccCorrected) result = BiosResultSuccess; // Some BIOSes report I/O errors prematurely in some cases } while (result != BiosResultSuccess && --tryCount != 0); if (!silent && result != BiosResultSuccess) PrintDiskError (result, write, drive, &sector); return result; } static BiosResult ReadWriteSectors (bool write, byte *buffer, byte drive, const uint64 &sector, uint16 sectorCount, bool silent) { BiosLbaPacket dapPacket; dapPacket.Buffer = (uint32) buffer; return ReadWriteSectors (write, dapPacket, drive, sector, sectorCount, silent); } BiosResult ReadWriteSectors (bool write, uint16 bufferSegment, uint16 bufferOffset, byte drive, const uint64 &sector, uint16 sectorCount, bool silent) { BiosLbaPacket dapPacket; dapPacket.Buffer = ((uint32) bufferSegment << 16) | bufferOffset; return ReadWriteSectors (write, dapPacket, drive, sector, sectorCount, silent); } BiosResult ReadSectors (uint16 bufferSegment, uint16 bufferOffset, byte drive, const uint64 &sector, uint16 sectorCount, bool silent) { return ReadWriteSectors (false, bufferSegment, bufferOffset, drive, sector, sectorCount, silent); } BiosResult ReadSectors (byte *buffer, byte drive, const uint64 &sector, uint16 sectorCount, bool silent) { BiosResult result; uint16 codeSeg; __asm mov codeSeg, cs result = ReadSectors (BootStarted ? codeSeg : TC_BOOT_LOADER_ALT_SEGMENT, (uint16) buffer, drive, sector, sectorCount, silent); // Alternative segment is used to prevent memory corruption caused by buggy BIOSes if (!BootStarted) CopyMemory (TC_BOOT_LOADER_ALT_SEGMENT, (uint16) buffer, buffer, sectorCount * TC_LB_SIZE); return result; } BiosResult WriteSectors (byte *buffer, byte drive, const uint64 &sector, uint16 sectorCount, bool silent) { return ReadWriteSectors (true, buffer, drive, sector, sectorCount, silent); } BiosResult GetDriveGeometry (byte drive, DriveGeometry &geometry, bool silent) { CheckStack(); byte maxCylinderLow, maxHead, maxSector; BiosResult result; __asm { push es mov dl, drive mov ah, 0x08 int 0x13 mov result, ah mov maxCylinderLow, ch mov maxSector, cl mov maxHead, dh pop es } if (result == BiosResultSuccess) { geometry.Cylinders = (maxCylinderLow | (uint16 (maxSector & 0xc0) << 2)) + 1; geometry.Heads = maxHead + 1; geometry.Sectors = maxSector & ~0xc0; } else if (!silent) { Print ("Drive "); Print (drive ^ 0x80); Print (" not found: "); PrintErrorNoEndl (""); Print (result); PrintEndl(); } return result; } void ChsToLba (const DriveGeometry &geometry, const ChsAddress &chs, uint64 &lba) { lba.HighPart = 0; lba.LowPart = (uint32 (chs.Cylinder) * geometry.Heads + chs.Head) * geometry.Sectors + chs.Sector - 1; } void LbaToChs (const DriveGeometry &geometry, const uint64 &lba, ChsAddress &chs) { chs.Sector = (byte) ((lba.LowPart % geometry.Sectors) + 1); uint32 ch = lba.LowPart / geometry.Sectors; chs.Head = (byte) (ch % geometry.Heads); chs.Cylinder = (uint16) (ch / geometry.Heads); } void PartitionEntryMBRToPartition (const PartitionEntryMBR &partEntry, Partition &partition) { partition.Active = partEntry.BootIndicator == 0x80; partition.EndSector.HighPart = 0; partition.EndSector.LowPart = partEntry.StartLBA + partEntry.SectorCountLBA - 1; partition.SectorCount.HighPart = 0; partition.SectorCount.LowPart = partEntry.SectorCountLBA; partition.StartSector.HighPart = 0; partition.StartSector.LowPart = partEntry.StartLBA; partition.Type = partEntry.Type; } BiosResult ReadWriteMBR (bool write, byte drive, bool silent) { uint64 mbrSector; mbrSector.HighPart = 