VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Main/Forms/FavoriteVolumesDialog.cpp
blob: a12b28c994848b545e239b43c9904cf5ac63c7e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file) 
 and all other portions of this file are Copyright (c) 2013-2015 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "System.h"
#include "Main/GraphicUserInterface.h"
#include "FavoriteVolumesDialog.h"

namespace VeraCrypt
{
	FavoriteVolumesDialog::FavoriteVolumesDialog (wxWindow* parent, const FavoriteVolumeList &favorites, size_t newItemCount)
		: FavoriteVolumesDialogBase (parent), Favorites (favorites)
	{
		list <int> colPermilles;
		FavoritesListCtrl->InsertColumn (ColumnVolumePath, LangString["VOLUME"], wxLIST_FORMAT_LEFT, 1);
		colPermilles.push_back (500);
		FavoritesListCtrl->InsertColumn (ColumnMountPoint, LangString["MOUNT_POINT"], wxLIST_FORMAT_LEFT, 1);
		colPermilles.push_back (500);

		FavoritesListCtrl->SetMinSize (wxSize (400, -1));
		Gui->SetListCtrlHeight (FavoritesListCtrl, 15);
		Gui->SetListCtrlColumnWidths (FavoritesListCtrl, colPermilles);

		Layout();
		Fit();
		Center();
				
#ifdef TC_MACOSX
		// wxMac cannot insert items to wxListCtrl due to a bug
		MoveUpButton->Show (false);
		MoveDownButton->Show (false);
#endif

		vector <wstring> fields (FavoritesListCtrl->GetColumnCount());
		size_t itemCount = 0;
		foreach (shared_ptr <FavoriteVolume> favorite, Favorites)
		{
			fields[ColumnVolumePath] = favorite->Path;
			fields[ColumnMountPoint] = favorite->MountPoint;
			Gui->AppendToListCtrl (FavoritesListCtrl, fields, -1, favorite.get());
			
			if (++itemCount > Favorites.size() - newItemCount)
			{
				FavoritesListCtrl->SetItemState (itemCount - 1, wxLIST_STATE_SELECTED, wxLIST_STATE_SELECTED);
				FavoritesListCtrl->EnsureVisible (itemCount - 1);
			}
		}

		UpdateButtons();
		FavoritesListCtrl->SetFocus();
	}
	
	void FavoriteVolumesDialog::OnMoveDownButtonClick (wxCommandEvent& event)
	{
		FreezeScope freeze (this);
		foreach_reverse (long itemIndex, Gui->GetListCtrlSelectedItems (FavoritesListCtrl))
		{
			if (itemIndex >= FavoritesListCtrl->GetItemCount() - 1)
				break;
			Gui->MoveListCtrlItem (FavoritesListCtrl, itemIndex, itemIndex + 1);
		}
		UpdateButtons();
	}

	void FavoriteVolumesDialog::OnMoveUpButtonClick (wxCommandEvent& event)
	{
		FreezeScope freeze (this);
		foreach (long itemIndex, Gui->GetListCtrlSelectedItems (FavoritesListCtrl))
		{
			if (itemIndex == 0)
				break;

			Gui->MoveListCtrlItem (FavoritesListCtrl, itemIndex, itemIndex - 1);
		}
		UpdateButtons();
	}

	void FavoriteVolumesDialog::OnOKButtonClick (wxCommandEvent& event)
	{
		FavoriteVolumeList newFavorites;

		for (long i = 0; i < FavoritesListCtrl->GetItemCount(); i++)
		{
			newFavorites.push_back (make_shared <FavoriteVolume> (
				*reinterpret_cast <FavoriteVolume *> (FavoritesListCtrl->GetItemData (i))));
		}

		Favorites = newFavorites;
		EndModal (wxID_OK);
	}

	void FavoriteVolumesDialog::OnRemoveAllButtonClick (wxCommandEvent& event)
	{
		FavoritesListCtrl->DeleteAllItems();
		UpdateButtons();
	}

	void FavoriteVolumesDialog::OnRemoveButtonClick (wxCommandEvent& event)
	{
		long offset = 0;
		foreach (long item, Gui->GetListCtrlSelectedItems (FavoritesListCtrl))
			FavoritesListCtrl->DeleteItem (item - offset++);
	}

	void FavoriteVolumesDialog::UpdateButtons ()
	{
		bool selected = FavoritesListCtrl->GetSelectedItemCount() > 0;

		MoveDownButton->Enable (selected);
		MoveUpButton->Enable (selected);
		RemoveAllButton->Enable (FavoritesListCtrl->GetItemCount() > 0);
		RemoveButton->Enable (selected);
	}
}
n742' href='#n742'>742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 Legal Notice: Some portions of the source code contained in this file were
 derived from the source code of TrueCrypt 7.1a, which is
 Copyright (c) 2003-2012 TrueCrypt Developers Association and which is
 governed by the TrueCrypt License 3.0, also from the source code of
 Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
 and which is governed by the 'License Agreement for Encryption for the Masses'
 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages. */

#include "Tcdefs.h"
#if !defined(_UEFI)
#if !defined(TC_WINDOWS_BOOT) 
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include "EncryptionThreadPool.h"
#endif

#include <stddef.h>
#include <string.h>
#include <io.h>

#ifndef DEVICE_DRIVER
#include "Random.h"
#endif
#endif // !defined(_UEFI)

#include "Crc.h"
#include "Crypto.h"
#include "Endian.h"
#include "Volumes.h"
#include "Pkcs5.h"

#if defined(_WIN32) && !defined(_UEFI)
#include <Strsafe.h>
#include "../Boot/Windows/BootCommon.h"
#endif

/* Volume header v5 structure (used since TrueCrypt 7.0): */
//
// Offset	Length	Description
// ------------------------------------------
// Unencrypted:
// 0		64		Salt
// Encrypted:
// 64		4		ASCII string 'VERA'
// 68		2		Header version
// 70		2		Required program version
// 72		4		CRC-32 checksum of the (decrypted) bytes 256-511
// 76		16		Reserved (must contain zeroes)
// 92		8		Size of hidden volume in bytes (0 = normal volume)
// 100		8		Size of the volume in bytes (identical with field 92 for hidden volumes, valid if field 70 >= 0x600 or flag bit 0 == 1)
// 108		8		Byte offset of the start of the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1)
// 116		8		Size of the encrypted area within the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1)
// 124		4		Flags: bit 0 set = system encryption; bit 1 set = non-system in-place encryption, bits 2-31 are reserved (set to zero)
// 128		4		Sector size in bytes
// 132		120		Reserved (must contain zeroes)
// 252		4		CRC-32 checksum of the (decrypted) bytes 64-251
// 256		256		Concatenated primary master key(s) and secondary master key(s) (XTS mode)


