1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
|
/*
Legal Notice: Some portions of the source code contained in this file were
derived from the source code of TrueCrypt 7.1a, which is
Copyright (c) 2003-2012 TrueCrypt Developers Association and which is
governed by the TrueCrypt License 3.0, also from the source code of
Encryption for the Masses 2.02a, which is Copyright (c) 1998-2000 Paul Le Roux
and which is governed by the 'License Agreement for Encryption for the Masses'
Modifications and additions to the original source code (contained in this file)
and all other portions of this file are Copyright (c) 2013-2017 IDRIX
and are governed by the Apache License 2.0 the full text of which is
contained in the file License.txt included in VeraCrypt binary and source
code distribution packages. */
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "Tcdefs.h"
#include "Crypto.h"
#include "Common/Endian.h"
#include "Format.h"
#include "Fat.h"
#include "Progress.h"
#include "Random.h"
#include "Volumes.h"
void
GetFatParams (fatparams * ft)
{
uint64 volumeSize = (uint64) ft->num_sectors * ft->sector_size;
unsigned int fatsecs;
if(ft->cluster_size == 0) // 'Default' cluster size
{
uint32 clusterSize;
// Determine optimal cluster size to minimize FAT size (mounting delay), maximize number of files, keep 4 KB alignment, etc.
if (volumeSize >= 2 * BYTES_PER_TB)
clusterSize = 256 * BYTES_PER_KB;
else if (volumeSize >= 512 * BYTES_PER_GB)
clusterSize = 128 * BYTES_PER_KB;
else if (volumeSize >= 128 * BYTES_PER_GB)
clusterSize = 64 * BYTES_PER_KB;
else if (volumeSize >= 64 * BYTES_PER_GB)
clusterSize = 32 * BYTES_PER_KB;
else if (volumeSize >= 32 * BYTES_PER_GB)
clusterSize = 16 * BYTES_PER_KB;
else if (volumeSize >= 16 * BYTES_PER_GB)
clusterSize = 8 * BYTES_PER_KB;
else if (volumeSize >= 512 * BYTES_PER_MB)
clusterSize = 4 * BYTES_PER_KB;
else if (volumeSize >= 256 * BYTES_PER_MB)
clusterSize = 2 * BYTES_PER_KB;
else if (volumeSize >= 1 * BYTES_PER_MB)
clusterSize = 1 * BYTES_PER_KB;
else
clusterSize = 512;
ft->cluster_size = clusterSize / ft->sector_size;
if (ft->cluster_size == 0)
ft->cluster_size = 1;
if (((unsigned __int64) ft->cluster_size * ft->sector_size) > TC_MAX_FAT_CLUSTER_SIZE)
ft->cluster_size = TC_MAX_FAT_CLUSTER_SIZE / ft->sector_size;
if (ft->cluster_size > 128)
ft->cluster_size = 128;
}
if (volumeSize <= TC_MAX_FAT_CLUSTER_SIZE * 4)
ft->cluster_size = 1;
// Geometry always set to SECTORS/1/1
ft->secs_track = 1;
ft->heads = 1;
ft->dir_entries = 512;
ft->fats = 2;
ft->media = 0xf8;
ft->hidden = 0;
ft->size_root_dir = ft->dir_entries * 32;
// FAT12
ft->size_fat = 12;
ft->reserved = 2;
fatsecs = ft->num_sectors - (ft->size_root_dir + ft->sector_size - 1) / ft->sector_size - ft->reserved;
ft->cluster_count = (int) (((unsigned __int64) fatsecs * ft->sector_size) / ((unsigned __int64) ft->cluster_size * ft->sector_size));
ft->fat_length = (((ft->cluster_count * 3 + 1) >> 1) + ft->sector_size - 1) / ft->sector_size;
if (ft->cluster_count >= 4085) // FAT16
{
ft->size_fat = 16;
ft->reserved = 2;
fatsecs = ft->num_sectors - (ft->size_root_dir + ft->sector_size - 1) / ft->sector_size - ft->reserved;
ft->cluster_count = (int) (((__int64) fatsecs * ft->sector_size) / (ft->cluster_size * ft->sector_size));
ft->fat_length = (ft->cluster_count * 2 + ft->sector_size - 1) / ft->sector_size;
}
if(ft->cluster_count >= 65525) // FAT32
{
ft->size_fat = 32;
ft->reserved = 32 - 1;
