VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Crypto/sha256_armv8.c
blob: 1599350a049cdb109941745b91bd983e6a400fa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*
* SHA-256 using CPU instructions in ARMv8
*
* Contributed by Jeffrey Walton. Based on public domain code by
* Johannes Schneiders, Skip Hovsmith and Barry O'Rourke.
*
* Further changes (C) 2020 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/

/* Modified and adapted for VeraCrypt */

#include "Common/Tcdefs.h"
#if !defined(_UEFI)
#include <memory.h>
#include <stdlib.h>
#endif
#include "cpu.h"
#include "misc.h"

#if CRYPTOPP_ARM_SHA2_AVAILABLE

#include <arm_neon.h>

CRYPTOPP_ALIGN_DATA(64) static const uint32 K[] = {
    0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
    0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
    0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
    0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
    0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
    0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
    0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
    0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};

void sha256_compress_digest_armv8(void* input_data, uint32 digest[8], uint64 num_blks) {


    // Load initial values
    uint32x4_t STATE0 = vld1q_u32(&digest[0]);
    uint32x4_t STATE1 = vld1q_u32(&digest[4]);

    // Intermediate void* cast due to https://llvm.org/bugs/show_bug.cgi?id=20670
    const uint32* input32 = (const uint32*)(const void*)input_data;

    while (num_blks > 0) {
        // Save current state
        const uint32x4_t ABCD_SAVE = STATE0;
        const uint32x4_t EFGH_SAVE = STATE1;

        uint32x4_t MSG0 = vld1q_u32(input32 + 0);
        uint32x4_t MSG1 = vld1q_u32(input32 + 4);
        uint32x4_t MSG2 = vld1q_u32(input32 + 8);
        uint32x4_t MSG3 = vld1q_u32(input32 + 12);

        MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0)));
        MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1)));
        MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2)));
        MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3)));

        uint32x4_t MSG_K, TSTATE;

        // Rounds 0-3
        MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 0]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3);

        // Rounds 4-7
        MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 1]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0);

        // Rounds 8-11
        MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 2]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1);

        // Rounds 12-15
        MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 3]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2);

        // Rounds 16-19
        MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 4]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3);

        // Rounds 20-23
        MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 5]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0);

        // Rounds 24-27
        MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 6]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1);

        // Rounds 28-31
        MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 7]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2);

        // Rounds 32-35
        MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 8]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG0 = vsha256su1q_u32(vsha256su0q_u32(MSG0, MSG1), MSG2, MSG3);

        // Rounds 36-39
        MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 9]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG1 = vsha256su1q_u32(vsha256su0q_u32(MSG1, MSG2), MSG3, MSG0);

        // Rounds 40-43
        MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 10]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG2 = vsha256su1q_u32(vsha256su0q_u32(MSG2, MSG3), MSG0, MSG1);

        // Rounds 44-47
        MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 11]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;
        MSG3 = vsha256su1q_u32(vsha256su0q_u32(MSG3, MSG0), MSG1, MSG2);

        // Rounds 48-51
        MSG_K = vaddq_u32(MSG0, vld1q_u32(&K[4 * 12]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;

        // Rounds 52-55
        MSG_K = vaddq_u32(MSG1, vld1q_u32(&K[4 * 13]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;

        // Rounds 56-59
        MSG_K = vaddq_u32(MSG2, vld1q_u32(&K[4 * 14]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;

        // Rounds 60-63
        MSG_K = vaddq_u32(MSG3, vld1q_u32(&K[4 * 15]));
        TSTATE = vsha256hq_u32(STATE0, STATE1, MSG_K);
        STATE1 = vsha256h2q_u32(STATE1, STATE0, MSG_K);
        STATE0 = TSTATE;

        // Add back to state
        STATE0 = vaddq_u32(STATE0, ABCD_SAVE);
        STATE1 = vaddq_u32(STATE1, EFGH_SAVE);

        input32 += 64 / 4;
        num_blks--;
    }

    // Save state
    vst1q_u32(&digest[0], STATE0);
    vst1q_u32(&digest[4], STATE1);
}
#endif