/* Deprecated/legacy volume header v4 structure (used by TrueCrypt 6.x): */
//
// Offset	Length	Description
// ------------------------------------------
// Unencrypted:
// 0		64		Salt
// Encrypted:
// 64		4		ASCII string 'VERA'
// 68		2		Header version
// 70		2		Required program version
// 72		4		CRC-32 checksum of the (decrypted) bytes 256-511
// 76		16		Reserved (must contain zeroes)
// 92		8		Size of hidden volume in bytes (0 = normal volume)
// 100		8		Size of the volume in bytes (identical with field 92 for hidden volumes, valid if field 70 >= 0x600 or flag bit 0 == 1)
// 108		8		Byte offset of the start of the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1)
// 116		8		Size of the encrypted area within the master key scope (valid if field 70 >= 0x600 or flag bit 0 == 1)
// 124		4		Flags: bit 0 set = system encryption; bit 1 set = non-system in-place encryption, bits 2-31 are reserved
// 128		124		Reserved (must contain zeroes)
// 252		4		CRC-32 checksum of the (decrypted) bytes 64-251
// 256		256		Concatenated primary master key(s) and secondary master key(s) (XTS mode)


/* Deprecated/legacy volume header v3 structure (used by TrueCrypt 5.x): */
//
// Offset	Length	Description
// ------------------------------------------
// Unencrypted:
// 0		64		Salt
// Encrypted:
// 64		4		ASCII string 'VERA'
// 68		2		Header version
// 70		2		Required program version
// 72		4		CRC-32 checksum of the (decrypted) bytes 256-511
// 76		8		Volume creation time
// 84		8		Header creation time
// 92		8		Size of hidden volume in bytes (0 = normal volume)
// 100		8		Size of the volume in bytes (identical with field 92 for hidden volumes)
// 108		8		Start byte offset of the encrypted area of the volume
// 116		8		Size of the encrypted area of the volume in bytes
// 124		132		Reserved (must contain zeroes)
// 256		256		Concatenated primary master key(s) and secondary master key(s) (XTS mode)


/* Deprecated/legacy volume header v2 structure (used before TrueCrypt 5.0): */
//
// Offset	Length	Description
// ------------------------------------------
// Unencrypted:
// 0		64		Salt
// Encrypted:
// 64		4		ASCII string 'VERA'
// 68		2		Header version
// 70		2		Required program version
// 72		4		CRC-32 checksum of the (decrypted) bytes 256-511
// 76		8		Volume creation time
// 84		8		Header creation time
// 92		8		Size of hidden volume in bytes (0 = normal volume)
// 100		156		Reserved (must contain zeroes)
// 256		32		For LRW (deprecated/legacy), secondary key
//					For CBC (deprecated/legacy), data used to generate IV and whitening values
// 288		224		Master key(s)



uint16 GetHeaderField16 (byte *header, int offset)
{
	return BE16 (*(uint16 *) (header + offset));
}


uint32 GetHeaderField32 (byte *header, int offset)
{
	return BE32 (*(uint32 *) (header + offset));
}


UINT64_STRUCT GetHeaderField64 (byte *header, int offset)
{
	UINT64_STRUCT uint64Struct;

#ifndef TC_NO_COMPILER_INT64
	uint64Struct.Value = BE64 (*(uint64 *) (header + offset));
#else
	uint64Struct.HighPart = BE32 (*(uint32 *) (header + offset));
	uint64Struct.LowPart = BE32 (*(uint32 *) (header + offset + 4));
#endif
	return uint64Struct;
}


#ifndef TC_WINDOWS_BOOT

typedef struct
{
	char DerivedKey[MASTER_KEYDATA_SIZE];
	BOOL Free;
	LONG KeyReady;
	int Pkcs5Prf;
} KeyDerivationWorkItem;


BOOL ReadVolumeHeaderRecoveryMode = FALSE;

int ReadVolumeHeader (BOOL bBoot, char *encryptedHeader, Password *password, int selected_pkcs5_prf, int pim, BOOL truecryptMode, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo)
{
	char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE];
	CRYPTOPP_ALIGN_DATA(16) KEY_INFO keyInfo;
	PCRYPTO_INFO cryptoInfo;
	CRYPTOPP_ALIGN_DATA(16) char dk[MASTER_KEYDATA_SIZE];
	int enqPkcs5Prf, pkcs5_prf;
	uint16 headerVersion;
	int status = ERR_PARAMETER_INCORRECT;
	int primaryKeyOffset;
	int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1;
#if !defined(_UEFI)
	TC_EVENT keyDerivationCompletedEvent;
	TC_EVENT noOutstandingWorkItemEvent;
	KeyDerivationWorkItem *keyDerivationWorkItems;
	KeyDerivationWorkItem *item;
	size_t encryptionThreadCount = GetEncryptionThreadCount();
	LONG outstandingWorkItemCount = 0;
	int i;
#endif
	size_t queuedWorkItems = 0;

	// if no PIM specified, use default value
	if (pim < 0)
		pim = 0;

	if (truecryptMode)
	{
		// SHA-256 not supported in TrueCrypt mode
		if (selected_pkcs5_prf == SHA256)
			return ERR_PARAMETER_INCORRECT;
		pkcs5PrfCount--; // don't count SHA-256 in case of TrueCrypt mode
	}

	if (retHeaderCryptoInfo != NULL)
	{
		cryptoInfo = retHeaderCryptoInfo;
	}
	else
	{
      if (!retInfo)
         return ERR_PARAMETER_INCORRECT;

		cryptoInfo = *retInfo = crypto_open ();
		if (cryptoInfo == NULL)
			return ERR_OUTOFMEMORY;
	}
#if !defined(_UEFI)
	/* use thread pool only if no PRF was specified */
	if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1))
	{
		keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
		if (!keyDerivationWorkItems)
			return ERR_OUTOFMEMORY;

		for (i = 0; i < pkcs5PrfCount; ++i)
			keyDerivationWorkItems[i].Free = TRUE;

