VeraCrypt
aboutsummaryrefslogtreecommitdiff
path: root/src/Common/libzip/zip_error.c
AgeCommit message (Expand)AuthorFilesLines
2023-05-25Update Libzip to latest 1.9.2 (#1071)DLL1251-22/+23
2020-03-10Windows: Update libzip to 1.6.1Mounir IDRASSI1-1/+1
2019-10-04Windows: Update libzip to version 1.5.2Mounir IDRASSI1-1/+1
2018-03-18Windows: Update libzip to version 1.5.0 that include fixes for some security ...Mounir IDRASSI1-27/+22
2017-04-26Windows: update libzip to version 1.2.0Mounir IDRASSI1-1/+1
2016-10-17Windows: Replace XZip/XUnzip library with zlib and libzip and include the sou...Mounir IDRASSI1-0/+155
f='#n83'>83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
/*
 ---------------------------------------------------------------------------
 Copyright (c) 1999, Dr Brian Gladman, Worcester, UK.   All rights reserved.

 LICENSE TERMS

 The free distribution and use of this software is allowed (with or without
 changes) provided that:

  1. source code distributions include the above copyright notice, this
     list of conditions and the following disclaimer;

  2. binary distributions include the above copyright notice, this list
     of conditions and the following disclaimer in their documentation;

  3. the name of the copyright holder is not used to endorse products
     built using this software without specific written permission.

 DISCLAIMER

 This software is provided 'as is' with no explicit or implied warranties
 in respect of its properties, including, but not limited to, correctness
 and/or fitness for purpose.
 ---------------------------------------------------------------------------

 My thanks to Doug Whiting and Niels Ferguson for comments that led
 to improvements in this implementation.

 Issue Date: 14th January 1999
*/

/* Adapted for TrueCrypt */


#ifdef TC_WINDOWS_BOOT
#pragma optimize ("tl", on)
#endif

#include "Twofish.h"
#include "Common/Endian.h"

#define Q_TABLES
#define M_TABLE

#if !defined (TC_MINIMIZE_CODE_SIZE) || defined (TC_WINDOWS_BOOT_TWOFISH)
#	define MK_TABLE
#	define ONE_STEP
#endif

/* finite field arithmetic for GF(2**8) with the modular    */
/* polynomial x^8 + x^6 + x^5 + x^3 + 1 (0x169)             */

#define G_M 0x0169

static u1byte  tab_5b[4] = { 0, G_M >> 2, G_M >> 1, (G_M >> 1) ^ (G_M >> 2) };
static u1byte  tab_ef[4] = { 0, (G_M >> 1) ^ (G_M >> 2), G_M >> 1, G_M >> 2 };

#define ffm_01(x)    (x)
#define ffm_5b(x)   ((x) ^ ((x) >> 2) ^ tab_5b[(x) & 3])
#define ffm_ef(x)   ((x) ^ ((x) >> 1) ^ ((x) >> 2) ^ tab_ef[(x) & 3])

static u1byte ror4[16] = { 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15 };
static u1byte ashx[16] = { 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12, 5, 14, 7 };

static u1byte qt0[2][16] = 
{   { 8, 1, 7, 13, 6, 15, 3, 2, 0, 11, 5, 9, 14, 12, 10, 4 },
    { 2, 8, 11, 13, 15, 7, 6, 14, 3, 1, 9, 4, 0, 10, 12, 5 }
};

static u1byte qt1[2][16] =
{   { 14, 12, 11, 8, 1, 2, 3, 5, 15, 4, 10, 6, 7, 0, 9, 13 }, 
    { 1, 14, 2, 11, 4, 12, 3, 7, 6, 13, 10, 5, 15, 9, 0, 8 }
};

static u1byte qt2[2][16] = 
{   { 11, 10, 5, 14, 6, 13, 9, 0, 12, 8, 15, 3, 2, 4, 7, 1 },
    { 4, 12, 7, 5, 1, 6, 9, 10, 0, 14, 13, 8, 2, 11, 3, 15 }
};

