VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Volume/VolumeException.h
blob: 8185fab9f908b4a77ea2356e2d9c4678f108427d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#ifndef TC_HEADER_Volume_VolumeExceptions
#define TC_HEADER_Volume_VolumeExceptions

#include "Platform/Platform.h"

namespace VeraCrypt
{
	struct VolumeException : public Exception
	{
	protected:
		VolumeException ();
		VolumeException (const string &message);
		VolumeException (const string &message, const wstring &subject);
	};

#define TC_EXCEPTION(NAME) TC_EXCEPTION_DECL(NAME,VolumeException)

#undef TC_EXCEPTION_SET
#define TC_EXCEPTION_SET \
	TC_EXCEPTION (HigherVersionRequired); \
	TC_EXCEPTION (KeyfilePathEmpty); \
	TC_EXCEPTION (MissingVolumeData); \
	TC_EXCEPTION (MountedVolumeInUse); \
	TC_EXCEPTION (UnsupportedSectorSize); \
	TC_EXCEPTION (VolumeEncryptionNotCompleted); \
	TC_EXCEPTION (VolumeHostInUse); \
	TC_EXCEPTION (VolumeProtected); \
	TC_EXCEPTION (VolumeReadOnly);

	TC_EXCEPTION_SET;

#undef TC_EXCEPTION
}

#endif // TC_HEADER_Volume_VolumeExceptions
='n288' href='#n288'>288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/*
 Derived from source code of TrueCrypt 7.1a, which is
 Copyright (c) 2008-2012 TrueCrypt Developers Association and which is governed
 by the TrueCrypt License 3.0.

 Modifications and additions to the original source code (contained in this file)
 and all other portions of this file are Copyright (c) 2013-2017 IDRIX
 and are governed by the Apache License 2.0 the full text of which is
 contained in the file License.txt included in VeraCrypt binary and source
 code distribution packages.
*/

#include "EncryptionThreadPool.h"
#include "Pkcs5.h"
#ifdef DEVICE_DRIVER
#include "Driver/Ntdriver.h"
#endif

//Increasing the maximum number of threads 
#define TC_ENC_THREAD_POOL_MAX_THREAD_COUNT 256 //64
#define TC_ENC_THREAD_POOL_QUEUE_SIZE (TC_ENC_THREAD_POOL_MAX_THREAD_COUNT * 2)

#define TC_ENC_THREAD_POOL_LEGACY_MAX_THREAD_COUNT 64
#define TC_ENC_THREAD_POOL_LEGACY_QUEUE_SIZE (TC_ENC_THREAD_POOL_LEGACY_MAX_THREAD_COUNT * 2)

static volatile size_t ThreadPoolCount = TC_ENC_THREAD_POOL_LEGACY_MAX_THREAD_COUNT;
static volatile int ThreadQueueSize = TC_ENC_THREAD_POOL_LEGACY_QUEUE_SIZE;

#ifdef DEVICE_DRIVER

#define TC_THREAD_HANDLE PKTHREAD
#define TC_THREAD_PROC VOID

#define TC_SET_EVENT(EVENT) KeSetEvent (&EVENT, IO_DISK_INCREMENT, FALSE)
#define TC_CLEAR_EVENT(EVENT) KeClearEvent (&EVENT)

#define TC_MUTEX FAST_MUTEX
#define TC_ACQUIRE_MUTEX(MUTEX) ExAcquireFastMutex (MUTEX)
#define TC_RELEASE_MUTEX(MUTEX) ExReleaseFastMutex (MUTEX)

#else // !DEVICE_DRIVER

#define TC_THREAD_HANDLE HANDLE
#define TC_THREAD_PROC unsigned __stdcall

#define TC_SET_EVENT(EVENT) SetEvent (EVENT)
#define TC_CLEAR_EVENT(EVENT) ResetEvent (EVENT)

