VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Volume/Cipher.cpp
blob: 32f61b76353451a8e62ed61a4aaaccf8a0369070 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244<
;
; Copyright (c) 2008-2009 TrueCrypt Developers Association. All rights reserved.
;
; Governed by the TrueCrypt License 3.0 the full text of which is contained in
; the file License.txt included in TrueCrypt binary and source code distribution
; packages.
;

.MODEL tiny
.386
_TEXT SEGMENT USE16

INCLUDE BootDefs.i

ORG 7C00h	; Standard boot sector offset

start:
	; BIOS executes boot sector from 0:7C00 or 7C0:0000 (default CD boot loader address).
	; Far jump to the next instruction sets IP to the standard offset 7C00.
	db 0EAh				; jmp 0:main
	dw main, 0

loader_name_msg:
	db ' VeraCrypt Boot Loader', 13, 10, 0
	
main:
	cli	
	xor ax, ax
	mov ds, ax
	mov ss, ax
	mov sp, 7C00h
	sti

	; Display boot loader name
	test byte ptr [start + TC_BOOT_SECTOR_USER_CONFIG_OFFSET], TC_BOOT_USER_CFG_FLAG_SILENT_MODE
	jnz skip_loader_name_msg

	lea si, loader_name_msg
	call print
skip_loader_name_msg:

	; Determine boot loader segment
	mov ax, TC_BOOT_LOADER_SEGMENT

	; Check available memory
	cmp word ptr [ds:413h], TC_BOOT_LOADER_SEGMENT / 1024 * 16 + TC_BOOT_MEMORY_REQUIRED
	jge memory_ok
	
	mov ax, TC_BOOT_LOADER_SEGMENT_LOW
	
	cmp word ptr [ds:413h], TC_BOOT_LOADER_SEGMENT_LOW / 1024 * 16 + TC_BOOT_MEMORY_REQUIRED
	jge memory_ok
	
	; Insufficient memory
	mov ax, TC_BOOT_LOADER_LOWMEM_SEGMENT

memory_ok:
	mov es,
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "Platform/Platform.h"
#include "Cipher.h"
#include "Crypto/Aes.h"
#include "Crypto/SerpentFast.h"
#include "Crypto/Twofish.h"
#include "Crypto/Camellia.h"
#include "Crypto/GostCipher.h"
#include "Crypto/kuznyechik.h"

#ifdef TC_AES_HW_CPU
#	include "Crypto/Aes_hw_cpu.h"
#endif
#include "Crypto/cpu.h"

extern "C" int IsAesHwCpuSupported ()
{
#ifdef TC_AES_HW_CPU
	static bool state = false;
	static bool stateValid = false;

	if (!stateValid)
	{
		state = g_hasAESNI ? true : false;
		stateValid = true;
	}
	return state && VeraCrypt::Cipher::IsHwSupportEnabled();
#else
	return false;
#endif
}

namespace VeraCrypt
{
	Cipher::Cipher () : Initialized (false)
	{
	}

	Cipher::~Cipher ()
	{
	}

	void Cipher::DecryptBlock (byte *data) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

		Decrypt (data);
	}

	void Cipher::DecryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

		while (blockCount-- > 0)
		{
			Decrypt (data);
			data += GetBlockSize();
		}
	}

	void Cipher::EncryptBlock (byte *data) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

		Encrypt (data);
	}

	void Cipher::EncryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

		while (blockCount-- > 0)
		{
			Encrypt (data);
			data += GetBlockSize();
		}
	}

	CipherList Cipher::GetAvailableCiphers ()
	{
		CipherList l;

		l.push_back (shared_ptr <Cipher> (new CipherAES ()));
		l.push_back (shared_ptr <Cipher> (new CipherSerpent ()));
		l.push_back (shared_ptr <Cipher> (new CipherTwofish ()));
		l.push_back (shared_ptr <Cipher> (new CipherCamellia ()));
		l.push_back (shared_ptr <Cipher> (new CipherGost89 ()));
		l.push_back (shared_ptr <Cipher> (new CipherKuznyechik ()));

		return l;
	}

	void Cipher::SetKey (const ConstBufferPtr &key)
	{
		if (key.Size() != GetKeySize ())
			throw ParameterIncorrect (SRC_POS);

		if (!Initialized)
			ScheduledKey.Allocate (GetScheduledKeySize ());

		SetCipherKey (key);
		Key.CopyFrom (key);
		Initialized = true;
	}

#define TC_EXCEPTION(TYPE) TC_SERIALIZER_FACTORY_ADD(TYPE)
#undef TC_EXCEPTION_NODECL
#define TC_EXCEPTION_NODECL(TYPE) TC_SERIALIZER_FACTORY_ADD(TYPE)

	TC_SERIALIZER_FACTORY_ADD_EXCEPTION_SET (CipherException);