static u1byte qt3[2][16] = 
{   { 13, 7, 15, 4, 1, 2, 6, 14, 9, 11, 3, 0, 8, 5, 12, 10 },
    { 11, 9, 5, 1, 12, 3, 13, 14, 6, 4, 7, 15, 2, 0, 8, 10 }
};
 
static u1byte qp(const u4byte n, const u1byte x)
{   u1byte  a0, a1, a2, a3, a4, b0, b1, b2, b3, b4;

    a0 = x >> 4; b0 = x & 15;
    a1 = a0 ^ b0; b1 = ror4[b0] ^ ashx[a0];
    a2 = qt0[n][a1]; b2 = qt1[n][b1];
    a3 = a2 ^ b2; b3 = ror4[b2] ^ ashx[a2];
    a4 = qt2[n][a3]; b4 = qt3[n][b3];
    return (b4 << 4) | a4;
};

#ifdef  Q_TABLES

static u4byte  qt_gen = 0;
static u1byte  q_tab[2][256];

#define q(n,x)  q_tab[n][x]

static void gen_qtab(void)
{   u4byte  i;

    for(i = 0; i < 256; ++i)
    {       
        q(0,i) = qp(0, (u1byte)i);
        q(1,i) = qp(1, (u1byte)i);
    }
};

#else

#define q(n,x)  qp(n, x)

#endif

#ifdef  M_TABLE

static u4byte  mt_gen = 0;
static u4byte  m_tab[4][256];

static void gen_mtab(void)
{   u4byte  i, f01, f5b, fef;
    
    for(i = 0; i < 256; ++i)
    {
        f01 = q(1,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
        m_tab[0][i] = f01 + (f5b << 8) + (fef << 16) + (fef << 24);
        m_tab[2][i] = f5b + (fef << 8) + (f01 << 16) + (fef << 24);

        f01 = q(0,i); f5b = ffm_5b(f01); fef = ffm_ef(f01);
        m_tab[1][i] = fef + (fef << 8) + (f5b << 16) + (f01 << 24);
        m_tab[3][i] = f5b + (f01 << 8) + (fef << 16) + (f5b << 24);
    }
};

#define mds(n,x)    m_tab[n][x]

#else

#define fm_00   ffm_01
#define fm_10   ffm_5b
#define fm_20   ffm_ef
#define fm_30   ffm_ef
#define q_0(x)  q(1,x)

#define fm_01   ffm_ef
#define fm_11   ffm_ef
#define fm_21   ffm_5b
#define fm_31   ffm_01
#define q_1(x)  q(0,x)

#define fm_02   ffm_5b
#define fm_12   ffm_ef
#define fm_22   ffm_01
#define fm_32   ffm_ef
#define q_2(x)  q(1,x)

#define fm_03   ffm_5b
#define fm_13   ffm_01
#define fm_23   ffm_ef
#define fm_33   ffm_5b
#define q_3(x)  q(0,x)

#define f_0(n,x)    ((u4byte)fm_0##n(x))
#define f_1(n,x)    ((u4byte)fm_1##n(x) << 8)
#define f_2(n,x)    ((u4byte)fm_2##n(x) << 16)
#define f_3(n,x)    ((u4byte)fm_3##n(x) << 24)

#define mds(n,x)    f_0(n,q_##n(x)) ^ f_1(n,q_##n(x)) ^ f_2(n,q_##n(x)) ^ f_3(n,q_##n(x))

#endif

static u4byte h_fun(TwofishInstance *instance, const u4byte x, const u4byte key[])
{   u4byte  b0, b1, b2, b3;

