/* Copyright (c) 2008-2010 TrueCrypt Developers Association. All rights reserved. Governed by the TrueCrypt License 3.0 the full text of which is contained in the file License.txt included in TrueCrypt binary and source code distribution packages. */ #include "EncryptionModeXTS.h" #include "Common/Crypto.h" namespace VeraCrypt { void EncryptionModeXTS::Encrypt (byte *data, uint64 length) const { EncryptBuffer (data, length, 0); } void EncryptionModeXTS::EncryptBuffer (byte *data, uint64 length, uint64 startDataUnitNo) const { if_debug (ValidateState()); CipherList::const_iterator iSecondaryCipher = SecondaryCiphers.begin(); for (CipherList::const_iterator iCipher = Ciphers.begin(); iCipher != Ciphers.end(); ++iCipher) { EncryptBufferXTS (**iCipher, **iSecondaryCipher, data, length, startDataUnitNo, 0); ++iSecondaryCipher; } assert (iSecondaryCipher == SecondaryCiphers.end()); } void EncryptionModeXTS::EncryptBufferXTS (const Cipher &cipher, const Cipher &secondaryCipher, byte *buffer, uint64 length, uint64 startDataUnitNo, unsigned int startCipherBlockNo) const { byte finalCarry; byte whiteningValues [ENCRYPTION_DATA_UNIT_SIZE]; byte whiteningValue [BYTES_PER_XTS_BLOCK]; byte byteBufUnitNo [BYTES_PER_XTS_BLOCK]; uint64 *whiteningValuesPtr64 = (uint64 *) whiteningValues; uint64 *whiteningValuePtr64 = (uint64 *) whiteningValue; uint64 *bufPtr = (uint64 *) buffer; uint64 *dataUnitBufPtr; unsigned int startBlock = startCipherBlockNo, endBlock, block; uint64 *const finalInt64WhiteningValuesPtr = whiteningValuesPtr64 + sizeof (whiteningValues) / sizeof (*whiteningValuesPtr64) - 1; uint64 blockCount, dataUnitNo; startDataUnitNo += SectorOffset; /* The encrypted data unit number (i.e. the resultant ciphertext block) is to be multiplied in the finite field GF(2^128) by j-th power of n, where j is the sequential plaintext/ciphertext block number and n is 2, a primitive element of GF(2^128). This can be (and is) simplified and implemented as a left shift of the preceding whitening value by one bit (with carry propagating). In addition, if the shift of the highest byte results in a carry, 135 is XORed into the lowest byte. The value 135 is derived from the modulus of the Galois Field (x^128+x^7+x^2+x+1). */ // Convert the 64-bit data unit number into a little-endian 16-byte array. // Note that as we are converting a 64-bit number into a 16-byte array we can always zero the last 8 bytes. dataUnitNo = startDataUnitNo; *((uint64 *) byteBufUnitNo) = Endian::Little (dataUnitNo); *((uint64 *) byteBufUnitNo + 1) = 0; if (length % BYTES_PER_XTS_BLOCK) TC_THROW_FATAL_EXCEPTION; blockCount = length / BYTES_PER_XTS_BLOCK; // Process all blocks in the buffer while (blockCount > 0) { if (blockCount < BLOCKS_PER_XTS_DATA_UNIT) endBlock = startBlock + (unsigned int) blockCount; else endBlock = BLOCKS_PER_XTS_DATA_UNIT; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; whiteningValuePtr64 = (uint64 *) whiteningValue; // Encrypt the data unit number using the secondary key (in order to generate the first // whitening value for this data unit) *whiteningValuePtr64 = *((uint64 *) byteBufUnitNo); *(whiteningValuePtr64 + 1) = 0; secondaryCipher.EncryptBlock (whiteningValue); // Generate subsequent whitening values for blocks in this data unit. Note that all generated 128-bit // whitening values are stored in memory as a sequence of 64-bit integers in reverse order. for (block = 0; block < endBlock; block++) { if (block >= startBlock) { *whiteningValuesPtr64-- = *whiteningValuePtr64++; *whiteningValuesPtr64-- = *whiteningValuePtr64; } else whiteningValuePtr64++; // Derive the next whitening value #if BYTE_ORDER == LITTLE_ENDIAN // Little-endian platforms finalCarry = (*whiteningValuePtr64 & 0x8000000000000000ULL) ? 135 : 0; *whiteningValuePtr64-- <<= 1; if (*whiteningValuePtr64 & 0x8000000000000000ULL) *(whiteningValuePtr64 + 1) |= 1; *whiteningValuePtr64 <<= 1; #else // Big-endian platforms finalCarry = (*whiteningValuePtr64 & 0x80) ? 135 : 0; *whiteningValuePtr64 = Endian::Little (Endian::Little (*whiteningValuePtr64) << 1); whiteningValuePtr64--; if (*whiteningValuePtr64 & 0x80) *(whiteningValuePtr64 + 1) |= 0x0100000000000000ULL; *whiteningValuePtr64 = Endian::Little (Endian::Little (*whiteningValuePtr64) << 1); #endif whiteningValue[0] ^= finalCarry; } dataUnitBufPtr = bufPtr; whiteningValuesPtr64 = finalInt64WhiteningValuesPtr; // Encrypt all blocks in this data unit for (block = startBlock; block < endBlock; block++) { // Pre-whitening *bufPtr++ ^= *whiteningValuesPtr64--; *bufPtr++ ^= *whiteningValuesPtr64--; } //
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#ifndef TC_HEADER_Main_Forms_InfoWizardPage
#define TC_HEADER_Main_Forms_InfoWizardPage

#include "Forms.h"

namespace VeraCrypt
{
	class InfoWizardPage : public InfoWizardPageBase
	{
	public:
		InfoWizardPage (wxPanel *parent, const wxString &actionButtonText = wxEmptyString, shared_ptr <Functor> actionFunctor = shared_ptr <Functor> ());

		bool IsValid () { return true; }
		void SetMaxStaticTextWidth (int width);
		void SetPageText (const wxString &text) { InfoStaticText->SetLabel (text); }

	protected:
		virtual void OnActionButtonClick (wxCommandEvent& event) { (*ActionFunctor)(); }

		shared_ptr <Functor> ActionFunctor;
	};
}

#endif // TC_HEADER_Main_Forms_InfoWizardPage