#ifdef DEVICE_DRIVER
		KeInitializeEvent (&keyDerivationCompletedEvent, SynchronizationEvent, FALSE);
		KeInitializeEvent (&noOutstandingWorkItemEvent, SynchronizationEvent, TRUE);
#else
		keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
		if (!keyDerivationCompletedEvent)
		{
			TCfree (keyDerivationWorkItems);
			return ERR_OUTOFMEMORY;
		}

		noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL);
		if (!noOutstandingWorkItemEvent)
		{
			CloseHandle (keyDerivationCompletedEvent);
			TCfree (keyDerivationWorkItems);
			return ERR_OUTOFMEMORY;
		}
#endif
	}

#if !defined(DEVICE_DRIVER) 
	VirtualLock (&keyInfo, sizeof (keyInfo));
	VirtualLock (&dk, sizeof (dk));
	VirtualLock (&header, sizeof (header));
#endif
#endif //  !defined(_UEFI)

	crypto_loadkey (&keyInfo, password->Text, (int) password->Length);

	// PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password
	memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE);

	// Test all available PKCS5 PRFs
	for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf)
	{
		// if a PRF is specified, we skip all other PRFs
		if (selected_pkcs5_prf != 0 && enqPkcs5Prf != selected_pkcs5_prf)
			continue;

		// skip SHA-256 in case of TrueCrypt mode
		if (truecryptMode && (enqPkcs5Prf == SHA256))
			continue;
#if !defined(_UEFI)
		if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1))
		{
			// Enqueue key derivation on thread pool
			if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID)
			{
				for (i = 0; i < pkcs5PrfCount; ++i)
				{
					item = &keyDerivationWorkItems[i];
					if (item->Free)
					{
						item->Free = FALSE;
						item->KeyReady = FALSE;
						item->Pkcs5Prf = enqPkcs5Prf;

						EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent,
							&item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey,
							keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, pim, truecryptMode, bBoot), item->DerivedKey);

						++queuedWorkItems;
						break;
					}
				}

				if (enqPkcs5Prf < LAST_PRF_ID)
					continue;
			}
			else
				--enqPkcs5Prf;

			// Wait for completion of a key derivation
			while (queuedWorkItems > 0)
			{
				for (i = 0; i < pkcs5PrfCount; ++i)
				{
					item = &keyDerivationWorkItems[i];
					if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE)
					{
						pkcs5_prf = item->Pkcs5Prf;
						keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, pim, truecryptMode, bBoot);
						memcpy (dk, item->DerivedKey, sizeof (dk));

						item->Free = TRUE;
						--queuedWorkItems;
						goto KeyReady;
					}
				}

				if (queuedWorkItems > 0)
					TC_WAIT_EVENT (keyDerivationCompletedEvent);
			}
			continue;
KeyReady:	;
		}
		else
#endif // !defined(_UEFI)
		{
			pkcs5_prf = enqPkcs5Prf;
			keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, pim, truecryptMode, bBoot);

			switch (pkcs5_prf)
			{
			case RIPEMD160:
				derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case SHA512:
				derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case WHIRLPOOL:
				derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case SHA256:
				derive_key_sha256 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;

			case STREEBOG:
				derive_key_streebog(keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
					PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
				break;
			default:
				// Unknown/wrong ID
				TC_THROW_FATAL_EXCEPTION;
			}
		}

		// Test all available modes of operation
		for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID;
			cryptoInfo->mode <= LAST_MODE_OF_OPERATION;
			cryptoInfo->mode++)
		{
			switch (cryptoInfo->mode)
			{

			default:
				primaryKeyOffset = 0;
			}

			// Test all available encryption algorithms
			for (cryptoInfo->ea = EAGetFirst ();
				cryptoInfo->ea != 0;
				cryptoInfo->ea = EAGetNext (cryptoInfo->ea))
			{
				int blockSize;

				if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode))
					continue;	// This encryption algorithm has never been available with this mode of operation

				blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea));

				status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks);
				if (status == ERR_CIPHER_INIT_FAILURE)
					goto err;

				// Init objects related to the mode of operation

				if (cryptoInfo->mode == XTS)
				{
#ifndef TC_WINDOWS_DRIVER
					// Copy the secondary key (if cascade, multiple concatenated)
					memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));
#endif
					// Secondary key schedule
					if (!EAInitMode (cryptoInfo, dk + EAGetKeySize (cryptoInfo->ea)))
					{
						status = ERR_MODE_INIT_FAILED;
						goto err;
					}
				}
				else
				{
					continue;
				}

				// Copy the header for decryption
				memcpy (header, encryptedHeader, sizeof (header));

				// Try to decrypt header

				DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);

				// Magic 'VERA' or 'TRUE' depending if we are in TrueCrypt mode or not
				if ((truecryptMode && GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x54525545)
					|| (!truecryptMode && GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x56455241)
					)
					continue;

				// Header version
				headerVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION);

				if (headerVersion > VOLUME_HEADER_VERSION)
				{
					status = ERR_NEW_VERSION_REQUIRED;
					goto err;
				}

				// Check CRC of the header fields
				if (!ReadVolumeHeaderRecoveryMode
					&& headerVersion >= 4
					&& GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC))
					continue;

				// Required program version
				cryptoInfo->RequiredProgramVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_REQUIRED_VERSION);
				if (truecryptMode)
				{
					if (cryptoInfo->RequiredProgramVersion < 0x600 || cryptoInfo->RequiredProgramVersion > 0x71a)
					{
						status = ERR_UNSUPPORTED_TRUECRYPT_FORMAT | (((int)cryptoInfo->RequiredProgramVersion) << 16);
						goto err;
					}
					cryptoInfo->LegacyVolume = FALSE;
				}
				else
					cryptoInfo->LegacyVolume = cryptoInfo->RequiredProgramVersion < 0x10b;

				// Check CRC of the key set
				if (!ReadVolumeHeaderRecoveryMode
					&& GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE))
					continue;

				// Now we have the correct password, cipher, hash algorithm, and volume type

				// Check the version required to handle this volume
				if (!truecryptMode && (cryptoInfo->RequiredProgramVersion > VERSION_NUM))
				{
					status = ERR_NEW_VERSION_REQUIRED;
					goto err;
				}

				// Header version
				cryptoInfo->HeaderVersion = headerVersion;
#if 0
				// Volume creation time (legacy)
				cryptoInfo->volume_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_CREATION_TIME).Value;