#ifndef M_TABLE
    u4byte  m5b_b0, m5b_b1, m5b_b2, m5b_b3;
    u4byte  mef_b0, mef_b1, mef_b2, mef_b3;
#endif

    b0 = extract_byte(x, 0); b1 = extract_byte(x, 1); b2 = extract_byte(x, 2); b3 = extract_byte(x, 3);

    switch(instance->k_len)
    {
    case 4: b0 = q(1, (u1byte) b0) ^ extract_byte(key[3],0);
            b1 = q(0, (u1byte) b1) ^ extract_byte(key[3],1);
            b2 = q(0, (u1byte) b2) ^ extract_byte(key[3],2);
            b3 = q(1, (u1byte) b3) ^ extract_byte(key[3],3);
    case 3: b0 = q(1, (u1byte) b0) ^ extract_byte(key[2],0);
            b1 = q(1, (u1byte) b1) ^ extract_byte(key[2],1);
            b2 = q(0, (u1byte) b2) ^ extract_byte(key[2],2);
            b3 = q(0, (u1byte) b3) ^ extract_byte(key[2],3);
    case 2: b0 = q(0, (u1byte) (q(0, (u1byte) b0) ^ extract_byte(key[1],0))) ^ extract_byte(key[0],0);
            b1 = q(0, (u1byte) (q(1, (u1byte) b1) ^ extract_byte(key[1],1))) ^ extract_byte(key[0],1);
            b2 = q(1, (u1byte) (q(0, (u1byte) b2) ^ extract_byte(key[1],2))) ^ extract_byte(key[0],2);
            b3 = q(1, (u1byte) (q(1, (u1byte) b3) ^ extract_byte(key[1],3))) ^ extract_byte(key[0],3);
    }
#ifdef  M_TABLE

    return  mds(0, b0) ^ mds(1, b1) ^ mds(2, b2) ^ mds(3, b3);

#else

    b0 = q(1, (u1byte) b0); b1 = q(0, (u1byte) b1); b2 = q(1, (u1byte) b2); b3 = q(0, (u1byte) b3);
    m5b_b0 = ffm_5b(b0); m5b_b1 = ffm_5b(b1); m5b_b2 = ffm_5b(b2); m5b_b3 = ffm_5b(b3);
    mef_b0 = ffm_ef(b0); mef_b1 = ffm_ef(b1); mef_b2 = ffm_ef(b2); mef_b3 = ffm_ef(b3);
    b0 ^= mef_b1 ^ m5b_b2 ^ m5b_b3; b3 ^= m5b_b0 ^ mef_b1 ^ mef_b2;
    b2 ^= mef_b0 ^ m5b_b1 ^ mef_b3; b1 ^= mef_b0 ^ mef_b2 ^ m5b_b3;

    return b0 | (b3 << 8) | (b2 << 16) | (b1 << 24);

#endif
};

#ifdef  MK_TABLE

#ifdef  ONE_STEP
//u4byte  mk_tab[4][256];
#else
static u1byte  sb[4][256];
#endif

#define q20(x)  q(0,q(0,x) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
#define q21(x)  q(0,q(1,x) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
#define q22(x)  q(1,q(0,x) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
#define q23(x)  q(1,q(1,x) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)

#define q30(x)  q(0,q(0,q(1, x) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
#define q31(x)  q(0,q(1,q(1, x) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
#define q32(x)  q(1,q(0,q(0, x) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
#define q33(x)  q(1,q(1,q(0, x) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)

#define q40(x)  q(0,q(0,q(1, q(1, x) ^ extract_byte(key[3],0)) ^ extract_byte(key[2],0)) ^ extract_byte(key[1],0)) ^ extract_byte(key[0],0)
#define q41(x)  q(0,q(1,q(1, q(0, x) ^ extract_byte(key[3],1)) ^ extract_byte(key[2],1)) ^ extract_byte(key[1],1)) ^ extract_byte(key[0],1)
#define q42(x)  q(1,q(0,q(0, q(0, x) ^ extract_byte(key[3],2)) ^ extract_byte(key[2],2)) ^ extract_byte(key[1],2)) ^ extract_byte(key[0],2)
#define q43(x)  q(1,q(1,q(0, q(1, x) ^ extract_byte(key[3],3)) ^ extract_byte(key[2],3)) ^ extract_byte(key[1],3)) ^ extract_byte(key[0],3)

static void gen_mk_tab(TwofishInstance *instance, u4byte key[])
{   u4byte  i;
    u1byte  by;

	u4byte *mk_tab = instance->mk_tab;