#define TC_MUTEX HANDLE
#define TC_ACQUIRE_MUTEX(MUTEX) WaitForSingleObject (*(MUTEX), INFINITE)
#define TC_RELEASE_MUTEX(MUTEX) ReleaseMutex (*(MUTEX))

typedef BOOL (WINAPI *SetThreadGroupAffinityFn)(
  HANDLE               hThread,
  const GROUP_AFFINITY *GroupAffinity,
  PGROUP_AFFINITY      PreviousGroupAffinity
);

typedef WORD (WINAPI* GetActiveProcessorGroupCountFn)();

typedef DWORD (WINAPI *GetActiveProcessorCountFn)(
  WORD GroupNumber
);

#endif // !DEVICE_DRIVER


typedef enum
{
	WorkItemFree,
	WorkItemReady,
	WorkItemBusy
} WorkItemState;


typedef struct EncryptionThreadPoolWorkItemStruct
{
	WorkItemState State;
	EncryptionThreadPoolWorkType Type;

	TC_EVENT ItemCompletedEvent;

	struct EncryptionThreadPoolWorkItemStruct *FirstFragment;
	LONG OutstandingFragmentCount;

	union
	{
		struct
		{
			PCRYPTO_INFO CryptoInfo;
			uint8 *Data;
			UINT64_STRUCT StartUnitNo;
			uint32 UnitCount;

		} Encryption;

		struct
		{
			TC_EVENT *CompletionEvent;
			LONG *CompletionFlag;
			char *DerivedKey;
			int IterationCount;
			TC_EVENT *NoOutstandingWorkItemEvent;
			LONG *OutstandingWorkItemCount;
			char *Password;
			int PasswordLength;
			int Pkcs5Prf;
			char *Salt;

		} KeyDerivation;

		struct
		{
			TC_EVENT *KeyDerivationCompletedEvent;
			TC_EVENT *NoOutstandingWorkItemEvent;
			LONG *outstandingWorkItemCount;
			void* keyInfoBuffer;
			int keyInfoBufferSize;
			void* keyDerivationWorkItems;
			int keyDerivationWorkItemsSize;

		} ReadVolumeHeaderFinalization;
	};

} EncryptionThreadPoolWorkItem;


static volatile BOOL ThreadPoolRunning = FALSE;
static volatile BOOL StopPending = FALSE;

static uint32 ThreadCount;
static TC_THREAD_HANDLE ThreadHandles[TC_ENC_THREAD_POOL_MAX_THREAD_COUNT];
static WORD ThreadProcessorGroups[TC_ENC_THREAD_POOL_MAX_THREAD_COUNT];

static EncryptionThreadPoolWorkItem WorkItemQueue[TC_ENC_THREAD_POOL_QUEUE_SIZE];

static volatile int EnqueuePosition;
static volatile int DequeuePosition;

static TC_MUTEX EnqueueMutex;
static TC_MUTEX DequeueMutex;

static TC_EVENT WorkItemReadyEvent;
static TC_EVENT WorkItemCompletedEvent;

#if defined(_WIN64)
void EncryptDataUnitsCurrentThreadEx (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci)
{
	if (IsRamEncryptionEnabled())
	{
		CRYPTO_INFO tmpCI;
		memcpy (&tmpCI, ci, sizeof (CRYPTO_INFO));
		VcUnprotectKeys (&tmpCI, VcGetEncryptionID (ci));

		EncryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, &tmpCI);

		burn (&tmpCI, sizeof(CRYPTO_INFO));
	}
	else
		EncryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, ci);
}

void DecryptDataUnitsCurrentThreadEx (unsigned __int8 *buf, const UINT64_STRUCT *structUnitNo, TC_LARGEST_COMPILER_UINT nbrUnits, PCRYPTO_INFO ci)
{
	if (IsRamEncryptionEnabled())
	{
		CRYPTO_INFO tmpCI;
		memcpy (&tmpCI, ci, sizeof (CRYPTO_INFO));
		VcUnprotectKeys (&tmpCI, VcGetEncryptionID (ci));

		DecryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, &tmpCI);

		burn (&tmpCI, sizeof(CRYPTO_INFO));
	}
	else
		DecryptDataUnitsCurrentThread (buf, structUnitNo, nbrUnits, ci);
}