				// Header creation time (legacy)
				cryptoInfo->header_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_MODIFICATION_TIME).Value;
#endif
				// Hidden volume size (if any)
				cryptoInfo->hiddenVolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE).Value;

				// Hidden volume status
				cryptoInfo->hiddenVolume = (cryptoInfo->hiddenVolumeSize != 0);

				// Volume size
				cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE);

				// Encrypted area size and length
				cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START);
				cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH);

				// Flags
				cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS);

				// Sector size
				if (headerVersion >= 5)
					cryptoInfo->SectorSize = GetHeaderField32 (header, TC_HEADER_OFFSET_SECTOR_SIZE);
				else
					cryptoInfo->SectorSize = TC_SECTOR_SIZE_LEGACY;

				if (cryptoInfo->SectorSize < TC_MIN_VOLUME_SECTOR_SIZE
					|| cryptoInfo->SectorSize > TC_MAX_VOLUME_SECTOR_SIZE
					|| cryptoInfo->SectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0)
				{
					status = ERR_PARAMETER_INCORRECT;
					goto err;
				}

				// Preserve scheduled header keys if requested
				if (retHeaderCryptoInfo)
				{
					if (retInfo == NULL)
					{
						cryptoInfo->pkcs5 = pkcs5_prf;
						cryptoInfo->noIterations = keyInfo.noIterations;
						cryptoInfo->bTrueCryptMode = truecryptMode;
						cryptoInfo->volumePim = pim;
						goto ret;
					}

					cryptoInfo = *retInfo = crypto_open ();
					if (cryptoInfo == NULL)
					{
						status = ERR_OUTOFMEMORY;
						goto err;
					}

					memcpy (cryptoInfo, retHeaderCryptoInfo, sizeof (*cryptoInfo));
				}

				// Master key data
				memcpy (keyInfo.master_keydata, header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE);
#ifdef TC_WINDOWS_DRIVER
				{
					RMD160_CTX ctx;
					RMD160Init (&ctx);
					RMD160Update (&ctx, keyInfo.master_keydata, MASTER_KEYDATA_SIZE);
					RMD160Update (&ctx, header, sizeof(header));
					RMD160Final (cryptoInfo->master_keydata_hash, &ctx);
					burn(&ctx, sizeof (ctx));
				}
#else
				memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE);
#endif
				// PKCS #5
				cryptoInfo->pkcs5 = pkcs5_prf;
				cryptoInfo->noIterations = keyInfo.noIterations;
				cryptoInfo->bTrueCryptMode = truecryptMode;
				cryptoInfo->volumePim = pim;

				// Init the cipher with the decrypted master key
				status = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks);
				if (status == ERR_CIPHER_INIT_FAILURE)
					goto err;
#ifndef TC_WINDOWS_DRIVER
				// The secondary master key (if cascade, multiple concatenated)
				memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));
#endif
				if (!EAInitMode (cryptoInfo, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea)))
				{
					status = ERR_MODE_INIT_FAILED;
					goto err;
				}

				status = ERR_SUCCESS;
				goto ret;
			}
		}
	}
	status = ERR_PASSWORD_WRONG;

err:
	if (cryptoInfo != retHeaderCryptoInfo)
	{
		crypto_close(cryptoInfo);
		*retInfo = NULL;
	}

ret:
	burn (&keyInfo, sizeof (keyInfo));
	burn (dk, sizeof(dk));
	burn (header, sizeof(header));

#if !defined(DEVICE_DRIVER) && !defined(_UEFI)
	VirtualUnlock (&keyInfo, sizeof (keyInfo));
	VirtualUnlock (&dk, sizeof (dk));
	VirtualUnlock (&header, sizeof (header));
#endif

#if !defined(_UEFI)
	if ((selected_pkcs5_prf == 0) && (encryptionThreadCount > 1))
	{
		TC_WAIT_EVENT (noOutstandingWorkItemEvent);

		burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount);
		TCfree (keyDerivationWorkItems);

#if !defined(DEVICE_DRIVER) 
		CloseHandle (keyDerivationCompletedEvent);
		CloseHandle (noOutstandingWorkItemEvent);
#endif
	}
#endif
	return status;
}

#if defined(_WIN32) && !defined(_UEFI)
void ComputeBootloaderFingerprint (byte *bootLoaderBuf, unsigned int bootLoaderSize, byte* fingerprint)
{
	// compute Whirlpool+SHA512 fingerprint of bootloader including MBR
	// we skip user configuration fields:
	// TC_BOOT_SECTOR_PIM_VALUE_OFFSET = 400
	// TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_OFFSET = 402
	//  => TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_SIZE = 4
	// TC_BOOT_SECTOR_USER_MESSAGE_OFFSET     = 406
	//  => TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH = 24
	// TC_BOOT_SECTOR_USER_CONFIG_OFFSET      = 438
	//
	// we have: TC_BOOT_SECTOR_USER_MESSAGE_OFFSET = TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_OFFSET + TC_BOOT_SECTOR_OUTER_VOLUME_BAK_HEADER_CRC_SIZE

	WHIRLPOOL_CTX whirlpool;
	sha512_ctx sha2;

	WHIRLPOOL_init (&whirlpool);
	sha512_begin (&sha2);

	WHIRLPOOL_add (bootLoaderBuf, TC_BOOT_SECTOR_PIM_VALUE_OFFSET, &whirlpool);
	sha512_hash (bootLoaderBuf, TC_BOOT_SECTOR_PIM_VALUE_OFFSET, &sha2);

	WHIRLPOOL_add (bootLoaderBuf + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH, (TC_BOOT_SECTOR_USER_CONFIG_OFFSET - (TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH)), &whirlpool);
	sha512_hash (bootLoaderBuf + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH, (TC_BOOT_SECTOR_USER_CONFIG_OFFSET - (TC_BOOT_SECTOR_USER_MESSAGE_OFFSET + TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH)), &sha2);

	WHIRLPOOL_add (bootLoaderBuf + TC_SECTOR_SIZE_BIOS, (bootLoaderSize - TC_SECTOR_SIZE_BIOS), &whirlpool);
	sha512_hash (bootLoaderBuf + TC_SECTOR_SIZE_BIOS, (bootLoaderSize - TC_SECTOR_SIZE_BIOS), &sha2);

	WHIRLPOOL_finalize (&whirlpool, fingerprint);
	sha512_end (&fingerprint [WHIRLPOOL_DIGESTSIZE], &sha2);
}
#endif