0; mbrSector.LowPart = 0; if (write) return WriteSectors (SectorBuffer, drive, mbrSector, 1, silent); return ReadSectors (SectorBuffer, drive, mbrSector, 1, silent); // Uses alternative segment } BiosResult GetDrivePartitions (byte drive, Partition *partitionArray, size_t partitionArrayCapacity, size_t &partitionCount, bool activeOnly, Partition *findPartitionFollowingThis, bool silent) { Partition *followingPartition; Partition tmpPartition; if (findPartitionFollowingThis) { assert (partitionArrayCapacity == 1); partitionArrayCapacity = 0xff; followingPartition = partitionArray; partitionArray = &tmpPartition; followingPartition->Drive = TC_INVALID_BIOS_DRIVE; followingPartition->StartSector.LowPart = 0xFFFFffffUL; } AcquireSectorBuffer(); BiosResult result = ReadWriteMBR (false, drive, silent); ReleaseSectorBuffer(); partitionCount = 0; MBR *mbr = (MBR *) SectorBuffer; if (result != BiosResultSuccess || mbr->Signature != 0xaa55) return result; PartitionEntryMBR mbrPartitions[4]; memcpy (mbrPartitions, mbr->Partitions, sizeof (mbrPartitions)); size_t partitionArrayPos = 0, partitionNumber; for (partitionNumber = 0; partitionNumber < array_capacity (mbrPartitions) && partitionArrayPos < partitionArrayCapacity; ++partitionNumber) { const PartitionEntryMBR &partEntry = mbrPartitions[partitionNumber]; if (partEntry.SectorCountLBA > 0) { Partition &partition = partitionArray[partitionArrayPos]; PartitionEntryMBRToPartition (partEntry, partition); if (activeOnly && !partition.Active) continue; partition.Drive = drive; partition.Number = partitionArrayPos; if (partEntry.Type == 0x5 || partEntry.Type == 0xf) // Extended partition { if (IsLbaSupported (drive)) { // Find all extended partitions uint64 firstExtStartLBA = partition.StartSector; uint64 extStartLBA = partition.StartSector; MBR *extMbr = (MBR *) SectorBuffer; while (partitionArrayPos < partitionArrayCapacity && (result = ReadSectors ((byte *) extMbr, drive, extStartLBA, 1, silent)) == BiosResultSuccess && extMbr->Signature == 0xaa55) { if (extMbr->Partitions[0].SectorCountLBA > 0) { Partition &logPart = partitionArray[partitionArrayPos]; PartitionEntryMBRToPartition (extMbr->Partitions[0], logPart); logPart.Drive = drive; logPart.Number = partitionArrayPos; logPart.Primary = false; logPart.StartSector.LowPart += extStartLBA.LowPart; logPart.EndSector.LowPart += extStartLBA.LowPart; if (findPartitionFollowingThis) { if (logPart.StartSector.LowPart > findPartitionFollowingThis->EndSector.LowPart && logPart.StartSector.LowPart < followingPartition->StartSector.LowPart) { *followingPartition = logPart; } } else ++partitionArrayPos; } // Secondary extended if (extMbr->Partitions[1].Type != 0x5 && extMbr->Partitions[1].Type == 0xf || extMbr->Partitions[1].SectorCountLBA == 0) break; extStartLBA.LowPart = extMbr->Partitions[1].StartLBA + firstExtStartLBA.LowPart; } } } else { partition.Primary = true; if (findPartitionFollowingThis) { if (partition.StartSector.LowPart > findPartitionFollowingThis->EndSector.LowPart && partition.StartSector.LowPart < followingPartition->StartSector.LowPart) { *followingPartition = partition; } } else ++partitionArrayPos; } } } partitionCount = partitionArrayPos; return result; } bool GetActivePartition (byte drive) { size_t partCount; if (GetDrivePartitions (drive, &ActivePartition, 1, partCount, true) != BiosResultSuccess || partCount < 1) { ActivePartition.Drive = TC_INVALID_BIOS_DRIVE; PrintError (TC_BOOT_STR_NO_BOOT_PARTITION); return false; } return true; }