#else
#define EncryptDataUnitsCurrentThreadEx EncryptDataUnitsCurrentThread
#define DecryptDataUnitsCurrentThreadEx DecryptDataUnitsCurrentThread
#endif

static WorkItemState GetWorkItemState (EncryptionThreadPoolWorkItem *workItem)
{
	return InterlockedExchangeAdd ((LONG *) &workItem->State, 0);
}


static void SetWorkItemState (EncryptionThreadPoolWorkItem *workItem, WorkItemState newState)
{
	InterlockedExchange ((LONG *) &workItem->State, (LONG) newState);
}


static TC_THREAD_PROC EncryptionThreadProc (void *threadArg)
{
	EncryptionThreadPoolWorkItem *workItem;
	if (threadArg)
	{
#ifdef DEVICE_DRIVER
		SetThreadCpuGroupAffinity ((USHORT) *(WORD*)(threadArg));
#else
		SetThreadGroupAffinityFn SetThreadGroupAffinityPtr = (SetThreadGroupAffinityFn) GetProcAddress (GetModuleHandle (L"kernel32.dll"), "SetThreadGroupAffinity");
		if (SetThreadGroupAffinityPtr && threadArg)
		{
			GROUP_AFFINITY groupAffinity = {0};
			groupAffinity.Mask = ~0ULL;
			groupAffinity.Group = *(WORD*)(threadArg);
			SetThreadGroupAffinityPtr(GetCurrentThread(), &groupAffinity, NULL);
		}
	
#endif
	}


	while (!StopPending)
	{
		TC_ACQUIRE_MUTEX (&DequeueMutex);

		workItem = &WorkItemQueue[DequeuePosition++];

		if (DequeuePosition >= ThreadQueueSize)
			DequeuePosition = 0;

		while (!StopPending && GetWorkItemState (workItem) != WorkItemReady)
		{
			TC_WAIT_EVENT (WorkItemReadyEvent);
		}

		SetWorkItemState (workItem, WorkItemBusy);

		TC_RELEASE_MUTEX (&DequeueMutex);

		if (StopPending)
			break;

		switch (workItem->Type)
		{
		case DecryptDataUnitsWork:
			DecryptDataUnitsCurrentThreadEx (workItem->Encryption.Data, &workItem->Encryption.StartUnitNo, workItem->Encryption.UnitCount, workItem->Encryption.CryptoInfo);
			break;

		case EncryptDataUnitsWork:
			EncryptDataUnitsCurrentThreadEx (workItem->Encryption.Data, &workItem->Encryption.StartUnitNo, workItem->Encryption.UnitCount, workItem->Encryption.CryptoInfo);
			break;

		case DeriveKeyWork:
			switch (workItem->KeyDerivation.Pkcs5Prf)
			{
			case BLAKE2S:
				derive_key_blake2s (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case SHA512:
				derive_key_sha512 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case WHIRLPOOL:
				derive_key_whirlpool (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case SHA256:
				derive_key_sha256 (workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			case STREEBOG:
				derive_key_streebog(workItem->KeyDerivation.Password, workItem->KeyDerivation.PasswordLength, workItem->KeyDerivation.Salt, PKCS5_SALT_SIZE,
					workItem->KeyDerivation.IterationCount, workItem->KeyDerivation.DerivedKey, GetMaxPkcs5OutSize());
				break;

			default:
				TC_THROW_FATAL_EXCEPTION;
			}

			InterlockedExchange (workItem->KeyDerivation.CompletionFlag, TRUE);
			TC_SET_EVENT (*workItem->KeyDerivation.CompletionEvent);

			if (InterlockedDecrement (workItem->KeyDerivation.OutstandingWorkItemCount) == 0)
				TC_SET_EVENT (*workItem->KeyDerivation.NoOutstandingWorkItemEvent);