#else // TC_WINDOWS_BOOT

int ReadVolumeHeader (BOOL bBoot, char *header, Password *password, int pim, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo)
{
#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
	char dk[32 * 2];			// 2 * 256-bit key
#else
	char dk[32 * 2 * 3];		// 6 * 256-bit key
#endif

	PCRYPTO_INFO cryptoInfo;
	int status = ERR_SUCCESS;
	uint32 iterations = pim;
	iterations <<= 16;
	iterations |= bBoot;

	if (retHeaderCryptoInfo != NULL)
		cryptoInfo = retHeaderCryptoInfo;
	else
		cryptoInfo = *retInfo = crypto_open ();

	// PKCS5 PRF
#ifdef TC_WINDOWS_BOOT_SHA2
	derive_key_sha256 (password->Text, (int) password->Length, header + HEADER_SALT_OFFSET,
		PKCS5_SALT_SIZE, iterations, dk, sizeof (dk));
#else
	derive_key_ripemd160 (password->Text, (int) password->Length, header + HEADER_SALT_OFFSET,
		PKCS5_SALT_SIZE, iterations, dk, sizeof (dk));
#endif

	// Mode of operation
	cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID;

#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
	cryptoInfo->ea = 1;
#else
	// Test all available encryption algorithms
	for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea))
#endif
	{
#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
	#if defined (TC_WINDOWS_BOOT_SERPENT)
		serpent_set_key (dk, cryptoInfo->ks);
	#elif defined (TC_WINDOWS_BOOT_TWOFISH)
		twofish_set_key ((TwofishInstance *) cryptoInfo->ks, (const u4byte *) dk);
	#elif defined (TC_WINDOWS_BOOT_CAMELLIA)
		camellia_set_key (dk, cryptoInfo->ks);
	#else
		status = EAInit (dk, cryptoInfo->ks);
		if (status == ERR_CIPHER_INIT_FAILURE)
			goto err;
	#endif
#else
		status = EAInit (cryptoInfo->ea, dk, cryptoInfo->ks);
		if (status == ERR_CIPHER_INIT_FAILURE)
			goto err;
#endif
		// Secondary key schedule
#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
	#if defined (TC_WINDOWS_BOOT_SERPENT)
		serpent_set_key (dk + 32, cryptoInfo->ks2);
	#elif defined (TC_WINDOWS_BOOT_TWOFISH)
		twofish_set_key ((TwofishInstance *)cryptoInfo->ks2, (const u4byte *) (dk + 32));
	#elif defined (TC_WINDOWS_BOOT_CAMELLIA)
		camellia_set_key (dk + 32, cryptoInfo->ks2);
	#else
		EAInit (dk + 32, cryptoInfo->ks2);
	#endif
#else
		EAInit (cryptoInfo->ea, dk + EAGetKeySize (cryptoInfo->ea), cryptoInfo->ks2);
#endif

		// Try to decrypt header
		DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);

		// Check magic 'VERA' and CRC-32 of header fields and master keydata
		if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x56455241
			|| (GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION) >= 4 && GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC))
			|| GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE))
		{
			EncryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);
#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
			status = ERR_PASSWORD_WRONG;
			goto err;
#else
			continue;
#endif
		}

		// Header decrypted
		status = 0;

		// Hidden volume status
		cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE);
		cryptoInfo->hiddenVolume = (cryptoInfo->VolumeSize.LowPart != 0 || cryptoInfo->VolumeSize.HighPart != 0);

		// Volume size
		cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE);

		// Encrypted area size and length
		cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START);
		cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH);

		// Flags
		cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS);

#ifdef TC_WINDOWS_BOOT_SHA2
		cryptoInfo->pkcs5 = SHA256;
#else
		cryptoInfo->pkcs5 = RIPEMD160;
#endif

		memcpy (dk, header + HEADER_MASTER_KEYDATA_OFFSET, sizeof (dk));
		EncryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo);

		if (retHeaderCryptoInfo)
			goto ret;

		// Init the encryption algorithm with the decrypted master key
#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
	#if defined (TC_WINDOWS_BOOT_SERPENT)
		serpent_set_key (dk, cryptoInfo->ks);
	#elif defined (TC_WINDOWS_BOOT_TWOFISH)
		twofish_set_key ((TwofishInstance *) cryptoInfo->ks, (const u4byte *) dk);
	#elif defined (TC_WINDOWS_BOOT_CAMELLIA)
		camellia_set_key (dk, cryptoInfo->ks);
	#else
		status = EAInit (dk, cryptoInfo->ks);
		if (status == ERR_CIPHER_INIT_FAILURE)
			goto err;
	#endif
#else
		status = EAInit (cryptoInfo->ea, dk, cryptoInfo->ks);
		if (status == ERR_CIPHER_INIT_FAILURE)
			goto err;
#endif

		// The secondary master key (if cascade, multiple concatenated)
#ifdef TC_WINDOWS_BOOT_SINGLE_CIPHER_MODE
	#if defined (TC_WINDOWS_BOOT_SERPENT)
		serpent_set_key (dk + 32, cryptoInfo->ks2);
	#elif defined (TC_WINDOWS_BOOT_TWOFISH)
		twofish_set_key ((TwofishInstance *)cryptoInfo->ks2, (const u4byte *) (dk + 32));
	#elif defined (TC_WINDOWS_BOOT_CAMELLIA)
		camellia_set_key (dk + 32, cryptoInfo->ks2);
	#else
		EAInit (dk + 32, cryptoInfo->ks2);
	#endif
#else
		EAInit (cryptoInfo->ea, dk + EAGetKeySize (cryptoInfo->ea), cryptoInfo->ks2);
#endif
		goto ret;
	}

	status = ERR_PASSWORD_WRONG;

err:
	if (cryptoInfo != retHeaderCryptoInfo)
	{
		crypto_close(cryptoInfo);
		*retInfo = NULL;
	}

ret:
	burn (dk, sizeof(dk));
	return status;
}

#endif // TC_WINDOWS_BOOT


#if !defined (DEVICE_DRIVER) && !defined (TC_WINDOWS_BOOT)