	// AES
	void CipherAES::Decrypt (byte *data) const
	{
#ifdef TC_AES_HW_CPU
		if (IsHwSupportAvailable())
			aes_hw_cpu_decrypt (ScheduledKey.Ptr() + sizeof (aes_encrypt_ctx), data);
		else
#endif
			aes_decrypt (data, data, (aes_decrypt_ctx *) (ScheduledKey.Ptr() + sizeof (aes_encrypt_ctx)));
	}

	void CipherAES::DecryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#ifdef TC_AES_HW_CPU
		if ((blockCount & (32 - 1)) == 0
			&& IsHwSupportAvailable())
		{
			while (blockCount > 0)
			{
				aes_hw_cpu_decrypt_32_blocks (ScheduledKey.Ptr() + sizeof (aes_encrypt_ctx), data);

				data += 32 * GetBlockSize();
				blockCount -= 32;
			}
		}
		else
#endif
			Cipher::DecryptBlocks (data, blockCount);
	}

	void CipherAES::Encrypt (byte *data) const
	{
#ifdef TC_AES_HW_CPU
		if (IsHwSupportAvailable())
			aes_hw_cpu_encrypt (ScheduledKey.Ptr(), data);
		else
#endif
			aes_encrypt (data, data, (aes_encrypt_ctx *) ScheduledKey.Ptr());
	}

	void CipherAES::EncryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#ifdef TC_AES_HW_CPU
		if ((blockCount & (32 - 1)) == 0
			&& IsHwSupportAvailable())
		{
			while (blockCount > 0)
			{
				aes_hw_cpu_encrypt_32_blocks (ScheduledKey.Ptr(), data);

				data += 32 * GetBlockSize();
				blockCount -= 32;
			}
		}
		else
#endif
			Cipher::EncryptBlocks (data, blockCount);
	}

	size_t CipherAES::GetScheduledKeySize () const
	{
		return sizeof(aes_encrypt_ctx) + sizeof(aes_decrypt_ctx);
	}

	bool CipherAES::IsHwSupportAvailable () const
	{
#ifdef TC_AES_HW_CPU
		static bool state = false;
		static bool stateValid = false;

		if (!stateValid)
		{
			state = g_hasAESNI ? true : false;
			stateValid = true;
		}
		return state && HwSupportEnabled;
#else
		return false;
#endif
	}

	void CipherAES::SetCipherKey (const byte *key)
	{
		if (aes_encrypt_key256 (key, (aes_encrypt_ctx *) ScheduledKey.Ptr()) != EXIT_SUCCESS)
			throw CipherInitError (SRC_POS);

		if (aes_decrypt_key256 (key, (aes_decrypt_ctx *) (ScheduledKey.Ptr() + sizeof (aes_encrypt_ctx))) != EXIT_SUCCESS)
			throw CipherInitError (SRC_POS);
	}

	// Serpent
	void CipherSerpent::Decrypt (byte *data) const
	{
		serpent_decrypt (data, data, ScheduledKey);
	}

	void CipherSerpent::Encrypt (byte *data) const
	{
		serpent_encrypt (data, data, ScheduledKey);
	}

	size_t CipherSerpent::GetScheduledKeySize () const
	{
		return 140*4;
	}

	void CipherSerpent::SetCipherKey (const byte *key)
	{
		serpent_set_key (key, ScheduledKey);
	}
	
	void CipherSerpent::EncryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
		if ((blockCount >= 4)
			&& IsHwSupportAvailable())
		{
			serpent_encrypt_blocks (data, data, blockCount, ScheduledKey.Ptr());
		}
		else
#endif
			Cipher::EncryptBlocks (data, blockCount);
	}
	
	void CipherSerpent::DecryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
		if ((blockCount >= 4)
			&& IsHwSupportAvailable())
		{
			serpent_decrypt_blocks (data, data, blockCount, ScheduledKey.Ptr());
		}
		else
#endif
			Cipher::DecryptBlocks (data, blockCount);
	}
	
	bool CipherSerpent::IsHwSupportAvailable () const
	{
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
		static bool state = false;
		static bool stateValid = false;

		if (!stateValid)
		{
			state = HasSSE2() ? true : false;
			stateValid = true;
		}
		return state;
#else
		return false;
#endif
	}


	// Twofish
	void CipherTwofish::Decrypt (byte *data) const
	{
		twofish_decrypt ((TwofishInstance *) ScheduledKey.Ptr(), (unsigned int *)data, (unsigned int *)data);
	}

	void CipherTwofish::Encrypt (byte *data) const
	{
		twofish_encrypt ((TwofishInstance *) ScheduledKey.Ptr(), (unsigned int *)data, (unsigned int *)data);
	}

	size_t CipherTwofish::GetScheduledKeySize () const
	{
		return TWOFISH_KS;
	}

	void CipherTwofish::SetCipherKey (const byte *key)
	{
		twofish_set_key ((TwofishInstance *) ScheduledKey.Ptr(), (unsigned int *) key);
	}
	
	void CipherTwofish::EncryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_X64
		twofish_encrypt_blocks ( (TwofishInstance *) ScheduledKey.Ptr(), data, data, blockCount);
#else
		Cipher::EncryptBlocks (data, blockCount);
#endif
	}
	
	void CipherTwofish::DecryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_X64
		twofish_decrypt_blocks ( (TwofishInstance *) ScheduledKey.Ptr(), data, data, blockCount);
#else
		Cipher::DecryptBlocks (data, blockCount);
#endif
	}
	
	bool CipherTwofish::IsHwSupportAvailable () const
	{
#if CRYPTOPP_BOOL_X64
		return true;
#else
		return false;
#endif
	}
	