do
{
ft->reserved++;
fatsecs = ft->num_sectors - ft->reserved;
ft->size_root_dir = ft->cluster_size * ft->sector_size;
ft->cluster_count = (int) (((unsigned __int64) fatsecs * ft->sector_size) / (ft->cluster_size * ft->sector_size));
ft->fat_length = (ft->cluster_count * 4 + ft->sector_size - 1) / ft->sector_size;
// Align data area on TC_MAX_VOLUME_SECTOR_SIZE
} while (ft->sector_size == TC_SECTOR_SIZE_LEGACY
&& (ft->reserved * ft->sector_size + ft->fat_length * ft->fats * ft->sector_size) % TC_MAX_VOLUME_SECTOR_SIZE != 0);
}
ft->cluster_count -= ft->fat_length * ft->fats / ft->cluster_size;
if (ft->num_sectors >= 65536 || ft->size_fat == 32)
{
ft->sectors = 0;
ft->total_sect = ft->num_sectors;
}
else
{
ft->sectors = (uint16) ft->num_sectors;
ft->total_sect = 0;
}
}
void
PutBoot (fatparams * ft, unsigned char *boot)
{
int cnt = 0;
boot[cnt++] = 0xeb; /* boot jump */
boot[cnt++] = (ft->size_fat == 32)? 0x58: 0x3c;
boot[cnt++] = 0x90;
memcpy (boot + cnt, "MSDOS5.0", 8); /* system id */
cnt += 8;
*(__int16 *)(boot + cnt) = LE16(ft->sector_size); /* bytes per sector */
cnt += 2;
boot[cnt++] = (__int8) ft->cluster_size; /* sectors per cluster */
*(__int16 *)(boot + cnt) = LE16(ft->reserved); /* reserved sectors */
cnt += 2;
boot[cnt++] = (__int8) ft->fats; /* 2 fats */
if(ft->size_fat == 32)
{
boot[cnt++] = 0x00;
boot[cnt++] = 0x00;
}
else
{
*(__int16 *)(boot + cnt) = LE16(ft->dir_entries); /* 512 root entries */
cnt += 2;
}
*(__int16 *)(boot + cnt) = LE16(ft->sectors); /* # sectors */
cnt += 2;
boot[cnt++] = (__int8) ft->media; /* media byte */
if(ft->size_fat == 32)
{
boot[cnt++] = 0x00;
boot[cnt++] = 0x00;
}
else
{
*(__int16 *)(boot + cnt) = LE16((uint16) ft->fat_length); /* fat size */
cnt += 2;
}
*(__int16 *)(boot + cnt) = LE16(ft->secs_track); /* # sectors per track */
cnt += 2;
*(__int16 *)(boot + cnt) = LE16(ft->heads); /* # heads */
cnt += 2;
*(__int32 *)(boot + cnt) = LE32(ft->hidden); /* # hidden sectors */
cnt += 4;
*(__int32 *)(boot + cnt) = LE32(ft->total_sect); /* # huge sectors */
cnt += 4;
if(ft->size_fat == 32)
{
*(__int32 *)(boot + cnt) = LE32(ft->fat_length); cnt += 4; /* fat size 32 */
boot[cnt++] = 0x00; /* ExtFlags */
boot[cnt++] = 0x00;
boot[cnt++] = 0x00; /* FSVer */
boot[cnt++] = 0x00;
boot[cnt++] = 0x02; /* RootClus */
boot[cnt++] = 0x00;
boot[cnt++] = 0x00;
boot[cnt++] = 0x00;
boot[cnt++] = 0x01; /* FSInfo */
boot[cnt++] = 0x00;
boot[cnt++] = 0x06; /* BkBootSec */
boot[cnt++] = 0x00;
memset(boot+cnt, 0, 12); cnt+=12; /* Reserved */
}
boot[cnt++] = 0x00; /* drive number */ // FIXED 80 > 00
boot[cnt++] = 0x00; /* reserved */
boot[cnt++] = 0x29; /* boot sig */
memcpy (boot + cnt, ft->volume_id, 4); /* vol id */
cnt += 4;
memcpy (boot + cnt, ft->volume_name, 11); /* vol title */
cnt += 11;
switch(ft->size_fat) /* filesystem type */
{
case 12: memcpy (boot + cnt, "FAT12 ", 8); break;
case 16: memcpy (boot + cnt, "FAT16 ", 8); break;
case 32: memcpy (boot + cnt, "FAT32 ", 8); break;
}
cnt += 8;
memset (boot + cnt, 0, ft->size_fat==32 ? 420:448); /* boot code */
cnt += ft->size_fat==32 ? 420:448;
boot[cnt++] = 0x55;
boot[cnt++] = 0xaa; /* boot sig */
}
/* FAT32 FSInfo */
static void PutFSInfo (unsigned char *sector, fatparams *ft)
{
memset (sector, 0, ft->sector_size);
sector[3]=0x41; /* LeadSig */
sector[2]=0x61;
sector[1]=0x52;
sector[0]=0x52;
sector[484+3]=0x61; /* StrucSig */
sector[484+2]=0x41;
sector[484+1]=0x72;
sector[484+0]=0x72;