    switch(instance->k_len)
    {
    case 2: for(i = 0; i < 256; ++i)
            {
                by = (u1byte)i;
#ifdef ONE_STEP
                mk_tab[0 + 4*i] = mds(0, q20(by)); mk_tab[1 + 4*i] = mds(1, q21(by));
                mk_tab[2 + 4*i] = mds(2, q22(by)); mk_tab[3 + 4*i] = mds(3, q23(by));
#else
                sb[0][i] = q20(by); sb[1][i] = q21(by); 
                sb[2][i] = q22(by); sb[3][i] = q23(by);
#endif
            }
            break;
    
    case 3: for(i = 0; i < 256; ++i)
            {
                by = (u1byte)i;
#ifdef ONE_STEP
                mk_tab[0 + 4*i] = mds(0, q30(by)); mk_tab[1 + 4*i] = mds(1, q31(by));
                mk_tab[2 + 4*i] = mds(2, q32(by)); mk_tab[3 + 4*i] = mds(3, q33(by));
#else
                sb[0][i] = q30(by); sb[1][i] = q31(by); 
                sb[2][i] = q32(by); sb[3][i] = q33(by);
#endif
            }
            break;
    
    case 4: for(i = 0; i < 256; ++i)
            {
                by = (u1byte)i;
#ifdef ONE_STEP
                mk_tab[0 + 4*i] = mds(0, q40(by)); mk_tab[1 + 4*i] = mds(1, q41(by));
                mk_tab[2 + 4*i] = mds(2, q42(by)); mk_tab[3 + 4*i] = mds(3, q43(by));
#else
                sb[0][i] = q40(by); sb[1][i] = q41(by); 
                sb[2][i] = q42(by); sb[3][i] = q43(by);
#endif
            }
    }
};

#  ifdef ONE_STEP
#    define g0_fun(x) ( mk_tab[0 + 4*extract_byte(x,0)] ^ mk_tab[1 + 4*extract_byte(x,1)] \
                      ^ mk_tab[2 + 4*extract_byte(x,2)] ^ mk_tab[3 + 4*extract_byte(x,3)] )
#    define g1_fun(x) ( mk_tab[0 + 4*extract_byte(x,3)] ^ mk_tab[1 + 4*extract_byte(x,0)] \
                      ^ mk_tab[2 + 4*extract_byte(x,1)] ^ mk_tab[3 + 4*extract_byte(x,2)] )


#  else
#    define g0_fun(x) ( mds(0, sb[0][extract_byte(x,0)]) ^ mds(1, sb[1][extract_byte(x,1)]) \
                      ^ mds(2, sb[2][extract_byte(x,2)]) ^ mds(3, sb[3][extract_byte(x,3)]) )
#    define g1_fun(x) ( mds(0, sb[0][extract_byte(x,3)]) ^ mds(1, sb[1][extract_byte(x,0)]) \
                      ^ mds(2, sb[2][extract_byte(x,1)]) ^ mds(3, sb[3][extract_byte(x,2)]) )
#  endif

#else

#define g0_fun(x)   h_fun(instance, x, instance->s_key)
#define g1_fun(x)   h_fun(instance, rotl(x,8), instance->s_key)

#endif

/* The (12,8) Reed Soloman code has the generator polynomial

  g(x) = x^4 + (a + 1/a) * x^3 + a * x^2 + (a + 1/a) * x + 1

where the coefficients are in the finite field GF(2^8) with a
modular polynomial a^8 + a^6 + a^3 + a^2 + 1. To generate the
remainder we have to start with a 12th order polynomial with our
eight input bytes as the coefficients of the 4th to 11th terms. 
That is:

  m[7] * x^11 + m[6] * x^10 ... + m[0] * x^4 + 0 * x^3 +... + 0
  
We then multiply the generator polynomial by m[7] * x^7 and subtract
it - xor in GF(2^8) - from the above to eliminate the x^7 term (the 
artihmetic on the coefficients is done in GF(2^8). We then multiply 
the generator polynomial by x^6 * coeff(x^10) and use this to remove
the x^10 term. We carry on in this way until the x^4 term is removed
so that we are left with:

  r[3] * x^3 + r[2] * x^2 + r[1] 8 x^1 + r[0]

which give the resulting 4 bytes of the remainder. This is equivalent 
to the matrix multiplication in the Twofish description but much faster 
to implement.