	// Camellia
	void CipherCamellia::Decrypt (byte *data) const
	{
		camellia_decrypt (data, data, ScheduledKey.Ptr());
	}

	void CipherCamellia::Encrypt (byte *data) const
	{
		camellia_encrypt (data, data, ScheduledKey.Ptr());
	}

	size_t CipherCamellia::GetScheduledKeySize () const
	{
		return CAMELLIA_KS;
	}

	void CipherCamellia::SetCipherKey (const byte *key)
	{
		camellia_set_key (key, ScheduledKey.Ptr());
	}
	
	void CipherCamellia::EncryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_X64
		camellia_encrypt_blocks ( ScheduledKey.Ptr(), data, data, blockCount);
#else
		Cipher::EncryptBlocks (data, blockCount);
#endif
	}
	
	void CipherCamellia::DecryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_X64
		camellia_decrypt_blocks ( ScheduledKey.Ptr(), data, data, blockCount);
#else
		Cipher::DecryptBlocks (data, blockCount);
#endif
	}
	
	bool CipherCamellia::IsHwSupportAvailable () const
	{
#if CRYPTOPP_BOOL_X64
		return true;
#else
		return false;
#endif
	}

	// GOST89
	void CipherGost89::Decrypt (byte *data) const
	{
		gost_decrypt (data, data, (gost_kds *) ScheduledKey.Ptr(), 1);
	}

	void CipherGost89::Encrypt (byte *data) const
	{
		gost_encrypt (data, data, (gost_kds *) ScheduledKey.Ptr(), 1);
	}

	size_t CipherGost89::GetScheduledKeySize () const
	{
		return GOST_KS;
	}

	void CipherGost89::SetCipherKey (const byte *key)
	{
		gost_set_key (key, (gost_kds *) ScheduledKey.Ptr(), 1);
	}
	
	// GOST89 with static SBOX
	void CipherGost89StaticSBOX::Decrypt (byte *data) const
	{
		gost_decrypt (data, data, (gost_kds *) ScheduledKey.Ptr(), 1);
	}

	void CipherGost89StaticSBOX::Encrypt (byte *data) const
	{
		gost_encrypt (data, data, (gost_kds *) ScheduledKey.Ptr(), 1);
	}

	size_t CipherGost89StaticSBOX::GetScheduledKeySize () const
	{
		return GOST_KS;
	}

	void CipherGost89StaticSBOX::SetCipherKey (const byte *key)
	{
		gost_set_key (key, (gost_kds *) ScheduledKey.Ptr(), 0);
	}

	// Kuznyechik
	void CipherKuznyechik::Decrypt (byte *data) const
	{
		kuznyechik_decrypt_block (data, data, (kuznyechik_kds *) ScheduledKey.Ptr());
	}

	void CipherKuznyechik::Encrypt (byte *data) const
	{
		kuznyechik_encrypt_block (data, data, (kuznyechik_kds *) ScheduledKey.Ptr());
	}

	size_t CipherKuznyechik::GetScheduledKeySize () const
	{
		return KUZNYECHIK_KS;
	}

	void CipherKuznyechik::SetCipherKey (const byte *key)
	{
		kuznyechik_set_key (key, (kuznyechik_kds *) ScheduledKey.Ptr());
	}
	void CipherKuznyechik::EncryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
		if ((blockCount >= 4)
			&& IsHwSupportAvailable())
		{
			kuznyechik_encrypt_blocks (data, data, blockCount, (kuznyechik_kds *) ScheduledKey.Ptr());
		}
		else
#endif
			Cipher::EncryptBlocks (data, blockCount);
	}
	
	void CipherKuznyechik::DecryptBlocks (byte *data, size_t blockCount) const
	{
		if (!Initialized)
			throw NotInitialized (SRC_POS);

#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
		if ((blockCount >= 4)
			&& IsHwSupportAvailable())
		{
			kuznyechik_decrypt_blocks (data, data, blockCount, (kuznyechik_kds *) ScheduledKey.Ptr());
		}
		else
#endif
			Cipher::DecryptBlocks (data, blockCount);
	}
	
	bool CipherKuznyechik::IsHwSupportAvailable () const
	{
#if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE
		static bool state = false;
		static bool stateValid = false;

		if (!stateValid)
		{
			state = HasSSE2() ? true : false;
			stateValid = true;
		}
		return state;
#else
		return false;
#endif
	}
	bool Cipher::HwSupportEnabled = true;
}