// Free cluster count
*(uint32 *)(sector + 488) = LE32 (ft->cluster_count - ft->size_root_dir / ft->sector_size / ft->cluster_size);
// Next free cluster
*(uint32 *)(sector + 492) = LE32 (2);
sector[508+3]=0xaa; /* TrailSig */
sector[508+2]=0x55;
sector[508+1]=0x00;
sector[508+0]=0x00;
}
int
FormatFat (void* hwndDlgPtr, unsigned __int64 startSector, fatparams * ft, void * dev, PCRYPTO_INFO cryptoInfo, BOOL quickFormat, BOOL bDevice)
{
int write_buf_cnt = 0;
char sector[TC_MAX_VOLUME_SECTOR_SIZE], *write_buf;
unsigned __int64 nSecNo = startSector;
unsigned __int64 nSkipSectors = 128 * (unsigned __int64) BYTES_PER_MB / ft->sector_size;
unsigned __int64 num_sectors;
DWORD bytesWritten;
int x, n;
int retVal;
CRYPTOPP_ALIGN_DATA(16) char temporaryKey[MASTER_KEYDATA_SIZE];
HWND hwndDlg = (HWND) hwndDlgPtr;
LARGE_INTEGER startOffset;
LARGE_INTEGER newOffset;
// Seek to start sector
startOffset.QuadPart = startSector * ft->sector_size;
if (!SetFilePointerEx ((HANDLE) dev, startOffset, &newOffset, FILE_BEGIN)
|| newOffset.QuadPart != startOffset.QuadPart)
{
return ERR_VOL_SEEKING;
}
/* Write the data area */
write_buf = (char *)TCalloc (FormatWriteBufferSize);
if (!write_buf)
return ERR_OUTOFMEMORY;
memset (sector, 0, ft->sector_size);
if (!RandgetBytes (hwndDlg, ft->volume_id, sizeof (ft->volume_id), FALSE))
goto fail;
PutBoot (ft, (unsigned char *) sector);
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
/* fat32 boot area */
if (ft->size_fat == 32)
{
/* fsinfo */
PutFSInfo((unsigned char *) sector, ft);
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
/* reserved */
while (nSecNo - startSector < 6)
{
memset (sector, 0, ft->sector_size);
sector[508+3]=0xaa; /* TrailSig */
sector[508+2]=0x55;
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
}
/* bootsector backup */
memset (sector, 0, ft->sector_size);
PutBoot (ft, (unsigned char *) sector);
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
PutFSInfo((unsigned char *) sector, ft);
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
}
/* reserved */
while (nSecNo - startSector < (unsigned int)ft->reserved)
{
memset (sector, 0, ft->sector_size);
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
}
/* write fat */
for (x = 1; x <= ft->fats; x++)
{
for (n = 0; n < ft->fat_length; n++)
{
memset (sector, 0, ft->sector_size);
if (n == 0)
{
unsigned char fat_sig[12];
if (ft->size_fat == 32)
{
fat_sig[0] = (unsigned char) ft->media;
fat_sig[1] = fat_sig[2] = 0xff;
fat_sig[3] = 0x0f;
fat_sig[4] = fat_sig[5] = fat_sig[6] = 0xff;
fat_sig[7] = 0x0f;
fat_sig[8] = fat_sig[9] = fat_sig[10] = 0xff;
fat_sig[11] = 0x0f;
memcpy (sector, fat_sig, 12);
}
else if (ft->size_fat == 16)
{
fat_sig[0] = (unsigned char) ft->media;
fat_sig[1] = 0xff;
fat_sig[2] = 0xff;
fat_sig[3] = 0xff;
memcpy (sector, fat_sig, 4);
}
else if (ft->size_fat == 12)
{
fat_sig[0] = (unsigned char) ft->media;
fat_sig[1] = 0xff;
fat_sig[2] = 0xff;
fat_sig[3] = 0x00;
memcpy (sector, fat_sig, 4);
}
}
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
}
}
/* write rootdir */
for (x = 0; x < ft->size_root_dir / ft->sector_size; x++)
{
memset (sector, 0, ft->sector_size);
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
}
/* Fill the rest of the data area with random data */
if(!quickFormat)
{
CRYPTO_INFO tmpCI;
if (!FlushFormatWriteBuffer (dev, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo))
goto fail;