*/

#define G_MOD   0x0000014d

static u4byte mds_rem(u4byte p0, u4byte p1)
{   u4byte  i, t, u;

    for(i = 0; i < 8; ++i)
    {
        t = p1 >> 24;   // get most significant coefficient
        
        p1 = (p1 << 8) | (p0 >> 24); p0 <<= 8;  // shift others up
            
        // multiply t by a (the primitive element - i.e. left shift)

        u = (t << 1); 
        
        if(t & 0x80)            // subtract modular polynomial on overflow
        
            u ^= G_MOD; 

        p1 ^= t ^ (u << 16);    // remove t * (a * x^2 + 1)  

        u ^= (t >> 1);          // form u = a * t + t / a = t * (a + 1 / a); 
        
        if(t & 0x01)            // add the modular polynomial on underflow
        
            u ^= G_MOD >> 1;

        p1 ^= (u << 24) | (u << 8); // remove t * (a + 1/a) * (x^3 + x)
    }

    return p1;
};

/* initialise the key schedule from the user supplied key   */

u4byte *twofish_set_key(TwofishInstance *instance, const u4byte in_key[])
{   u4byte  i, a, b, me_key[4], mo_key[4];
	u4byte *l_key, *s_key;

	l_key = instance->l_key;
	s_key = instance->s_key;

#ifdef Q_TABLES
    if(!qt_gen)
    {
        gen_qtab(); qt_gen = 1;
    }
#endif

#ifdef M_TABLE
    if(!mt_gen)
    {
        gen_mtab(); mt_gen = 1;
    }
#endif

    instance->k_len = 4;

    for(i = 0; i < instance->k_len; ++i)
    {
        a = LE32(in_key[i + i]);     me_key[i] = a;
        b = LE32(in_key[i + i + 1]); mo_key[i] = b;
        s_key[instance->k_len - i - 1] = mds_rem(a, b);
    }

    for(i = 0; i < 40; i += 2)
    {
        a = 0x01010101 * i; b = a + 0x01010101;
        a = h_fun(instance, a, me_key);
        b = rotl(h_fun(instance, b, mo_key), 8);
        l_key[i] = a + b;
        l_key[i + 1] = rotl(a + 2 * b, 9);
    }

#ifdef MK_TABLE
    gen_mk_tab(instance, s_key);
#endif

    return l_key;
};

/* encrypt a block of text  */

#ifndef TC_MINIMIZE_CODE_SIZE

#define f_rnd(i)                                                    \
    t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);                       \
    blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1);      \
    blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]);  \
    t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);                       \
    blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1);     \
    blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11])

void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
{   u4byte  t0, t1, blk[4];

	u4byte *l_key = instance->l_key;
	u4byte *mk_tab = instance->mk_tab;

	blk[0] = LE32(in_blk[0]) ^ l_key[0];
    blk[1] = LE32(in_blk[1]) ^ l_key[1];
    blk[2] = LE32(in_blk[2]) ^ l_key[2];
    blk[3] = LE32(in_blk[3]) ^ l_key[3];

    f_rnd(0); f_rnd(1); f_rnd(2); f_rnd(3);
    f_rnd(4); f_rnd(5); f_rnd(6); f_rnd(7);

    out_blk[0] = LE32(blk[2] ^ l_key[4]);
    out_blk[1] = LE32(blk[3] ^ l_key[5]);
    out_blk[2] = LE32(blk[0] ^ l_key[6]);
    out_blk[3] = LE32(blk[1] ^ l_key[7]); 
};