			SetWorkItemState (workItem, WorkItemFree);
			TC_SET_EVENT (WorkItemCompletedEvent);
			continue;

		case ReadVolumeHeaderFinalizationWork:
			TC_WAIT_EVENT (*(workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent));

			if (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems)
			{
				burn (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems, workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItemsSize);
#if !defined(DEVICE_DRIVER)
				VirtualUnlock (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems, workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItemsSize);
#endif
				TCfree (workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems);
			}

			if (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer)
			{
				burn (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer, workItem->ReadVolumeHeaderFinalization.keyInfoBufferSize);
#if !defined(DEVICE_DRIVER)
				VirtualUnlock (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer, workItem->ReadVolumeHeaderFinalization.keyInfoBufferSize);
#endif
				TCfree (workItem->ReadVolumeHeaderFinalization.keyInfoBuffer);
			}

#if !defined(DEVICE_DRIVER) 
			CloseHandle (*(workItem->ReadVolumeHeaderFinalization.KeyDerivationCompletedEvent));
			CloseHandle (*(workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent));
#endif
			TCfree (workItem->ReadVolumeHeaderFinalization.KeyDerivationCompletedEvent);
			TCfree (workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent);
			TCfree (workItem->ReadVolumeHeaderFinalization.outstandingWorkItemCount);
			SetWorkItemState (workItem, WorkItemFree);
			TC_SET_EVENT (WorkItemCompletedEvent);
			continue;
		default:
			TC_THROW_FATAL_EXCEPTION;
		}

		if (workItem != workItem->FirstFragment)
		{
			SetWorkItemState (workItem, WorkItemFree);
			TC_SET_EVENT (WorkItemCompletedEvent);
		}

		if (InterlockedDecrement (&workItem->FirstFragment->OutstandingFragmentCount) == 0)
			TC_SET_EVENT (workItem->FirstFragment->ItemCompletedEvent);
	}

#ifdef DEVICE_DRIVER
	PsTerminateSystemThread (STATUS_SUCCESS);
#else
	_endthreadex (0);
    return 0;
#endif
}

#ifndef DEVICE_DRIVER

size_t GetCpuCount (WORD* pGroupCount)
{
	size_t cpuCount = 0;
	SYSTEM_INFO sysInfo;
	GetActiveProcessorGroupCountFn GetActiveProcessorGroupCountPtr = (GetActiveProcessorGroupCountFn) GetProcAddress (GetModuleHandle (L"Kernel32.dll"), "GetActiveProcessorGroupCount");
	GetActiveProcessorCountFn GetActiveProcessorCountPtr = (GetActiveProcessorCountFn) GetProcAddress (GetModuleHandle (L"Kernel32.dll"), "GetActiveProcessorCount");
	if (GetActiveProcessorGroupCountPtr && GetActiveProcessorCountPtr)
	{
		WORD j, groupCount = GetActiveProcessorGroupCountPtr();
		size_t totalProcessors = 0;
		for (j = 0; j < groupCount; ++j)
		{
			totalProcessors += (size_t) GetActiveProcessorCountPtr(j);
		}
		cpuCount = totalProcessors;
		if (pGroupCount)
			*pGroupCount = groupCount;
	}
	else
	{
		GetSystemInfo(&sysInfo);
		cpuCount = (size_t) sysInfo.dwNumberOfProcessors;
		if (pGroupCount)
			*pGroupCount = 1;
	}

	return cpuCount;
}

#endif


BOOL EncryptionThreadPoolStart (size_t encryptionFreeCpuCount)
{
	size_t cpuCount = 0, i = 0;
	WORD groupCount = 1;

	cpuCount = GetCpuCount(&groupCount);

	if (ThreadPoolRunning)
		return TRUE;

	if (groupCount > 1)
	{
		ThreadPoolCount = TC_ENC_THREAD_POOL_MAX_THREAD_COUNT;
		ThreadQueueSize = TC_ENC_THREAD_POOL_QUEUE_SIZE;
	}

	if (cpuCount > encryptionFreeCpuCount)
		cpuCount -= encryptionFreeCpuCount;

	if (cpuCount < 2)
		return TRUE;

	if (cpuCount > ThreadPoolCount)
		cpuCount = ThreadPoolCount;

	StopPending = FALSE;
	DequeuePosition = 0;
	EnqueuePosition = 0;

