diff options
Diffstat (limited to 'src/Crypto/sha256_armv8.c')
-rw-r--r-- | src/Crypto/sha256_armv8.c | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/src/Crypto/sha256_armv8.c b/src/Crypto/sha256_armv8.c new file mode 100644 index 00000000..1599350a --- /dev/null +++ b/src/Crypto/sha256_armv8.c @@ -0,0 +1,184 @@ +/* +* SHA-256 using CPU instructions in ARMv8 +* +* Contributed by Jeffrey Walton. Based on public domain code by +* Johannes Schneiders, Skip Hovsmith and Barry O'Rourke. +* +* Further changes (C) 2020 Jack Lloyd +* +* Botan is released under the Simplified BSD License (see license.txt) +*/ + +/* Modified and adapted for VeraCrypt */ + +#include "Common/Tcdefs.h" +#if !defined(_UEFI) +#include <memory.h> +#include <stdlib.h> +#endif +#include "cpu.h" +#include "misc.h" + +#if CRYPTOPP_ARM_SHA2_AVAILABLE + +#include <arm_neon.h> + +CRYPTOPP_ALIGN_DATA(64) static const uint32 K[] = { + 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, + 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, + 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, + 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, + 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, + 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, + 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, + 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, +}; + +void sha256_compress_digest_armv8(void* input_data, uint32 digest[8], uint64 num_blks) { + + + // Load initial values + uint32x4_t STATE0 = vld1q_u32(&digest[0]); + uint32x4_t STATE1 = vld1q_u32(&digest[4]); + + // Intermediate void* cast due to https://llvm.org/bugs/show_bug.cgi?id=20670 + const uint32* input32 = (const uint32*)(const void*)input_data; + + while (num_blks > 0) { + // Save current state + const uint32x4_t ABCD_SAVE = STATE0; + const uint32x4_t EFGH_SAVE = STATE1; + + uint32x4_t MSG0 = vld1q_u32(input32 + 0); + uint32x4_t MSG1 = vld1q_u32(input32 + 4); + uint32x4_t MSG2 = vld1q_u32(input32 + 8); + uint32x4_t MSG3 = vld1q_u32(input32 + 12); + + MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0))); + MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1))); + MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2))); + MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3))); + + uint32x4_t MSG_K, TSTATE; + + // Rounds 0-3 + MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 0])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3); + + // Rounds 4-7 + MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 1])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0); + + // Rounds 8-11 + MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 2])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1); + + // Rounds 12-15 + MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 3])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2); + + // Rounds 16-19 + MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 4])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3); + + // Rounds 20-23 + MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 5])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0); + + // Rounds 24-27 + MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 6])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1); + + // Rounds 28-31 + MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 7])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2); + + // Rounds 32-35 + MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 8])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3); + + // Rounds 36-39 + MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 9])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0); + + // Rounds 40-43 + MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 10])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1); + + // Rounds 44-47 + MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 11])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2); + + // Rounds 48-51 + MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 12])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + + // Rounds 52-55 + MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 13])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + + // Rounds 56-59 + MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 14])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + + // Rounds 60-63 + MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 15])); + TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K); + STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K); + STATE0 = TSTATE; + + // Add back to state + STATE0 = vaddq_u32(STATE0, ABCD_SAVE); + STATE1 = vaddq_u32(STATE1, EFGH_SAVE); + + input32 += 64 / 4; + num_blks--; + } + + // Save state + vst1q_u32(&digest[0], STATE0); + vst1q_u32(&digest[4], STATE1); +} +#endif |