#else // TC_MINIMIZE_CODE_SIZE

void twofish_encrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[])
{   u4byte  t0, t1, blk[4];

	u4byte *l_key = instance->l_key;
#ifdef TC_WINDOWS_BOOT_TWOFISH
	u4byte *mk_tab = instance->mk_tab;
#endif
	int i;

	blk[0] = LE32(in_blk[0]) ^ l_key[0];
    blk[1] = LE32(in_blk[1]) ^ l_key[1];
    blk[2] = LE32(in_blk[2]) ^ l_key[2];
    blk[3] = LE32(in_blk[3]) ^ l_key[3];

	for (i = 0; i <= 7; ++i)
	{
		t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
		blk[2] = rotr(blk[2] ^ (t0 + t1 + l_key[4 * (i) + 8]), 1);
		blk[3] = rotl(blk[3], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 9]);
		t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
		blk[0] = rotr(blk[0] ^ (t0 + t1 + l_key[4 * (i) + 10]), 1);
		blk[1] = rotl(blk[1], 1) ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]);
	}

    out_blk[0] = LE32(blk[2] ^ l_key[4]);
    out_blk[1] = LE32(blk[3] ^ l_key[5]);
    out_blk[2] = LE32(blk[0] ^ l_key[6]);
    out_blk[3] = LE32(blk[1] ^ l_key[7]); 
};

#endif // TC_MINIMIZE_CODE_SIZE

/* decrypt a block of text  */

#ifndef TC_MINIMIZE_CODE_SIZE

#define i_rnd(i)                                                        \
        t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);                       \
        blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]);     \
        blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1); \
        t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);                       \
        blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) +  8]);     \
        blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) +  9]), 1)

void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
{   u4byte  t0, t1, blk[4];

	u4byte *l_key = instance->l_key;
	u4byte *mk_tab = instance->mk_tab;

    blk[0] = LE32(in_blk[0]) ^ l_key[4];
    blk[1] = LE32(in_blk[1]) ^ l_key[5];
    blk[2] = LE32(in_blk[2]) ^ l_key[6];
    blk[3] = LE32(in_blk[3]) ^ l_key[7];

    i_rnd(7); i_rnd(6); i_rnd(5); i_rnd(4);
    i_rnd(3); i_rnd(2); i_rnd(1); i_rnd(0);

    out_blk[0] = LE32(blk[2] ^ l_key[0]);
    out_blk[1] = LE32(blk[3] ^ l_key[1]);
    out_blk[2] = LE32(blk[0] ^ l_key[2]);
    out_blk[3] = LE32(blk[1] ^ l_key[3]); 
};

#else // TC_MINIMIZE_CODE_SIZE

void twofish_decrypt(TwofishInstance *instance, const u4byte in_blk[4], u4byte out_blk[4])
{   u4byte  t0, t1, blk[4];

	u4byte *l_key = instance->l_key;
#ifdef TC_WINDOWS_BOOT_TWOFISH
	u4byte *mk_tab = instance->mk_tab;
#endif
	int i;

    blk[0] = LE32(in_blk[0]) ^ l_key[4];
    blk[1] = LE32(in_blk[1]) ^ l_key[5];
    blk[2] = LE32(in_blk[2]) ^ l_key[6];
    blk[3] = LE32(in_blk[3]) ^ l_key[7];

	for (i = 7; i >= 0; --i)
	{
		t1 = g1_fun(blk[1]); t0 = g0_fun(blk[0]);
		blk[2] = rotl(blk[2], 1) ^ (t0 + t1 + l_key[4 * (i) + 10]);
		blk[3] = rotr(blk[3] ^ (t0 + 2 * t1 + l_key[4 * (i) + 11]), 1);
		t1 = g1_fun(blk[3]); t0 = g0_fun(blk[2]);
		blk[0] = rotl(blk[0], 1) ^ (t0 + t1 + l_key[4 * (i) +  8]);
		blk[1] = rotr(blk[1] ^ (t0 + 2 * t1 + l_key[4 * (i) +  9]), 1);
	}

    out_blk[0] = LE32(blk[2] ^ l_key[0]);
    out_blk[1] = LE32(blk[3] ^ l_key[1]);
    out_blk[2] = LE32(blk[0] ^ l_key[2]);
    out_blk[3] = LE32(blk[1] ^ l_key[3]); 
};

#endif // TC_MINIMIZE_CODE_SIZE