#ifdef VOLFORMAT
#	include "../Format/TcFormat.h"
#	include "Dlgcode.h"
#endif

// Creates a volume header in memory
#if defined(_UEFI)
int CreateVolumeHeaderInMemory(BOOL bBoot, char *header, int ea, int mode, Password *password,
	int pkcs5_prf, int pim, char *masterKeydata, PCRYPTO_INFO *retInfo,
	unsigned __int64 volumeSize, unsigned __int64 hiddenVolumeSize,
	unsigned __int64 encryptedAreaStart, unsigned __int64 encryptedAreaLength, uint16 requiredProgramVersion, uint32 headerFlags, uint32 sectorSize, BOOL bWipeMode)
#else
int CreateVolumeHeaderInMemory (HWND hwndDlg, BOOL bBoot, char *header, int ea, int mode, Password *password,
		   int pkcs5_prf, int pim, char *masterKeydata, PCRYPTO_INFO *retInfo,
		   unsigned __int64 volumeSize, unsigned __int64 hiddenVolumeSize,
		   unsigned __int64 encryptedAreaStart, unsigned __int64 encryptedAreaLength, uint16 requiredProgramVersion, uint32 headerFlags, uint32 sectorSize, BOOL bWipeMode)
#endif // !defined(_UEFI)
{
	unsigned char *p = (unsigned char *) header;
	static CRYPTOPP_ALIGN_DATA(16) KEY_INFO keyInfo;

	int nUserKeyLen = password? password->Length : 0;
	PCRYPTO_INFO cryptoInfo = crypto_open ();
	static char dk[MASTER_KEYDATA_SIZE];
	int x;
	int retVal = 0;
	int primaryKeyOffset;

	if (cryptoInfo == NULL)
		return ERR_OUTOFMEMORY;

	// if no PIM specified, use default value
	if (pim < 0)
		pim = 0;

	memset (header, 0, TC_VOLUME_HEADER_EFFECTIVE_SIZE);
#if !defined(_UEFI)
	VirtualLock (&keyInfo, sizeof (keyInfo));
	VirtualLock (&dk, sizeof (dk));
#endif // !defined(_UEFI)

	/* Encryption setup */

	if (masterKeydata == NULL)
	{
		// We have no master key data (creating a new volume) so we'll use the TrueCrypt RNG to generate them

		int bytesNeeded;

		switch (mode)
		{

		default:
			bytesNeeded = EAGetKeySize (ea) * 2;	// Size of primary + secondary key(s)
		}

#if !defined(_UEFI)
		if (!RandgetBytes (hwndDlg, keyInfo.master_keydata, bytesNeeded, TRUE))
#else
		if (!RandgetBytes(keyInfo.master_keydata, bytesNeeded, TRUE))
#endif
		{
			crypto_close (cryptoInfo);
			retVal = ERR_CIPHER_INIT_WEAK_KEY;
			goto err;
		}
	}
	else
	{
		// We already have existing master key data (the header is being re-encrypted)
		memcpy (keyInfo.master_keydata, masterKeydata, MASTER_KEYDATA_SIZE);
	}

	// User key
	if (password)
	{
		memcpy (keyInfo.userKey, password->Text, nUserKeyLen);
		keyInfo.keyLength = nUserKeyLen;
		keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, pim, FALSE, bBoot);
	}
	else
	{
		keyInfo.keyLength = 0;
		keyInfo.noIterations = 0;
	}

	// User selected encryption algorithm
	cryptoInfo->ea = ea;

	// User selected PRF
	cryptoInfo->pkcs5 = pkcs5_prf;
	cryptoInfo->bTrueCryptMode = FALSE;
	cryptoInfo->noIterations = keyInfo.noIterations;
	cryptoInfo->volumePim = pim;

	// Mode of operation
	cryptoInfo->mode = mode;

	// Salt for header key derivation
#if !defined(_UEFI)
	if (!RandgetBytes(hwndDlg, keyInfo.salt, PKCS5_SALT_SIZE, !bWipeMode))
#else
	if (!RandgetBytes(keyInfo.salt, PKCS5_SALT_SIZE, !bWipeMode))
#endif
	{
		crypto_close (cryptoInfo);
		retVal = ERR_CIPHER_INIT_WEAK_KEY; 
		goto err;
	}

	if (password)
	{
		// PBKDF2 (PKCS5) is used to derive primary header key(s) and secondary header key(s) (XTS) from the password/keyfiles
		switch (pkcs5_prf)
		{
		case SHA512:
			derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
				PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
			break;

		case SHA256:
			derive_key_sha256 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
				PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
			break;

		case RIPEMD160:
			derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
				PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
			break;

		case WHIRLPOOL:
			derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
				PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
			break;

		case STREEBOG:
			derive_key_streebog(keyInfo.userKey, keyInfo.keyLength, keyInfo.salt,
				PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize());
			break;

		default:
			// Unknown/wrong ID
			crypto_close (cryptoInfo);
			TC_THROW_FATAL_EXCEPTION;
		}
	}
	else
	{
		// generate a random key
#if !defined(_UEFI)
		if (!RandgetBytes(hwndDlg, dk, GetMaxPkcs5OutSize(), !bWipeMode))
#else
		if (!RandgetBytes(dk, GetMaxPkcs5OutSize(), !bWipeMode))
#endif
		{
			crypto_close (cryptoInfo);
			retVal = ERR_CIPHER_INIT_WEAK_KEY; 
			goto err;
		}
	}

	/* Header setup */

	// Salt
	mputBytes (p, keyInfo.salt, PKCS5_SALT_SIZE);

	// Magic
	mputLong (p, 0x56455241);

	// Header version
	mputWord (p, VOLUME_HEADER_VERSION);
	cryptoInfo->HeaderVersion = VOLUME_HEADER_VERSION;

	// Required program version to handle this volume
	mputWord (p, requiredProgramVersion != 0 ? requiredProgramVersion : TC_VOLUME_MIN_REQUIRED_PROGRAM_VERSION);

	// CRC of the master key data
	x = GetCrc32(keyInfo.master_keydata, MASTER_KEYDATA_SIZE);
	mputLong (p, x);

	// Reserved fields
	p += 2 * 8;

	// Size of hidden volume (if any)
	cryptoInfo->hiddenVolumeSize = hiddenVolumeSize;
	mputInt64 (p, cryptoInfo->hiddenVolumeSize);

	cryptoInfo->hiddenVolume = cryptoInfo->hiddenVolumeSize != 0;

	// Volume size
	cryptoInfo->VolumeSize.Value = volumeSize;
	mputInt64 (p, volumeSize);

	// Encrypted area start
	cryptoInfo->EncryptedAreaStart.Value = encryptedAreaStart;
	mputInt64 (p, encryptedAreaStart);