/* Generate a random temporary key set to be used for "dummy" encryption that will fill
the free disk space (data area) with random data. This is necessary for plausible
deniability of hidden volumes (and also reduces the amount of predictable plaintext
within the volume). */
VirtualLock (&tmpCI, sizeof (tmpCI));
memcpy (&tmpCI, cryptoInfo, sizeof (CRYPTO_INFO));
cryptoInfo = &tmpCI;
// Temporary master key
if (!RandgetBytes (hwndDlg, temporaryKey, EAGetKeySize (cryptoInfo->ea), FALSE))
{
burn (&tmpCI, sizeof (tmpCI));
VirtualUnlock (&tmpCI, sizeof (tmpCI));
goto fail;
}
// Temporary secondary key (XTS mode)
if (!RandgetBytes (hwndDlg, cryptoInfo->k2, sizeof cryptoInfo->k2, FALSE))
{
burn (&tmpCI, sizeof (tmpCI));
VirtualUnlock (&tmpCI, sizeof (tmpCI));
goto fail;
}
retVal = EAInit (cryptoInfo->ea, temporaryKey, cryptoInfo->ks);
if (retVal != ERR_SUCCESS)
{
TCfree (write_buf);
burn (temporaryKey, sizeof(temporaryKey));
burn (&tmpCI, sizeof (tmpCI));
VirtualUnlock (&tmpCI, sizeof (tmpCI));
return retVal;
}
if (!EAInitMode (cryptoInfo, cryptoInfo->k2))
{
TCfree (write_buf);
burn (temporaryKey, sizeof(temporaryKey));
burn (&tmpCI, sizeof (tmpCI));
VirtualUnlock (&tmpCI, sizeof (tmpCI));
return ERR_MODE_INIT_FAILED;
}
if (IsRamEncryptionEnabled ())
VcProtectKeys (cryptoInfo, VcGetEncryptionID (cryptoInfo));
x = ft->num_sectors - ft->reserved - ft->size_root_dir / ft->sector_size - ft->fat_length * 2;
while (x--)
{
if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, startSector,
cryptoInfo) == FALSE)
goto fail;
}
UpdateProgressBar ((nSecNo - startSector) * ft->sector_size);
if (!FlushFormatWriteBuffer (dev, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo))
{
burn (&tmpCI, sizeof (tmpCI));
VirtualUnlock (&tmpCI, sizeof (tmpCI));
goto fail;
}
burn (&tmpCI, sizeof (tmpCI));
VirtualUnlock (&tmpCI, sizeof (tmpCI));
}
else if (!bDevice)
{
if (!FlushFormatWriteBuffer (dev, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo))
goto fail;
// Quick format: write a zeroed sector every 128 MiB, leaving other sectors untouched
// This helps users visualize the progress of actual file creation while forcing Windows
// to allocate the disk space of each 128 MiB chunk immediately, otherwise, Windows
// would delay the allocation until we write the backup header at the end of the volume which
// would make the user think that the format process has stalled after progress bar reaches 100%.
num_sectors = ft->num_sectors - ft->reserved - ft->size_root_dir / ft->sector_size - ft->fat_length * 2;
while (num_sectors >= nSkipSectors)
{
// seek to next sector to be written
nSecNo += (nSkipSectors - 1);
startOffset.QuadPart = nSecNo * ft->sector_size;
if (!MoveFilePointer ((HANDLE) dev, startOffset))
{
goto fail;
}
// sector array has been zeroed above
if (!WriteFile ((HANDLE) dev, sector, ft->sector_size, &bytesWritten, NULL)
|| bytesWritten != ft->sector_size)
{
goto fail;
}
nSecNo++;
num_sectors -= nSkipSectors;
if (UpdateProgressBar ((nSecNo - startSector)* ft->sector_size))
goto fail;
}
nSecNo += num_sectors;
UpdateProgressBar ((nSecNo - startSector)* ft->sector_size);
}
else
{
UpdateProgressBar ((uint64) ft->num_sectors * ft->sector_size);
if (!FlushFormatWriteBuffer (dev, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo))
goto fail;
}
TCfree (write_buf);
burn (temporaryKey, sizeof(temporaryKey));
return 0;
fail:
TCfree (write_buf);
burn (temporaryKey, sizeof(temporaryKey));
return ERR_OS_ERROR;
}
|