#ifdef DEVICE_DRIVER
	KeInitializeEvent (&WorkItemReadyEvent, SynchronizationEvent, FALSE);
	KeInitializeEvent (&WorkItemCompletedEvent, SynchronizationEvent, FALSE);
#else
	WorkItemReadyEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
	if (!WorkItemReadyEvent)
		return FALSE;

	WorkItemCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
	if (!WorkItemCompletedEvent)
		return FALSE;
#endif

#ifdef DEVICE_DRIVER
	ExInitializeFastMutex (&DequeueMutex);
	ExInitializeFastMutex (&EnqueueMutex);
#else
	DequeueMutex = CreateMutex (NULL, FALSE, NULL);
	if (!DequeueMutex)
		return FALSE;

	EnqueueMutex = CreateMutex (NULL, FALSE, NULL);
	if (!EnqueueMutex)
		return FALSE;
#endif

	memset (WorkItemQueue, 0, sizeof (WorkItemQueue));

	for (i = 0; i < sizeof (WorkItemQueue) / sizeof (WorkItemQueue[0]); ++i)
	{
		WorkItemQueue[i].State = WorkItemFree;

#ifdef DEVICE_DRIVER
		KeInitializeEvent (&WorkItemQueue[i].ItemCompletedEvent, SynchronizationEvent, FALSE);
#else
		WorkItemQueue[i].ItemCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL);
		if (!WorkItemQueue[i].ItemCompletedEvent)
		{
			EncryptionThreadPoolStop();
			return FALSE;
		}
#endif
	}

	for (ThreadCount = 0; ThreadCount < cpuCount; ++ThreadCount)
	{
		WORD* pThreadArg = NULL;
		if (groupCount > 1)
		{
#ifdef DEVICE_DRIVER
			ThreadProcessorGroups[ThreadCount] = GetCpuGroup ((size_t) ThreadCount);
#else
			GetActiveProcessorCountFn GetActiveProcessorCountPtr = (GetActiveProcessorCountFn) GetProcAddress (GetModuleHandle (L"Kernel32.dll"), "GetActiveProcessorCount");
			// Determine which processor group to bind the thread to.
			if (GetActiveProcessorCountPtr)
			{
				WORD j;
				uint32 totalProcessors = 0U;
				for (j = 0U; j < groupCount; j++)
				{
					totalProcessors += (uint32) GetActiveProcessorCountPtr(j);
					if (totalProcessors >= ThreadCount)
					{
						ThreadProcessorGroups[ThreadCount] = j;
						break;
					}
				}
			}
			else
				ThreadProcessorGroups[ThreadCount] = 0;
#endif
			pThreadArg = &ThreadProcessorGroups[ThreadCount];
		}

#ifdef DEVICE_DRIVER
		if (!NT_SUCCESS(TCStartThread(EncryptionThreadProc, (void*) pThreadArg, &ThreadHandles[ThreadCount])))
#else
		if (!(ThreadHandles[ThreadCount] = (HANDLE)_beginthreadex(NULL, 0, EncryptionThreadProc, (void*) pThreadArg, 0, NULL)))
#endif

		{
			EncryptionThreadPoolStop();
			return FALSE;
		}
	}

	ThreadPoolRunning = TRUE;
	return TRUE;
}


void EncryptionThreadPoolStop ()
{
	size_t i;

	if (!ThreadPoolRunning)
		return;

	StopPending = TRUE;
	TC_SET_EVENT (WorkItemReadyEvent);

	for (i = 0; i < ThreadCount; ++i)
	{
#ifdef DEVICE_DRIVER
		TCStopThread (ThreadHandles[i], &WorkItemReadyEvent);
#else
		TC_WAIT_EVENT (ThreadHandles[i]);
#endif
	}

	ThreadCount = 0;

#ifndef DEVICE_DRIVER
	CloseHandle (DequeueMutex);
	CloseHandle (EnqueueMutex);