	// Encrypted area size
	cryptoInfo->EncryptedAreaLength.Value = encryptedAreaLength;
	mputInt64 (p, encryptedAreaLength);

	// Flags
	cryptoInfo->HeaderFlags = headerFlags;
	mputLong (p, headerFlags);

	// Sector size
	if (sectorSize < TC_MIN_VOLUME_SECTOR_SIZE
		|| sectorSize > TC_MAX_VOLUME_SECTOR_SIZE
		|| sectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0)
	{
		crypto_close (cryptoInfo);
		TC_THROW_FATAL_EXCEPTION;
	}

	cryptoInfo->SectorSize = sectorSize;
	mputLong (p, sectorSize);

	// CRC of the header fields
	x = GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC);
	p = header + TC_HEADER_OFFSET_HEADER_CRC;
	mputLong (p, x);

	// The master key data
	memcpy (header + HEADER_MASTER_KEYDATA_OFFSET, keyInfo.master_keydata, MASTER_KEYDATA_SIZE);


	/* Header encryption */

#ifndef TC_WINDOWS_DRIVER
	// The secondary key (if cascade, multiple concatenated)
	memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));
	primaryKeyOffset = 0;
#endif

	retVal = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks);
	if (retVal != ERR_SUCCESS)
	{
		crypto_close (cryptoInfo);
		goto err;
	}

	// Mode of operation
	if (!EAInitMode (cryptoInfo, dk + EAGetKeySize (cryptoInfo->ea)))
	{
		crypto_close (cryptoInfo);
		retVal = ERR_OUTOFMEMORY;
		goto err;
	}


	// Encrypt the entire header (except the salt)
	EncryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET,
		HEADER_ENCRYPTED_DATA_SIZE,
		cryptoInfo);


	/* cryptoInfo setup for further use (disk format) */

	// Init with the master key(s)
	retVal = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks);
	if (retVal != ERR_SUCCESS)
	{
		crypto_close (cryptoInfo);
		goto err;
	}

	memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE);

#ifndef TC_WINDOWS_DRIVER
	// The secondary master key (if cascade, multiple concatenated)
	memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea));
#endif

	// Mode of operation
	if (!EAInitMode (cryptoInfo, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea)))
	{
		crypto_close (cryptoInfo);
		retVal = ERR_OUTOFMEMORY;
		goto err;
	}


#ifdef VOLFORMAT
	if (!bInPlaceEncNonSys && (showKeys || (bBoot && !masterKeydata)))
	{
		BOOL dots3 = FALSE;
		int i, j;

		j = EAGetKeySize (ea);

		if (j > NBR_KEY_BYTES_TO_DISPLAY)
		{
			dots3 = TRUE;
			j = NBR_KEY_BYTES_TO_DISPLAY;
		}

		MasterKeyGUIView[0] = 0;
		for (i = 0; i < j; i++)
		{
			wchar_t tmp2[8] = {0};
			StringCchPrintfW (tmp2, ARRAYSIZE(tmp2), L"%02X", (int) (unsigned char) keyInfo.master_keydata[i + primaryKeyOffset]);
			StringCchCatW (MasterKeyGUIView, ARRAYSIZE(MasterKeyGUIView), tmp2);
		}

		HeaderKeyGUIView[0] = 0;
		for (i = 0; i < NBR_KEY_BYTES_TO_DISPLAY; i++)
		{
			wchar_t tmp2[8];
			StringCchPrintfW (tmp2, ARRAYSIZE(tmp2), L"%02X", (int) (unsigned char) dk[primaryKeyOffset + i]);
			StringCchCatW (HeaderKeyGUIView, ARRAYSIZE(HeaderKeyGUIView), tmp2);
		}

		if (dots3)
		{
			DisplayPortionsOfKeys (hHeaderKey, hMasterKey, HeaderKeyGUIView, MasterKeyGUIView, !showKeys);
		}
		else
		{
			SendMessage (hMasterKey, WM_SETTEXT, 0, (LPARAM) MasterKeyGUIView);
			SendMessage (hHeaderKey, WM_SETTEXT, 0, (LPARAM) HeaderKeyGUIView);
		}
	}
#endif	// #ifdef VOLFORMAT

	*retInfo = cryptoInfo;

err:
	burn (dk, sizeof(dk));
	burn (&keyInfo, sizeof (keyInfo));
#if !defined(_UEFI)
	VirtualUnlock (&keyInfo, sizeof (keyInfo));
	VirtualUnlock (&dk, sizeof (dk));
#endif // !defined(_UEFI)

	return 0;
}

#if !defined(_UEFI)
BOOL ReadEffectiveVolumeHeader (BOOL device, HANDLE fileHandle, byte *header, DWORD *bytesRead)
{
#if TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE
#error TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE
#endif

	byte sectorBuffer[TC_MAX_VOLUME_SECTOR_SIZE];
	DISK_GEOMETRY geometry;

	if (!device)
		return ReadFile (fileHandle, header, TC_VOLUME_HEADER_EFFECTIVE_SIZE, bytesRead, NULL);

	if (!DeviceIoControl (fileHandle, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &geometry, sizeof (geometry), bytesRead, NULL))
		return FALSE;

	if (geometry.BytesPerSector > sizeof (sectorBuffer) || geometry.BytesPerSector < TC_MIN_VOLUME_SECTOR_SIZE)
	{
		SetLastError (ERROR_INVALID_PARAMETER);
		return FALSE;
	}

	if (!ReadFile (fileHandle, sectorBuffer, max (TC_VOLUME_HEADER_EFFECTIVE_SIZE, geometry.BytesPerSector), bytesRead, NULL))
		return FALSE;

	memcpy (header, sectorBuffer, min (*bytesRead, TC_VOLUME_HEADER_EFFECTIVE_SIZE));

	if (*bytesRead > TC_VOLUME_HEADER_EFFECTIVE_SIZE)
		*bytesRead = TC_VOLUME_HEADER_EFFECTIVE_SIZE;

	return TRUE;
}


BOOL WriteEffectiveVolumeHeader (BOOL device, HANDLE fileHandle, byte *header)
{
#if TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE
#error TC_VOLUME_HEADER_EFFECTIVE_SIZE > TC_MAX_VOLUME_SECTOR_SIZE
#endif

	byte sectorBuffer[TC_MAX_VOLUME_SECTOR_SIZE];
	DWORD bytesDone;
	DISK_GEOMETRY geometry;

	if (!device)
	{
		if (!WriteFile (fileHandle, header, TC_VOLUME_HEADER_EFFECTIVE_SIZE, &bytesDone, NULL))
			return FALSE;

		if (bytesDone != TC_VOLUME_HEADER_EFFECTIVE_SIZE)
		{
			SetLastError (ERROR_INVALID_PARAMETER);
			return FALSE;
		}

		return TRUE;
	}


	if (!DeviceIoControl (fileHandle, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &geometry, sizeof (geometry), &bytesDone, NULL))
		return FALSE;

	if (geometry.BytesPerSector > sizeof (sectorBuffer) || geometry.BytesPerSector < TC_MIN_VOLUME_SECTOR_SIZE)
	{
		SetLastError (ERROR_INVALID_PARAMETER);
		return FALSE;
	}

	if (geometry.BytesPerSector != TC_VOLUME_HEADER_EFFECTIVE_SIZE)
	{
		LARGE_INTEGER seekOffset;

		if (!ReadFile (fileHandle, sectorBuffer, geometry.BytesPerSector, &bytesDone, NULL))
			return FALSE;

		if (bytesDone != geometry.BytesPerSector)
		{
			SetLastError (ERROR_INVALID_PARAMETER);
			return FALSE;
		}

		seekOffset.QuadPart = -(int) bytesDone;
		if (!SetFilePointerEx (fileHandle, seekOffset, NULL, FILE_CURRENT))
			return FALSE;
	}

	memcpy (sectorBuffer, header, TC_VOLUME_HEADER_EFFECTIVE_SIZE);

	if (!WriteFile (fileHandle, sectorBuffer, geometry.BytesPerSector, &bytesDone, NULL))
		return FALSE;

	if (bytesDone != geometry.BytesPerSector)
	{
		SetLastError (ERROR_INVALID_PARAMETER);
		return FALSE;
	}

	return TRUE;
}


// Writes randomly generated data to unused/reserved header areas.
// When bPrimaryOnly is TRUE, then only the primary header area (not the backup header area) is filled with random data.
// When bBackupOnly is TRUE, only the backup header area (not the primary header area) is filled with random data.
int WriteRandomDataToReservedHeaderAreas (HWND hwndDlg, HANDLE dev, CRYPTO_INFO *cryptoInfo, uint64 dataAreaSize, BOOL bPrimaryOnly, BOOL bBackupOnly)
{
	char temporaryKey[MASTER_KEYDATA_SIZE];
	char originalK2[MASTER_KEYDATA_SIZE];

	byte buf[TC_VOLUME_HEADER_GROUP_SIZE];

	LARGE_INTEGER offset;
	int nStatus = ERR_SUCCESS;
	DWORD dwError;
	DWORD bytesDone;
	BOOL backupHeaders = bBackupOnly;

	if (bPrimaryOnly && bBackupOnly)
		TC_THROW_FATAL_EXCEPTION;

	memcpy (originalK2, cryptoInfo->k2, sizeof (cryptoInfo->k2));

	while (TRUE)
	{
		// Temporary keys
		if (!RandgetBytes (hwndDlg, temporaryKey, EAGetKeySize (cryptoInfo->ea), FALSE)
			|| !RandgetBytes (hwndDlg, cryptoInfo->k2, sizeof (cryptoInfo->k2), FALSE))
		{
			nStatus = ERR_PARAMETER_INCORRECT;
			goto final_seq;
		}

		nStatus = EAInit (cryptoInfo->ea, temporaryKey, cryptoInfo->ks);
		if (nStatus != ERR_SUCCESS)
			goto final_seq;

		if (!EAInitMode (cryptoInfo, cryptoInfo->k2))
		{
			nStatus = ERR_MODE_INIT_FAILED;
			goto final_seq;
		}

		offset.QuadPart = backupHeaders ? dataAreaSize + TC_VOLUME_HEADER_GROUP_SIZE : TC_VOLUME_HEADER_OFFSET;

		if (!SetFilePointerEx (dev, offset, NULL, FILE_BEGIN))
		{
			nStatus = ERR_OS_ERROR;
			goto final_seq;
		}

		if (!ReadFile (dev, buf, sizeof (buf), &bytesDone, NULL))
		{
			nStatus = ERR_OS_ERROR;
			goto final_seq;
		}

		if (bytesDone < TC_VOLUME_HEADER_EFFECTIVE_SIZE)
		{
			SetLastError (ERROR_INVALID_PARAMETER);
			nStatus = ERR_OS_ERROR;
			goto final_seq;
		}

		// encrypt random data instead of existing data for better entropy
		RandgetBytesFull (hwndDlg, buf + TC_VOLUME_HEADER_EFFECTIVE_SIZE, sizeof (buf) - TC_VOLUME_HEADER_EFFECTIVE_SIZE, FALSE, TRUE);

		EncryptBuffer (buf + TC_VOLUME_HEADER_EFFECTIVE_SIZE, sizeof (buf) - TC_VOLUME_HEADER_EFFECTIVE_SIZE, cryptoInfo);

		if (!SetFilePointerEx (dev, offset, NULL, FILE_BEGIN))
		{
			nStatus = ERR_OS_ERROR;
			goto final_seq;
		}

		if (!WriteFile (dev, buf, sizeof (buf), &bytesDone, NULL))
		{
			nStatus = ERR_OS_ERROR;
			goto final_seq;
		}

		if (bytesDone != sizeof (buf))
		{
			nStatus = ERR_PARAMETER_INCORRECT;
			goto final_seq;
		}

		if (backupHeaders || bPrimaryOnly)
			break;

		backupHeaders = TRUE;
	}

	memcpy (cryptoInfo->k2, originalK2, sizeof (cryptoInfo->k2));

	nStatus = EAInit (cryptoInfo->ea, cryptoInfo->master_keydata, cryptoInfo->ks);
	if (nStatus != ERR_SUCCESS)
		goto final_seq;

	if (!EAInitMode (cryptoInfo, cryptoInfo->k2))
	{
		nStatus = ERR_MODE_INIT_FAILED;
		goto final_seq;
	}

final_seq:

	dwError = GetLastError();

	burn (temporaryKey, sizeof (temporaryKey));
	burn (originalK2, sizeof (originalK2));

	if (nStatus != ERR_SUCCESS)
		SetLastError (dwError);

	return nStatus;
}

#endif // !defined(_UEFI)
#endif // !defined (DEVICE_DRIVER) && !defined (TC_WINDOWS_BOOT)