	CloseHandle (WorkItemReadyEvent);
	CloseHandle (WorkItemCompletedEvent);

	for (i = 0; i < sizeof (WorkItemQueue) / sizeof (WorkItemQueue[0]); ++i)
	{
		if (WorkItemQueue[i].ItemCompletedEvent)
			CloseHandle (WorkItemQueue[i].ItemCompletedEvent);
	}
#endif

	ThreadPoolRunning = FALSE;
}


void EncryptionThreadPoolBeginKeyDerivation (TC_EVENT *completionEvent, TC_EVENT *noOutstandingWorkItemEvent, LONG *completionFlag, LONG *outstandingWorkItemCount, int pkcs5Prf, char *password, int passwordLength, char *salt, int iterationCount, char *derivedKey)
{
	EncryptionThreadPoolWorkItem *workItem;

	if (!ThreadPoolRunning)
		TC_THROW_FATAL_EXCEPTION;

	TC_ACQUIRE_MUTEX (&EnqueueMutex);

	workItem = &WorkItemQueue[EnqueuePosition++];
	if (EnqueuePosition >= ThreadQueueSize)
		EnqueuePosition = 0;

	while (GetWorkItemState (workItem) != WorkItemFree)
	{
		TC_WAIT_EVENT (WorkItemCompletedEvent);
	}

	workItem->Type = DeriveKeyWork;
	workItem->KeyDerivation.CompletionEvent = completionEvent;
	workItem->KeyDerivation.CompletionFlag = completionFlag;
	workItem->KeyDerivation.DerivedKey = derivedKey;
	workItem->KeyDerivation.IterationCount = iterationCount;
	workItem->KeyDerivation.NoOutstandingWorkItemEvent = noOutstandingWorkItemEvent;
	workItem->KeyDerivation.OutstandingWorkItemCount = outstandingWorkItemCount;
	workItem->KeyDerivation.Password = password;
	workItem->KeyDerivation.PasswordLength = passwordLength;
	workItem->KeyDerivation.Pkcs5Prf = pkcs5Prf;
	workItem->KeyDerivation.Salt = salt;

	InterlockedIncrement (outstandingWorkItemCount);
	TC_CLEAR_EVENT (*noOutstandingWorkItemEvent);

	SetWorkItemState (workItem, WorkItemReady);
	TC_SET_EVENT (WorkItemReadyEvent);
	TC_RELEASE_MUTEX (&EnqueueMutex);
}

void EncryptionThreadPoolBeginReadVolumeHeaderFinalization (TC_EVENT *keyDerivationCompletedEvent, TC_EVENT *noOutstandingWorkItemEvent, LONG* outstandingWorkItemCount, 
	void* keyInfoBuffer, int keyInfoBufferSize,
	void* keyDerivationWorkItems, int keyDerivationWorkItemsSize)
{
	EncryptionThreadPoolWorkItem *workItem;

	if (!ThreadPoolRunning)
		TC_THROW_FATAL_EXCEPTION;

	TC_ACQUIRE_MUTEX (&EnqueueMutex);

	workItem = &WorkItemQueue[EnqueuePosition++];
	if (EnqueuePosition >= ThreadQueueSize)
		EnqueuePosition = 0;

	while (GetWorkItemState (workItem) != WorkItemFree)
	{
		TC_WAIT_EVENT (WorkItemCompletedEvent);
	}

	workItem->Type = ReadVolumeHeaderFinalizationWork;
	workItem->ReadVolumeHeaderFinalization.NoOutstandingWorkItemEvent = noOutstandingWorkItemEvent;
	workItem->ReadVolumeHeaderFinalization.KeyDerivationCompletedEvent = keyDerivationCompletedEvent;
	workItem->ReadVolumeHeaderFinalization.keyInfoBuffer = keyInfoBuffer;
	workItem->ReadVolumeHeaderFinalization.keyInfoBufferSize = keyInfoBufferSize;
	workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItems = keyDerivationWorkItems;
	workItem->ReadVolumeHeaderFinalization.keyDerivationWorkItemsSize = keyDerivationWorkItemsSize;
	workItem->ReadVolumeHeaderFinalization.outstandingWorkItemCount = outstandingWorkItemCount;

	SetWorkItemState (workItem, WorkItemReady);
	TC_SET_EVENT (WorkItemReadyEvent);
	TC_RELEASE_MUTEX (&EnqueueMutex);
}


void EncryptionThreadPoolDoWork (EncryptionThreadPoolWorkType type, uint8 *data, const UINT64_STRUCT *startUnitNo, uint32 unitCount, PCRYPTO_INFO cryptoInfo)
{
	uint32 fragmentCount;
	uint32 unitsPerFragment;
	uint32 remainder;

	uint8 *fragmentData;
	uint64 fragmentStartUnitNo;

	EncryptionThreadPoolWorkItem *workItem;
	EncryptionThreadPoolWorkItem *firstFragmentWorkItem;

	if (unitCount == 0)
		return;

	if (!ThreadPoolRunning || unitCount == 1)
	{
		switch (type)
		{
		case DecryptDataUnitsWork:
			DecryptDataUnitsCurrentThreadEx (data, startUnitNo, unitCount, cryptoInfo);
			break;

		case EncryptDataUnitsWork:
			EncryptDataUnitsCurrentThreadEx (data, startUnitNo, unitCount, cryptoInfo);
			break;

		default:
			TC_THROW_FATAL_EXCEPTION;
		}

		return;
	}

	if (unitCount <= ThreadCount)
	{
		fragmentCount = unitCount;
		unitsPerFragment = 1;
		remainder = 0;
	}
	else
	{
		/* Note that it is not efficient to divide the data into fragments smaller than a few hundred bytes.
		The reason is that the overhead associated with thread handling would in most cases make a multi-threaded
		process actually slower than a single-threaded process. */

		fragmentCount = ThreadCount;
		unitsPerFragment = unitCount / ThreadCount;
		remainder = unitCount % ThreadCount;

		if (remainder > 0)
			++unitsPerFragment;
	}

	fragmentData = data;
	fragmentStartUnitNo = startUnitNo->Value;

	TC_ACQUIRE_MUTEX (&EnqueueMutex);
	firstFragmentWorkItem = &WorkItemQueue[EnqueuePosition];

	while (GetWorkItemState (firstFragmentWorkItem) != WorkItemFree)
	{
		TC_WAIT_EVENT (WorkItemCompletedEvent);
	}

	firstFragmentWorkItem->OutstandingFragmentCount = fragmentCount;

	while (fragmentCount-- > 0)
	{
		workItem = &WorkItemQueue[EnqueuePosition++];
		if (EnqueuePosition >= ThreadQueueSize)
			EnqueuePosition = 0;

		while (GetWorkItemState (workItem) != WorkItemFree)
		{
			TC_WAIT_EVENT (WorkItemCompletedEvent);
		}

		workItem->Type = type;
		workItem->FirstFragment = firstFragmentWorkItem;

		workItem->Encryption.CryptoInfo = cryptoInfo;
		workItem->Encryption.Data = fragmentData;
		workItem->Encryption.UnitCount = unitsPerFragment;
		workItem->Encryption.StartUnitNo.Value = fragmentStartUnitNo;

		fragmentData += ((uint64)unitsPerFragment) * ENCRYPTION_DATA_UNIT_SIZE;
		fragmentStartUnitNo += unitsPerFragment;

		if (remainder > 0 && --remainder == 0)
			--unitsPerFragment;

		SetWorkItemState (workItem, WorkItemReady);
		TC_SET_EVENT (WorkItemReadyEvent);
	}

	TC_RELEASE_MUTEX (&EnqueueMutex);

	TC_WAIT_EVENT (firstFragmentWorkItem->ItemCompletedEvent);
	SetWorkItemState (firstFragmentWorkItem, WorkItemFree);
	TC_SET_EVENT (WorkItemCompletedEvent);
}


size_t GetEncryptionThreadCount ()
{
	return ThreadPoolRunning ? ThreadCount : 0;
}


size_t GetMaxEncryptionThreadCount ()
{
	return ThreadPoolCount;
}


BOOL IsEncryptionThreadPoolRunning ()
{
	return ThreadPoolRunning;
}